Introduction to Mobile Robotics

Welcome

W. Burgard, D. Tipaldi

Organization

Wed 14:00 – 16:00
Fr 14:00 – 15:00
lectures, discussions

 Fr 15:00 – 16:00 homework, practical exercises (Python/Octave)

 Web page: www.informatik.uni-freiburg.de/~ais/

Goal of this course

- Provide an overview of problems / approaches in mobile robotics
- Probabilistic reasoning: Dealing with noisy data
- Hands-on experience

Content of this Course

- 1. Linear Algebra
- 2. Wheeled Locomotion
- 3. Sensors
- 4. Probabilities and Bayes
- 5. Probabilistic Motion Models
- 6. Probabilistic Sensor Models
- 7. Mapping with Known Poses
- 8. The Kalman Filter
- 9. The Extended Kalman Filter
- 10.Discrete Filters
- 11. The Particle Filter, MCL

- 12. SLAM: Simultaneous Localization and Mapping
- 13. SLAM: Landmark-based FastSLAM
- 14. SLAM: Grid-based FastSLAM
- 15. SLAM: Graph-based SLAM
- **16**. Techniques for 3D Mapping
- 17. Iterative Closest Points Algorithm
- Path Planning and Collision Avoidance
- **19.** Multi-Robot Exploration
- 20. Information-Driven Exploration
- 21. Summary

Autonomous Robot Systems

- perceive their environment and
- generate actions to achieve their goals.

Tasks Addressed that Need to be Solved by Robots

✓ Navigation

Perception

✓ Learning

Cooperation

☑ Acting

✓ Interaction

☑ Robot development

Manipulation

Grasping

Planning

🗹 Reasoning

. . .

Robotics Yesterday

Current Trends in Robotics

Robots are moving away from factory floors to

- Entertainment, toys
- Personal services
- Medical, surgery
- Industrial automation (mining, harvesting, ...)
- Hazardous environments (space, underwater)

Shakey the Robot (1966)

Shakey the Robot (1966)

Robotics Today

The Helpmate System

Autonomous Vacuum Cleaners

Autonomous Lawn Mowers

DARPA Grand Challenge

[Courtesy by Sebastian Thrun]

Die DARPA Urban Challenge

Walking Robots

[Courtesy by Boston Dynamics]

Humanoids Climbing Staircases

Overcoming the uncanny valley

[Courtesy by Hiroshi Ishiguro]

Driving in the Google Car

Autonomous Motorcycles

[Courtesy by Anthony Levandowski]

The Google Self Driving Car

Folding Towels

Cloth Grasp Point Detection based on Multiple-View Geometric Cues with Application to Robotic Towel Folding

> Jeremy Maitin-Shepard Marco Cusumano-Towner Jinna Lei Pieter Abbeel

Department of Electrical Engineering and Computer Science University of California, Berkeley

International Conference on Robotics and Automation, 2010

Rhino (Univ. Bonn + CMU, 1997)

Minerva (CMU + Univ. Bonn, 1998)

Autonomous Parking

Autonomous Quadrotor Navigation

Custom-built system: laser range finder inertial measurement unit embedded CPU laser mirror

Precise Localization and Positioning for Mobile Robots

Obelix – A Robot Traveling to Downtown Freiburg

The Obelix Challenge (Aug 21, 2012)

The Tagesthemen-Report

Brain-controlled Robots

Teaching: Student Project on the Autonomous Portrait Robot

Final Result

