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What is SLAM?

= Estimate the pose of a robot and the map of
the environment at the same time

= SLAM is hard, because

= a map is needed for localization and
= a good pose estimate is needed for mapping

= Localization: inferring location given a
map

= Mapping: inferring a map given locations

= SLAM: |learning a map and locating the
robot simultaneously



The SLAM Problem

= SLAM has long been regarded as a
chicken-or-egg problem:
— a map is needed for localization and
— a pose estimate is needed for mapping




SLAM Applications

= SLAM is central to a range of indoor,
outdoor, in-air and underwater applications
for both manned and autonomous vehicles.

Examples:

= At home: vacuum cleaner, lawn mower

= Air: surveillance with unmanned air vehicles
= Underwater: reef monitoring

= Underground: exploration of mines

= Space: terrain mapping for localization



SLAM Applications
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Map Representations

Examples: Subway map, city map,
landmark-based map
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Maps are topological and/or metric
models of the environment



Map Representations in Robotics
= Grid maps or scans, 2d, 3d N

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99;
Haehnel, 01; Grisetti et al., 05; ...]

» Landmark-based
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[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...



The SLAM Problem

» SLAM is considered a fundamental

problems for robots to become truly
autonomous

= Large variety of different SLAM
approaches have been developed

= The majority uses probabilistic
concepts

= History of SLAM dates back to the
mid-eighties



Feature-Based SLAM

Given:
= The robot’ s controls
Ui.. :{ul,ug,...,uk} 2
= Relative observations
Zl:k — {z17z29"'?zk} '....
Wanted: .
= Map of features .
m = {my,mo,..., my,}

= Path of the robot

Xl:k — {331,332, .. .,mk}



Feature-Based SLAM

= Absolute
robot poses

Features and Landmarks /I'—\.’

Vehicle-Feature Relative

Observation
= Absolute =N
landmark ==

positions e
= But only
relative

measurements
of landmarks

Mobile Vehicle

Global Reference Frame
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Why is SLAM a hard problem?

1. Robot path and map are both unknown

2. Errors in map and pose estimates correlated
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Why is SLAM a hard problem?

= The mapping between observations and
landmarks is unknown

= Picking wrong data associations can have
catastrophic consequences (divergence)
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SLAM: Simultaneous
Localization And Mapping

= Full SLAM:

P (Xoq s M [ 2y, Uy )

Estimates entire path and map!

= Online SLAM:
p(xt’mlzlt 1t)_jj jp(xltmlzlt 1t)dX dX d -1

Estimates most recent pose and map!

= Integrations (marginalization) typically

done recursively, one at a time 3



Graphical Model of Full SLAM




Graphical Model of Online SLAM

p(xt+1’ m | Lite1 ul:t+1) - jj j p(X1:t+1’ m | Lite1 ul:t+1)dX1dX2'”dXt
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Motion and Observation Model

LTt = f(mt—laut)

"Motion model"

"Observation model"
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Remember the KF Algorithm

1. Algorithm Kalman_filter(u.;, Z;;, U, Z;):
2. Prediction:

3. ;t = Apt, + B,

4, S =AZ, AT +R

5. Correction:

6. K, =2%:C/ (C,EZ:C/ +Q)"

/. lut:lut_l_Kt(Zt__Ctlut)

8. > =(1-K.C)Z

9. Return p, %,
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EKF SLAM: State representation

= Localization

2 2 2
o g g

3x1 pose vector Tk g Yzy “zo

] X — Yl Ek = ny CTy Uyg

3x3 cov. matrix 0, 02, o2, o

= SLAM
Landmarks simply extend the state.
Growing state vector and covariance matrix!
[ Xp | [ Xg YpM, XRM, ‘' XRM, |
m; XM\R XM, XM M, MMM,
x; = | M2 Y, = | ¥M:R XM,My, XMy XMuM,

m,, | XM,R XM, M, XM,M, ' XM,



EKF SLAM: State representation

= Map with n landmarks: (3+2n)-dimensional

Gaussian

= Can handle hundreds of dimensions
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EKF SLAM: Filter Cycle

. State prediction (odometry)

. Measurement prediction

. Measurement

. Data association

. Update

. Integration of new landmarks

A U1 A W NN =



EKF SLAM: Filter Cycle

. State prediction (odometry)

. Measurement prediction

. Measurement

. Data association
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EKF SLAM: State Prediction

Odometry:

* ﬁR — f(XRa U.)
YSp=F,YXrF' +F,UF}

Robot-landmark cross-
covariance prediction:

iRMq; = Iy 2pM,

XR ZR ERMl ZRMn
1M ZMlR ZMl ZMan
m, | | XM, R XM, M, XM,
N———" ~~ o




EKF SLAM: Measurement
Prediction

Global-to-local
frame transform h

/

Zr = h(Xg)

