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Why 3D Representations

= Robots live in the 3D world.

« 2D maps have been applied
successfully for navigation tasks such
as localization.

» Reliable collision avoidance and path
planning, however, requires accurate
3D models.

 How to represent the 3D structure of
the environment?



Popular Representations

« Point clouds

« Voxel grids

« Surface maps
» Meshes



Point Clouds

= Pro:
= No discretization of data
« Mapped area not limited

= Contra:
« Unbounded memory usage

« No direct representation of free or unknown
space



3D Voxel Grids

= Pro:
« Volumetric representation
= Constant access time
« Probabilistic update

= Contra:

= Memory requirement: Complete map is allocated
In memory

« Extent of the map has to be known/guessed
= Discretization errors



2.5D Maps: "Height Maps”

Average over all scan points that fall into a cell

» Pro:
« Memory efficient
= Constant time access

« Contra:
» Non-probabilistic
« No distinction between free and unknown space



Elevation Maps

= 2D grid that stores an estimated height
(elevation) for each cell

« Typically, the uncertainty increases with

measured distance




Elevation Maps

= 2D grid that stores an estimated height
(elevation) for each cell

« Typically, the uncertainty increases with
measured distance

« Kalman update to estimate the elevation




Elevation Maps

= Pro:
« 2.5D representation (vs. full 3D grid)
= Constant time access
« Probabilistic estimate about the height

= Contra:
= No vertical objects
= Only one level is represented



Typical Elevation Map




Extended Elevation Maps

« Identify

= Cells that correspond to vertical structures
= Cells that contain gaps

« Check whether the variance of the height
of all data points is large for a cell

« If so, check whether the corresponding
point set contains a gap exceeding the
height of the robot (“gap cell”)
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Types of Terrain Maps

Extended elevation map
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Types of Terrain Maps

Point cloud Standard elevation map

~

Planning with underpasses possible
(cells with vertical gaps)

[+

— No paths passing under and
crossing over bridges possible
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Extended elevation map



Types of Terrain Maps
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Extended elevation map Multi-level surface map
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MLS Map Representation

Each 2D cell stores various
patches consisting of:
’\ - The height mean
—. The height variance o
} = The depth value d

I
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| Note:
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A e - A patch can have no depth
o (flat objects, e.g., floor)

= A cell can have one or
many patches (vertical gap
X cells, e.g., bridges)
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From Point Clouds to MLS Maps

Determine the cell for
each 3D point

4 gap size
« Compute vertical intervals
» Classify into vertical A A T 77
(>10cm) and Y, v v S S
horizontal intervals v / e

« Apply Kalman update to estimate the height
based on all data points for the horizontal
intervals

« Take the mean and variance of the highest

measurement for the vertical intervals
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Results
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« Map size: 299 by 147 m

-

The robot can pass
under and go over the

bridge

~

J

= Cell resolution: 10 cm
= Number of data points: 45,000,000
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Experiments with a Car

« Task: Reach a parking spot on the
upper level
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MLS Map of the Parking Garage
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MLS Maps

« Can represent multiple surfaces per cell

= Contra:
« No representation of unknown areas

« No volumetric representation but a discretization
in the vertical dimension

« Localization in MLS maps is not straightforward



Octree-based Representation

= Tree-based data structure

« Recursive subdivision of
the space into octants

= VVolumes allocated
as needed

= "Smart 3D grid”

25



Octrees

= Pro:
= Full 3D model
= Probabilistic
= Inherently multi-resolution
« Memory efficient

= Contra:

« Implementation can be tricky
(memory, update, map files, ...)
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OctoMap Framework

= Based on octrees

» Probabilistic, volumetric representation of
occupancy including unknown

= Supports multi-resolution map queries
» Memory efficient
« Compact map files

» Open source implementation as C++
library available at http://octomap.sf.net
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Probabilistic Map Update

= Occupancy modeled as recursive
binary Bayes filter [Moravec '85]

Bel(m,[fxyz]) =

1— P [zy=] P [zy2] 1 — B l( [a:yz]) -1
(mi " |ze, us—1) ‘ (mi ") elm;

1+ p [xy 2] _p [zy 2] Bel [xy 2]
(my |z, up—1) 1 (m{_7") el(m; ")

« Efficient update using log-odds notation
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Probabilistic Map Update

« Clamping policy ensures updatability [vguel 071

Bel(m{"*) € [Imin, Imax]

Multi-resolution queries using

Bel(n) = Z.2118X8 Bel(n;),n; € children(n)
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Lossless Map Compression

» Lossless pruning of nodes with identical
children

» Can lead to high compression ratios

[Kraetzschmar '04]



Video: Office Building
Freiburg, building 079
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Video: Large Outdoor Areas

Freiburg computer science campus
(292 x 167 x 28 m3, 20 cm resolution)
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6D Localization with a Humanoid

Goal: Accurate pose
tracking while walking
and climbing stairs
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Video: Humanoid Localization




Signhed Distance Function (SDF)

— Negative signed distance (=outside)

— Positive signed distance (=inside)

begin slides courtesy of Jirgen Sturm]



Signed Distance Function (SDF)

= Compute SDF from a depth image
» Measure distance of each voxel to the observed surface
= Can be done in parallel for all voxels (= GPU)

= Becomes very efficient by only considering a small interval
around the endpoint (truncation)

R dObS =z [Z(TT(ZU}yj Z))

P d
camera &/’



Signed Distance Function (SDF)

= Calculate weighted average over all
measurements for every voxel

= Assume known camera poses

Several measurements of the voxel

WD + wd
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Visualizing Signhed Distance Fields

Common approaches to iso surface
extraction:

1. Ray casting (GPU, fast)
For each camera pixel, shoot a ray and

search for zero crossing

2. Poligonization (CPU, slow)
E.g., using the marching cubes algorithm

Advantage: outputs triangle mesh
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Mesh Extraction using Marching Cubes

* Find zero-crossings in the signed distance
function by interpolation

<




Marching Cubes

If we are in 2D: Marching squares
= Evaluate each cell separately
= Check which edges are inside/outside

= Generate triangles according to 16 lookup
tables

= | ocate vertices using least squares

BENIY =R peail

Case 2 Case 3 Case 4 Case 5 Case







KinectFusion

= SLAM based on projective ICP (see next
section) with point-to-plane metric

= Truncated signed distance function (TSDF)
= Ray Casting




An Application
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[Sturm, Bylow, Kahl, Cremers; GCPR 2013], end courtesy by Jirgen Sturm]



Sighed Distance Functions

= Pro:
= Full 3D model
= Sup-pixel accuracy

= Fast (graphics card)
implementation

= Contra:
= Space consuming voxel grid

45



Summary

« Different 3D map representations exist

= The best model always depends upon the corresponding
application

« We discussed surface models and voxel representations
« Surface models support a traversability analysis
« Voxel representations allow for a full 3D representation

« Octrees are a probabilistic representation. They are inherently
multi-resolution.

= Signed distance functions also use three-dimensional grids
but allow for a sub-pixel accuracy representation of the
surface.

= Note: there also is a PointCloud Library for directly dealing
with point clouds (see also next chapter).



