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Robot Motion

= Robot motion is inherently uncertain.
= How can we model this uncertainty?




Dynamic Bayesian Network for
Controls, States, and Sensations




Probabilistic Motion Models

= To implement the Bayes Filter, we need the
transition model p(x: | zi—1, us).

= The term p(z; | z:—1,u:) Specifies a posterior
probability, that action u, carries the robot
from x_, to x.

= In this section we will discuss, how
p(xs | z4-1,u;) can be modeled based on the
motion equations and the uncertain
outcome of the movements.



Coordinate Systems

= The configuration of a typical wheeled robot in 3D
can be described by six parameters.

= This are the three-dimensional Cartesian

coordinates plus the three Euler angles for roll,
pitch, and yaw.

= For simplicity, throughout this section we consider
robots operating on a planar surface.

A
= The state space of such

systems is three-
dimensional (Xx,y,0). 1 ° XY




Typical Motion Models

In practice, one often finds two types of
motion models:

= Odometry-based
= Velocity-based (dead reckoning)

Odometry-based models are used when
systems are equipped with wheel encoders.

Velocity-based models have to be applied
when no wheel encoders are given.

They calculate the new pose based on the
velocities and the time elapsed.



Example Wheel Encoders

These modules provide

@ Wi~
+5V output when they o .t — R o im
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These disks are
manufactured out of high
quality laminated color
plastic to offer a very crisp
black to white transition.
This enables a wheel
encoder sensor to easily
see the transitions.

Source: http://www.active-robots.com/



Dead Reckoning

= Derived from “deduced reckoning.”

= Mathematical procedure for determining the
present location of a vehicle.

= Achieved by calculating the current pose of
the vehicle based on its velocities and the

time elapsed.
= Historically used to log the position of ships.

[Image source:
Wikipedia, LoKiLeCh] g



Reasons for Motion Errors of

Wheeled Robots

ideal case different wheel
diameters

—

bump

and many more ...



Odometry Model

* Robot moves from (x,y,6) to (x,y".6").
e Odometry information u = (3, 8,05+ Syans )

5 —J(x X)2 + (V- )’
5rot1 — (y }_/ X'— )_9
o)

rot 2




The atan2 Function

= Extends the inverse tangent and correctly
copes with the signs of x and v.

(atan(y/x) ifz >0
. sign(y) (w —atan(|y/x|)) ifx <O
atan2(y,z) = | 0 ife=y=0
| sign(y) 7/2 ifx =0,y# 0
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Noise Model for Odometry

= The measured motion is given by the true
motion corrupted with noise.

O ..=0. .. +&

rot1 rotl 22 |5rot1|+a2 |5trans |
o) =0 + &

trans trans a3|§trans |+Ot4 (lgrot 1|+|5rot 2 )
o) =0 .. +¢&

rot 2 rot 2 Ay 00t 21+ o |0ans |




Typical Distributions for
Probabilistic Motion Models

Normal distribution Triangular distribution
--., b 5 b
e 0if | x |> V60
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Calculating the Probability
Density (zero-centered)

= For a normal distribution

query point
1. Algorithm prob_normal_distribution(ab):
A
1 1 a2 std. deviation
2. return exp il ———
V2m b2 2 b2

= For a triangular distribution

1. Algorithm prob_triangular_distribution(ab):

2. return max{o_}
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Calculating the Posterior
Given x, X', and Odometry

hypotheses odometry

1. Algorithm motion_model_odometry(g;, x|z, Z’)

2. Sy = (R 4 (79

3. 6, =atan2 (y-y,X'-X)-0 >odometry params (u)
4. 6,,=0'-0-5_,

5. By = VX=X H (YY)

6. 5““ = atan2 (y'-y, x'-x) -6 >/alues of interest (x,x’)
7. Sy = 9'—9—5]0”

8. p,=prob(J,,, rotl,al |0 i1 | F,0 s )

9. P, =prob (0, — trans 030 e T A (| Oq |16, 1)

10. p,=prob (o, — mtz,al |0 oo | +0,0 00 )
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Application

= Repeated application of the motion model
for short movements.

= Typical banana-shaped distributions

obtained for the 2d-projection of the 3d
posterior.

p(x'|u, )

\\
u
u




Sample-Based Density Representation




Sample-Based Density Representation
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How to Sample from a Normal
Distribution?

= Sampling from a normal distribution

1. Algorithm sample_normal_distribution(b):

1 12
2. return 5z:m,nal(—b,b)
=1
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Normally Distributed Samples

uﬂﬂﬂ

00,0045

"hurma1+gn&" —
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106 samples



How to Sample from Normal or
Triangular Distributions?

= Sampling from a normal distribution

1. Algorithm sample_normal_distribution(b):

1 12
2. return 5z:m,nal(—b,b)
=1

= Sampling from a triangular distribution

1. Algorithm sample_triangular_distribution(b):

2. return ? [rand(—b,b) + rand(—b,b)]
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For Triangular Distribution

" Gnuplot
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How to Obtain Samples from
Arbitrary Functions?




