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Probabilistic Robotics 

Introduction to 
Mobile Robotics 

Wolfram Burgard, Diego Tipaldi 
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Probabilistic Robotics 

Key idea:  
Explicit representation of uncertainty  
(using the calculus of probability theory) 

 

 Perception   = state estimation 

 Action         = utility optimization 
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P(A) denotes probability that proposition A is true. 

 

   
 

  
  

   

Axioms of Probability Theory 
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A Closer Look at Axiom 3 
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Using the Axioms 
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Discrete Random Variables 

 X denotes a random variable 

 X can take on a countable number of values 
in {x1, x2, …, xn} 

 P(X=xi) or P(xi) is the probability that the 
random variable X takes on value xi 

 P( ) is called probability mass function 
 

 E.g. 
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Continuous Random Variables 

 X takes on values in the continuum. 

 p(X=x) or p(x) is a probability density 
function 

 

 

 E.g. 
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“Probability Sums up to One” 
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Discrete case Continuous case 
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Joint and Conditional Probability 

 P(X=x and Y=y) = P(x,y) 
 

 If X and Y are independent then  

  P(x,y) = P(x) P(y) 

 P(x | y) is the probability of x given y 

  P(x | y) = P(x,y) / P(y) 

  P(x,y)   = P(x | y) P(y) 

 If X and Y are independent then 

  P(x | y) = P(x) 
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Law of Total Probability 
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 Marginalization 
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Bayes Formula 

evidence

prior likelihood
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Normalization 
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Algorithm: 
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Bayes Rule  
with Background Knowledge 
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Conditional Independence 
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 Equivalent to 

    

  and 

 

 But this does not necessarily mean 

 

 

    (independence/marginal independence) 
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Simple Example of State Estimation 

 Suppose a robot obtains measurement z 

 What is P(open|z)? 
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Causal vs. Diagnostic Reasoning 

 P(open|z) is diagnostic 

 P(z|open) is causal 

 Often causal knowledge is easier to 
obtain 

 Bayes rule allows us to use causal 
knowledge: 
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Example 

 P(z|open) = 0.6  P(z|open) = 0.3 

 P(open) = P(open) = 0.5 
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 z raises the probability that the door is open 
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Combining Evidence 

 Suppose our robot obtains another 
observation z2 

 How can we integrate this new information? 

 More generally, how can we estimate 
P(x | z1, ..., zn )? 
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Recursive Bayesian Updating 
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Markov assumption:  
zn is independent of z1,...,zn-1 if we know x 
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Example: Second Measurement  

 P(z2|open) = 0.25  P(z2|open) = 0.3 

 P(open|z1)=2/3 
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• z2 lowers the probability that the door is open 
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A Typical Pitfall 

 Two possible locations x1 and x2 

 P(x1)=0.99  

 P(z|x2)=0.09 P(z|x1)=0.07  
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Actions 

 Often the world is dynamic since 

 actions carried out by the robot, 

 actions carried out by other agents, 

 or just the time passing by 

 change the world 

 

 How can we incorporate such actions? 
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Typical Actions 

 The robot turns its wheels to move 

 The robot uses its manipulator to grasp 
an object 

 Plants grow over time… 

 

 Actions are never carried out with 
absolute certainty 

 In contrast to measurements, actions 
generally increase the uncertainty 
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Modeling Actions 

 To incorporate the outcome of an 
action u into the current “belief”, we 
use the conditional pdf  

 

P(x|u,x’) 

 

 This term specifies the pdf that 
executing u changes the state 
from x’ to x. 
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Example: Closing the door 
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State Transitions 

P(x|u,x’) for u = “close door”: 

 

 

 

 

 

 
 

If the door is open, the action “close door” 
succeeds in 90% of all cases 
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Integrating the Outcome of Actions 
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Example: The Resulting Belief 
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Bayes Filters: Framework 

 Given: 

 Stream of observations z and action data u: 
 
 

 Sensor model P(z|x) 

 Action model P(x|u,x’) 

 Prior probability of the system state P(x) 

 Wanted:  

 Estimate of the state X of a dynamical system 

 The posterior of the state is also called Belief: 
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Markov Assumption 

Underlying Assumptions 

 Static world 

 Independent noise 

 Perfect model, no approximation errors 
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Bayes Filters 
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Bayes Filter Algorithm  

1.  Algorithm Bayes_filter(Bel(x), d): 

2.  0 

3.  If d is a perceptual data item z then 

4.      For all x do 

5.   

6.   

7.      For all x do 

8.   

9.  Else if d is an action data item u then 

10.      For all x do 

11.   

12.  Return Bel’(x)       
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Probabilistic Localization 
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Bayes Filters are Familiar! 

 Kalman filters 

 Particle filters 

 Hidden Markov models 

 Dynamic Bayesian networks 

 Partially Observable Markov Decision 
Processes (POMDPs) 
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Summary 

 Bayes rule allows us to compute 
probabilities that are hard to assess 
otherwise. 

 Under the Markov assumption, 
recursive Bayesian updating can be 
used to efficiently combine evidence. 

 Bayes filters are a probabilistic tool 
for estimating the state of dynamic 
systems. 


