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Particle Filter: Campus Map 

 30 particles 

 250x250m2 

 1.75 km 
(odometry) 

 20cm resolution 
during scan 
matching 

 30cm resolution 
in final map 

 30 particles 

 250x250m2 

 1.088 miles 
(odometry) 

 20cm resolution 
during scan 
matching 

 30cm resolution 
in final map 
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Robot pose Constraint  

Graph-Based SLAM 

 Constraints connect the poses of the 
robot while it is moving 

 Constraints are inherently uncertain 
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Graph-Based SLAM 

 Observing previously seen areas 
generates constraints between non-
successive poses 

 

 

 

Robot pose Constraint  
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Idea of Graph-Based SLAM 

 Use a graph to represent the problem 

 Every node in the graph corresponds 
to a pose of the robot during mapping 

 Every edge between two nodes 
corresponds to a spatial constraint  
between them 

 Graph-Based SLAM: Build the graph 
and find a node configuration that 
minimize the error introduced by the 
constraints  
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Graph-Based SLAM in a Nutshell 

 Every node in the 
graph corresponds 
to a robot position 
and a laser 
measurement 

 An edge between 
two nodes 
represents a spatial 
constraint between 
the nodes 

KUKA Halle 22, courtesy of P. Pfaff 
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Graph-Based SLAM in a Nutshell 

 Every node in the 
graph corresponds 
to a robot position 
and a laser 
measurement 

 An edge between 
two nodes 
represents a spatial 
constraint between 
the nodes 

KUKA Halle 22, courtesy of P. Pfaff 
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Graph-Based SLAM in a Nutshell 

 Once we have the 
graph, we determine 
the most likely map 
by correcting the 
nodes 
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Graph-Based SLAM in a Nutshell 

 Once we have the 
graph, we determine 
the most likely map 
by correcting the 
nodes 

 … like this 
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Graph-Based SLAM in a Nutshell 

 Once we have the 
graph, we determine 
the most likely map 
by correcting the 
nodes 

 … like this 

 Then, we can render a 
map based on the 
known poses 
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The Overall SLAM System 

 Interplay of front-end and back-end 

 A consistent map helps to determine new 
constraints by reducing the search space 

 This lecture focuses only on the optimization 

Graph 
Construction 

(Front-End) 

Graph 
Optimization 

(Back-End) 

raw 
data 

graph  
(nodes & edges) 

node positions 

today 
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Least Squares in General 

 Approach for computing a solution for 
an overdetermined system 

 “More equations than unknowns” 

 Minimizes the sum of the squared 
errors in the equations 

 Standard approach to a large set of 
problems 
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Problem 

 Given a system described by a set of n 
observation functions  

 Let 

     be the state vector 

     be a measurement of the state x 

                   be a function which maps     to a 
predicted measurement 

 Given n noisy measurements         about 
the state 

 Goal: Estimate the state    which bests 
explains the measurements 
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Graphical Explanation 

state 
(unknown) 

predicted  
measurements 

real 
measurements 
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Error Function 

 Error     is typically the difference between 
the predicted and actual measurement  

  

 

 We assume that the error has zero mean 
and is normally distributed  

 Gaussian error with information matrix 

 The squared error of a measurement 
depends only on the state and is a scalar 
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Least Squares for SLAM 

 Overdetermined system for estimation 
the robot’s poses given observations  

 “More observations than states” 

 Minimizes the sum of the squared 
errors  

 

Today: Application to SLAM 
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The Graph 

 It consists of n nodes   

 Each     is a 2D or 3D transformation 
(the pose of the robot at time ti) 

 A constraint/edge exists between the 
nodes     and     if… 
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Create an Edge If… (1) 

 …the robot moves from     to 

 Edge corresponds to odometry 

The edge represents the 
odometry measurement 
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Create an Edge If… (2) 

 …the robot observes the same part of 
the environment from     and from 

 Construct a virtual measurement 
about the position of     seen from  
 

xi 

Measurement from   i 

xj 

Measurement from   
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Create an Edge If… (2) 

 …the robot observes the same part of 
the environment from     and from 

 Construct a virtual measurement 
about the position of     seen from  
 

Edge represents the position of     seen 
from     based on the observation  
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Pose Graph 

nodes 
according to 

the graph  

error 

observation  
of      from 

edge 
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Pose Graph 

Goal: 

nodes 
according to 

the graph  

error 

observation  
of      from 

edge 
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Gauss-Newton: The Overall 
Error Minimization Procedure  

 Define the error function 

 Linearize the error function  

 Compute its derivative  

 Set the derivative to zero 

 Solve the linear system 

 Iterate this procedure until 
convergence 
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Example: CS Campus Freiburg 
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Example: Stanford Garage 
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Sparse Pose Adjustment 
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There are Variants for 3D 

 Highly connected 
graph 

 Poor initial guess 

 LU & variants fail 

 2200 nodes 

 8600 constraints 
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Example: 3D Map 
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Freiburg Campus Octomap 
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3D Map of the Stanford Parking 
Garage 

approx. 260MB 
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Application: Navigation with 
the Autonomous Car Junior 

 Task: reach a parking spot on the 
upper level of the garage. 
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Autonomous Parking 
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Conclusions 

 The back-end part of the SLAM 
problem can be effectively solved with 
Gauss-Newton error minimization 

 error functions computes the 
mismatch between the state and the 
observations 

 One of the state-of-the-art solutions  
for computing maps  

 


