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Probabilistic Robotics

Key idea:

Explicit representation of uncertainty
(using the calculus of probability theory)

= Perception = state estimation
= Action = utility optimization



Axioms of Probability Theory

P(A) denotes probability that proposition A is true.
= 0<P(A)<1
= P(True) =1 P(False ) =0

« P(Av B)=P(A)+P(B)-P(AAB)



A Closer Look at Axiom 3

P(Av B) = P(A)+P(B)=P(A A B)

True




Using the Axioms

P(Av—-A) = P(A)+P(=A)-P(AA—-A)
P(True) = P(A)+P(—=A)-P(False)
1 = P(A)+P(—=A)-0

P(=A)

1- P(A)



Discrete Random Variables

= X denotes a random variable

= X can take on a countable number of values
in {Xy, X5, ..., X,

= P(X=x;) or P(x;) is the probability that the
random variable X takes on value x;

= P(-) is called probability mass function

» E.g. P(Room ) =(0.7,0.2,0.08,0.02)



Continuous Random Variables

= X takes on values in the continuum.
= p(X=x) or p(x) is a probability density

function

= E.q.

P(x

p(x) |

b

c[a,b]) = j p(x)dx

a

TN




“Probability Sums up to One”

Discrete case Continuous case

> P(x)=1 [ pOx)dx =1

X



Joint and Conditional Probability
= P(X=x and Y=y) = P(x,y)

= If X and Y are independent then
P(x,y) = P(x) P(y)

= P(x | y) is the probability of x given y
P(x | y) =P(x,y)/ P(y)
P(x,y) = P(x|y)P(y)

= If X and Y are independent then
P(x | y) = P(x)



Law of Total Probability

Discrete case

P(x) =2 P(x|y)P(y)

y

Continuous case

p(x) = [ p(x1y)p(y)dy
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Marginalization

Discrete case

P(x) =2 P(x,y)

y

Continuous case

p(x) = [ p(x, y)dy
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Bayes Formula

P(x,y)=P(x]y)P(y)=P(y|x)P(X)

—

P(x|y) =

P(y | x)P(x) likelihood -prior
P(y) evidence
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Normalization

p p
P(x|y) = (yF',(Xi) ) Py 0P ()

n=P(y) =

1
> Py Ix)P(x)

X

Algorithm:

Vx:iaux ., = P(y|x)P(x)
1

- Z aux
X

Vx:P(x]y)=naux

J
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Bayes Rule
with Background Knowledge

P(ylx,z)P(x]z)
P(y|z)

P(x|y,z) =

14



Conditional Independence
P(x,y|2)=P(x|2)P(y]|2)
= Equivalent to P(x|z)=P(x|z,y)
and P(y|2)=P(y|z,X)

= But this does not necessarily mean
P(X,y)=P(x)P(y)

(independence/marginal independence)
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Simple Example of State Estimation

= Suppose a robot obtains measurement z
= What is P(open|z)?

-
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Causal vs. Diagnostic Reasoning
= P(open|z) is diagnostic

= P(z|open) is causal
= Often causa wledge is easier to

obtain count frequencies!

= Bayes rule allows us to us€ causal
knowledge:

P(z|open )P (open)
P(z)

P(open | z) =

17



Example

= P(z|open) = 0.6 P(z|—-open) = 0.3
= P(open) = P(—open) = 0.5

P(z|open )P (open)

P(open | z) =
P(z|open)p(open)+ P(z|—open)p(—open)

0.6-0.5 0.3

= = 0.67
0.6-0.5+0.3-0.5 0.3+0.15

P(open |z) =

= 7 raises the probability that the door is open
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Combining Evidence

= Suppose our robot obtains another
observation z,

= How can we integrate this new information?

= More generally, how can we estimate
P(x |z, ..,2,)?
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Recursive Bayesian Updating

P(zn| X, 2z1,...,20-1)P(X| 21,...,2Zn -1)

P(x|zs...,2n) =
P(zn| z1,...,2Z0-1)

Markov assumption:
Z, is independent of z,,...,z,_; if we know x

P(zn| X)P(X] z3,..., Zn - 1)
P(anZl ..... Zn—l)
=77P(Zn|X)P(X|Zl,...,Zn—l)

=l 11 F’(ZIIX) P (x)

L i=1...n
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Example: Second Measurement

= P(z,|open) = 0.25 P(z,|—open) = 0.3
= P(open|z,)=2/3

P(z, | open )P (open |z,)

P(open |z,,2,)=
P(z, |open )P (open |z,)+ P(z,|—open)P(—open |z,)