XR ZR ZRMl ZRMn

160 §] ZMlR ZMl ZMan
1y, | i ZMnR ZMan ZMn _
N———" ~~ o




EKF SLAM: Obtained
Measurement

(X,y)-point landmarks
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EKF SLAM: Data Association

Associates predlcted

measurements z;
with observatlon z;,
= 7, -7
Q S"’” = Rl +H' S H'T
XR R ZRMl . o e ZRMn
160 §] ZMlR ZMl ZMan
m, | | YMm,R XM, M, XM,
— ~~ d




EKF SLAM: Update Step

The usual Kalman
filter expressions
Ky = i]k HTSkjl

X = X + K v

> RM,,
ZMl Mn




EKF SLAM: New Landmarks

2R 2 RM,
XM R 2 M,

XM, R XM, M,y

\ .

B ZM’I’L—I—]_R ZMn—{—lMl

State augmented by
m,, 1 = g(Xr,%;)
ZMR+1 = GRERGg + GZRJGZ

Cross-covariances:

XM, M; = GRERM,
YM,.R = GRYR

2 RM, 2 RM, s
XM M,  25My M,

EMn z:]\471]\4714—1
ZMn_|_1Mn ZMn—I—l




EKF SLAM

Map

Correlation matrix
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EKF SLAM

Map

Correlation matrix
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EKF SLAM

Correlation matrix

Map



EKF SLAM: Correlations Matter

= What if we neglected cross-correlations?

dYip =

C 5,
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2pMm; = 03x2

EM?;MZ'_._]_ — 02X2
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EKF SLAM: Correlations Matter

= What if we neglected cross-correlations?

i Yp 0 0
0 EMl 0 ERMi — 03><2
dip =
: : ) : EMiMi+1 — 02X2
0 0 - Su,

= Landmark and robot uncertainties would
necome overly optimistic

= Data association would fail
= Multiple map entries of the same landmark
= Inconsistent map




SLAM: Loop Closure

= Recognizing an already mapped area,
typically after a long exploration path (the
robot “closes a loop”)

= Structurally identical to data association,
but
= high levels of ambiguity
= possibly useless validation gates
= environment symmetries

= Uncertainties collapse after a loop closure
(whether the closure was correct or not)
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SLAM: Loop Closure

= Before loop closure
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SLAM: Loop Closure

= After loop closure
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SLAM: Loop Closure

= By revisiting already mapped areas,
uncertainties in robot and landmark
estimates can be reduced

= This can be exploited when exploring an
environment for the sake of better (e.g.
more accurate) maps

= Exploration: the problem of where to
acquire new information

— See separate chapter on exploration
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KF-SLAM Properties
(Linear Case)

= The determinant of any sub-matrix of the map
covariance matrix decreases monotonically as
successive observations are made

2 | = When a new land-
mark is initialized,
its uncertainty is

maximal

_
n
T

Standard Deviation in X (m)

: = Landmark
uncertainty
HL“\ decreases
T L monotonically
— with each new

. observation
. 0 100 110
fime (se0) [Dissanayake et al., 2001] 41



KF-SLAM Properties
(Linear Case)

= In the limit, the landmark estimates
become fully correlated

[Dissanayake et al., 2001] 4>



KF-SLAM Properties
(Linear Case)

= In the limit, the covariance associated with
any single landmark location estimate is
determined only by the initial covariance
in the vehicle location estimate.
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[Dissanayake et al., 2001] 43




EKF SLAM Example:
Victoria Park Dataset
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Victoria Park: Data Acquisition

"6».,,"

[courtesy by E. Nebot]
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Victoria Park: Estimated
Trajectory
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[courtesy by E. Nebot]
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Victoria Park: Landmarks

[courtesy by E. Nebot]
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EKF SLAM Example: Tennis
Court

[courtesy by J. Leonard]



EKF SLAM Example: Tennis
Court
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[courtesy by John Leonard] 49



EKF SLAM Example: Line

Features
" KTH Bakery Data Set "« |
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EKF-SLAM: Complexity

= Cost per step: quadratic in n, the
number of landmarks: O(n?)

= Total cost to build a map with n
landmarks: O(n3)

= Memory consumption: O(n?)

= Problem: becomes computationally
intractable for large maps!

= There exists variants to circumvent
these problems
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SLAM Techniques

= EKF SLAM
= FastSLAM
= Graph-based SLAM

= Topological SLAM
(mainly place recognition)

= Scan Matching / Visual Odometry
(only locally consistent maps)

= Approximations for SLAM: Local submaps,
Sparse extended information filters, Sparse
links, Thin junction tree filters, etc.
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EKF-SLAM: Summary

» The first SLAM solution

= Convergence proof for linear Gaussian
case

= Can diverge if nonlinearities are large
(and the real world is nonlinear ...)

= Can deal only with a single mode
= Successful in medium-scale scenes

= Approximations exists to reduce the
computational complexity
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