Rejection Sampling

= Sampling from arbitrary distributions
= Sample x from a uniform distribution from [-b,b]
= Sample ¢ from [0, max f]

= f f(X)>c keep the sample
otherwise reject the sample
f(x)
= samples
2 X))
= Ce °
= OK
z (X)
& X x
0O o



Rejection Sampling

= Sampling from arbitrary distributions

Algorithm sample_distribution(fb):
repeat
x = rand(—b,b)

y = rand(0,max{f(x) |z € [-b,b]})

until (y < f(aj))
return «

o vk W
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Example
= Sampling from

| abs(z) ze[-1;1]
fz) = {O otherwise

0,01 T T T T T T T
"absx,ghu"

0,009 F

0,003 |

0,007 F

0,006 |

0,005 F

0,004

0,003 F

0,002 F

o001 F

]

- -4 =3 =& -1 0 1 2 3 4 4
1.89550,.  0,00400270
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Sample Odometry Motion Model

1.

Algorithm sample_motion_model(u, x):

U= (81 Ororrs Ogans o X = (X, Y, 0)

5rot1 =0, +sample( o, |d ., |+a, O,..)

5. =0, +sample( +a, (8., 1418,

5r0t2 =0, + sample( +a, O, )

X'= X+ 5trans cos( 6 + 5rot1)

Y'= Y+ Oy, SIN(O + ) sample_normal_distribution
0'=0+ Srotl + 5r0t2

Return (x',y",0")



Examples (Odometry-Based)




Sampling from Our Motion
Model

10 meters




Velocity-Based Model
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Noise Model for the Velocity-
Based Model

" The measured motion is given by the true
motion corrupted with noise.

V=V+¢&

aqv|+a,|ol

N

w=w-+¢&

as|V|+a,|ol

= Discussion: What is the disadvantage of this
noise model?
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Noise Model for the Velocity-
Based Model

" The (V,w)-circle constrains the final
orientation (2D manifold in a 3D space)

= Better approach:

V=V+¢&

aqv|+a,|ol

N

w=w-+¢&

as|V|+a,|ol

V = €t aglol
|

Term to account for the final rotation



Motion Including 3" Parameter

' =2 — Lsind + L sin(0 + OAL)
y =y + - : cos 6 — : cos(6 + wAt)
0" =60+ wAt + AL

I

Term to account for the final rotation
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Equation for the Velocity Model

Lt—1 = (xvyag)T
Lt = (xlvylv Ql)T

Center of circle:
T~ B T n —Asin @
Y B Y Acos#

some constant (distance to ICC)

(center of circle is orthogonal
to the initial heading)
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Equation for the Velocity Model
rio1 = (2,9,0)"
z: = (2,9, 07T some constant

Center of circle: /
( * ) _ ( T ) N ( —Asinf ) _ L_Si + 1y — ')
Yy Yy Acosf %i + p(z’ — x)

some constant (the center of the circle lies
on a ray half way between x and x’ and is
orthogonal to the line between x and x’)
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Equation for the Velocity Model

ri-1 = (2,9,0)"
;= (o', 9,0 some constant

Center of circle: /

(:1:") _ (:E>_|_(—}\5111H> _ ﬁ%_'_ﬂ(y_yf)
y" Yy Acos b P 4+ (2 — )

Allows us to solve the equations to:

(x — 2')cos@ + (y —y')sinf

1
T 2 g y)cost— (z —a')sinb
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Equation for the Velocity Model

Li—1 = (ZE, Y, B)T

Ly = (xlaylvgl)T

r” _ EE_E: +u(y —y') 1 (z—2')cost+ (y —y)sind
y* 'L_EL—FH(II_:F} =3 (y —y')cos® — (r — x')sinf
and

=@ —2)*+ (Y —y)°
A0 = atan2(y’ — y*, 2’ — z*) — atan2(y — y*, x — ™)

37



Equation for the Velocity Model

= The parameters of the circle:

= /(@ —2)>+ (Y —y)
Al = atan2(y’ — y*, 2’ — z*) — atan2(y — y*, x — =*)

= allow for computing the velocities as

N
Ktr
Ab
At
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Posterior Probability for
Velocity Model

1: Algorithm motion_model_velocity(x;, u;, s 1): p(; | Te—1,uy)

1 (zx—2")cosf+ (y —y')sind

2: = —
=9 (y —y')cosf — (x — x’) sin b
, zx+1
3: zt ==+ puly —y)
+ /
4: y*=y2y + p(x’ — x)
5: =/ (z — o)+ (y — y*)?
6: A = atan2(y’ —y*, 2’ — z*) — atan2(y — y*, z — x¥)
A6
7 0= —1r"
0=
VA
9: =200 — o
10: return prob(v — 9, a1v? + aw?) - prob(w — @, azv? + asw?)

- prob (¥, asv® + agw?)
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Sampling from Velocity Model

1:

Algorithm sample_motion_model_velocity(u;, z;_1):

d = v + sample(a1v? + arw?)
& = w + sample(azv? + asw?)
4 = sample(asv? + agw?)

' =z— 2sinf+ 2 sin(0 + ©AL)
Y =y+ Zcosf — L cos( + DAL)
0 =60+ At + FAL

return z; = (z',y’,0")%
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Examples (Velocity-Based)




Map-Consistent Motion Model

~— ()

\ -

-

) )

p(x*|u,x) # p(x'lu,x,m)

Approximation: p(x'[u,x,m)=mnp(x’|m)p(x’|u, X)



Summary

We discussed motion models for odometry-based
and velocity-based systems

We discussed ways to calculate the posterior
probability p(x | x, u).

We also described how to sample from p(x | x, u).

Typically the calculations are done in fixed time
intervals At.

In practice, the parameters of the models have to
be learned.

We also discussed how to improve this motion
model to take the map into account.
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