1 1

2 —_
5
3 6 _6 _2 0625
3 1 4 g

10 15

1
4

"1 2 1 1
_._+—.— —+
43 10 3 6

* Z, lowers the probability that the door is open
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A Typical Pitfall

= Two possible locations x; and X,
= P(x;)=0.99
= P(z|x,)=0.09 P(z|x,)=0.07

p(x|d)
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Actions

= Often the world is dynamic since
= actions carried out by the robot,
= actions carried out by other agents,
= or just the time passing by
change the world

= How can we incorporate such actions?
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Typical Actions

= The robot turns its wheels to move

= The robot uses its manipulator to grasp
an object

= Plants grow over time...

= Actions are never carried out with
absolute certainty

= In contrast to measurements, actions
generally increase the uncertainty

24



Modeling Actions

= To incorporate the outcome of an
action u into the current “belief”, we
use the conditional pdf

P(x|u,x’)

= This term specifies the pdf that
executing u changes the state
from x’ to x.
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Example: Closing the door

-
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State Transitions

P(x|u,x’) for u = “close door”:

0.9 N4
LNl

If the door is open, the action “close door”
succeeds in 90% of all cases
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Integrating the Outcome of Actions

Continuous case:
P(x|u)=[P(x]u,x")P(x")dx’

Discrete case:

P(x]u)="> P(x|u,x")P(x')

Assumption:

P(xlu) = P(x’)
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Example: The Resulting Belief

P(closed |u)=>» P(closed |u,x")P(x')
= P(closed |u,open )P (open)
+ P(closed |u,closed )P (closed )
9 5 1 3 15

= — % — f — % — =

10 8 1 8 16
P (open |u)=">" P(open |u,x")P(x")
= P (open |u,open )P (open)
+ P (open |u,closed )P (closed )
1 5 0 3 1

= — % — f — %k — = ——

10 8 1 8 16
=1- P(closed |u)
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Bayes Filters: Framework

= Given:
= Stream of observations z and action data u:

d, ={u,z,,...,u,,z

= Sensor model P(z|x)
= Action model P(x|u,x’)
= Prior probability of the system state P(x)

= Wanted:
= Estimate of the state X of a dynamical system

= The posterior of the state is also called Belief:

Bel (x,) = P(x, |u,,z,,...,uU,,2)
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Markov Assumption

P(z, | X, 2y 4, U )=pP(Z, | X,)

P (X | Xyt g Zyg gy U )= P | Xy )

Underlying Assumptions

= Static world

= Independent noise

= Perfect model, no approximation errors
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Bayes Filters

Bel (x,)=P(x, |u,,z,...,u,,2,)

N AL

Bayes —UP(Z |X 17 11 . )P(X |u1’ 17 "ut)

Markov

=nP(z, | x)P(x, |u,z,,...,u,)
Total prob. —77P(Z |X)jP(X |U1, 11 .,Ut,Xt_l)

P(x,_,|u,z,,...,u)dx, ,

Markov

Markov

=P (2,1 x) [ P(X Ui % )P (X U, 2,

=nP(z,1%) | P(x |u, X ,)Bel (x_)dx,

observation
action
state

U )dx,
=P (2,1 %) [ PO UG X )P (X U 2y, 20, )dx
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Bel (x,) =7 P(z, | xt)j P(x, |u,, X, )Bel (x_,)dx,

O O NO U A Wb

e
= O

=
N

Algorithm Bayes_ filter(Bel(x), d):
n=0
If d is a perceptual data item z then
For all x do
Bel '(x) = P(z | x)Bel (x)
n =n + Bel '(X)
For all x do
Bel '(x) = "Bel '(x)
Else if d is an action data item u then
For all x do

Bel '(x) = j P(x|u,x")Bel (x')dx'

Return Bel ’(x)
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Probabilistic Localization

Bel(x | z,u) = ap(z|x) //p(:z: | w, ") Bel(z")dx'
X




Bayes Filters are Familiar!

Bel (x,) =7 P(z, | xt)j P(x, |u,,x,_,)Bel (x,_)dx,

= Kalman filters

= Particle filters

= Hidden Markov models

= Dynamic Bayesian networks

= Partially Observable Markov Decision
Processes (POMDPs)
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Summary

= Bayes rule allows us to compute
probabilities that are hard to assess
otherwise.

= Under the Markov assumption,
recursive Bayesian updating can be
used to efficiently combine evidence.

= Bayes filters are a probabilistic tool
for estimating the state of dynamic
systems.
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