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Robot Motion 

 Robot motion is inherently uncertain. 

 How can we model this uncertainty? 
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Dynamic Bayesian Network for 
Controls, States, and Sensations 
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Probabilistic Motion Models 

 To implement the Bayes Filter, we need the 
transition model                       . 

 The term                        specifies a posterior 
probability, that action ut carries the robot 
from xt-1 to xt. 

 In this section we will discuss, how  
                 can be modeled based on the 

motion equations and the uncertain 
outcome of the movements.  
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Coordinate Systems 

 The configuration of a typical wheeled robot in 3D 
can be described by six parameters. 

 This are the three-dimensional Cartesian 
coordinates plus the three Euler angles for roll, 
pitch, and yaw. 

 For simplicity, throughout this section we consider 
robots operating on a planar surface. 

 The state space of such 
systems is three-
dimensional (x,y,). 
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Typical Motion Models 

 In practice, one often finds two types of 
motion models: 

 Odometry-based 

 Velocity-based (dead reckoning) 

 Odometry-based models are used when 
systems are equipped with wheel encoders. 

 Velocity-based models have to be applied 
when no wheel encoders are given.  

 They calculate the new pose based on the 
velocities and the time elapsed. 
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Example Wheel Encoders 

These modules  provide 
+5V output when they 
"see" white, and a 0V 
output when they "see" 
black.  

These disks are 
manufactured out of high 
quality laminated color 
plastic to offer a very crisp 
black to white transition. 
This enables a wheel 
encoder sensor to easily 
see the transitions.  

Source: http://www.active-robots.com/ 
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Dead Reckoning 

 Derived from “deduced reckoning.” 

 Mathematical procedure for determining the 
present location of a vehicle. 

 Achieved by calculating the current pose of 
the vehicle based on its velocities and the 
time elapsed. 

 Historically used to log the position of ships. 

[Image source:  
Wikipedia, LoKiLeCh] 
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Reasons for Motion Errors of 
Wheeled Robots 

bump 

ideal case different wheel 
diameters 

carpet 

and many more … 



Odometry Model 
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The atan2 Function 

 Extends the inverse tangent and correctly 
copes with the signs of x and y. 



Noise Model for Odometry 

 The measured motion is given by the true 
motion corrupted with noise. 
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Typical Distributions for 
Probabilistic Motion Models 
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Calculating the Probability 
Density (zero-centered) 

 For a normal distribution 

 

 

 

 

 For a triangular distribution 

1. Algorithm prob_normal_distribution(a,b): 

  

2. return   

1. Algorithm prob_triangular_distribution(a,b): 

  

2. return   

query point 

std. deviation 



1. Algorithm motion_model_odometry(x, x’,u) 

2.   

3.   

4.   

5.   

6.   

7.   

8.   

9.   

10.   

11. return  p1 · p2 · p3 
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Calculating the Posterior  
Given x, x’, and Odometry 

22
)'()'( yyxx

trans


  )','(atan2
1

xxyy
rot

12
'

rotrot
 

22
)'()'(ˆ yyxx

trans


  )','(atan2ˆ
1

xxyy
rot

12
ˆ'ˆ

rotrot
 

)||,ˆ(prob
trans21rot11rot1rot1

 p

|))||(|,ˆ(prob
rot2rot14trans3transtrans2

 p

)||,ˆ(prob
trans22rot12rot2rot3

 p

 odometry params (u) 

   values of interest (x,x’) 

odometry  hypotheses  



Application 

 Repeated application of the motion model 
for short movements. 

 Typical banana-shaped distributions 
obtained for the 2d-projection of the 3d 
posterior. 
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Sample-Based Density Representation  
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Sample-Based Density Representation  
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How to Sample from a Normal  
Distribution? 

 Sampling from a normal distribution 

 

 

 

 

1. Algorithm sample_normal_distribution(b): 

  

2. return   



20 

Normally Distributed Samples 

106 samples 
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How to Sample from Normal or 
Triangular Distributions? 

 Sampling from a normal distribution 

 

 

 

 

 Sampling from a triangular distribution 

1. Algorithm sample_normal_distribution(b): 

  

2. return   

1. Algorithm sample_triangular_distribution(b): 

  

2. return   
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For Triangular Distribution 

103 samples 104 samples 

106 samples 105 samples 



How to Obtain Samples from 
Arbitrary Functions? 
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Rejection Sampling 

 Sampling from arbitrary distributions 

 Sample x from a uniform distribution from [-b,b] 

 Sample c from [0, max f] 

 if f(x) > c   keep the sample 

otherwise  reject the sample  
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Rejection Sampling 

 Sampling from arbitrary distributions 

1. Algorithm sample_distribution(f,b):  

2. repeat 

3.    

4.   

5. until  (                ) 

6. return 
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Example 

 Sampling from  



Sample Odometry Motion Model 

1. Algorithm sample_motion_model(u, x): 

         

1.   

2.   

3.   

 

4.   

5.   

6.   

  

7. Return   
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Examples (Odometry-Based) 



Sampling from Our Motion 
Model 

Start 



30 

Velocity-Based Model 

-90 



Noise Model for the Velocity-
Based Model 
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 The measured motion is given by the true 
motion corrupted with noise. 

 

 

 

 

 

 

 Discussion: What is the disadvantage of this 
noise model? 
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Noise Model for the Velocity-
Based Model 

32 

 The       -circle constrains the final 
orientation (2D manifold in a 3D space) 

 Better approach: 
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Motion Including 3rd Parameter 
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Term to account for the final rotation 
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Equation for the Velocity Model 

Center of circle: 

some constant (distance to ICC) 

(center of circle is orthogonal  
to the initial heading) 
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Equation for the Velocity Model 

Center of circle: 

some constant 

some constant (the center of the circle lies 
on a ray half way between x and x’ and is 
orthogonal to the line between x and x’) 
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Equation for the Velocity Model 

Center of circle: 

some constant 

Allows us to solve the equations to: 
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Equation for the Velocity Model 

and 



Equation for the Velocity Model 

 The parameters of the circle: 
 
 

 

 allow for computing the velocities as 
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Posterior Probability for 
Velocity Model 
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Sampling from Velocity Model 



Examples (Velocity-Based) 



Map-Consistent Motion Model 
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Summary 

 We discussed motion models for odometry-based 
and velocity-based systems 

 We discussed ways to calculate the posterior 
probability p(x’| x, u). 

 We also described how to sample from p(x’| x, u). 

 Typically the calculations are done in fixed time 
intervals t. 

 In practice, the parameters of the models have to 
be learned. 

 We also discussed how to improve this motion 
model to take the map into account.  


