Introduction to Mobile Robotics
 Path and Motion Planning

Wolfram Burgard, Diego Tipaldi, Barbara Frank

Motion Planning

Latombe (1991):
"...eminently necessary since, by definition, a robot accomplishes tasks by moving in the real world."

Goals:

- Collision-free trajectories.
- Robot should reach the goal location as fast as possible.

in Dynamic Environments

- How to react to unforeseen obstacles?
- efficiency
- reliability
- Dynamic Window Approaches
[Simmons, 96], [Fox et al., 97], [Brock \& Khatib, 99]
- Grid map based planning [Konolige, 00]
- Nearness Diagram Navigation [Minguez at al., 2001, 2002]
- Vector-Field-Histogram+
[Ulrich \& Borenstein, 98]
- A*, D*, D* Lite, ARA*, ...

Two Challenges

- Calculate the optimal path taking potential uncertainties in the actions into account
- Quickly generate actions in the case of unforeseen objects

Classic Two-layered Architecture

low frequency
sensor data
high frequency

Dynamic Window Approach

- Collision avoidance: Determine collisionfree trajectories using geometric operations
- Here: Robot moves on circular arcs
- Motion commands (v, ω)
- Which (v, ω) are admissible and reachable?

Admissible Velocities

- Speeds are admissible if the robot would be able to stop before reaching the obstacle

$$
V_{a}=\left\{(v, \omega) \quad \mid \quad v \leq \sqrt{2 \operatorname{dist}(v, \omega) a_{\text {trans }}} \wedge\right.
$$

$$
\left.\omega \leq \sqrt{2 \operatorname{dist}(v, \omega) a_{r o t}}\right\}
$$

Reachable Velocities

- Speeds that are reachable by acceleration

$$
V_{d}=\left\{(v, \omega) \mid v \in\left[v-a_{\text {trans }} t, v+a_{\text {trans }} t\right] \wedge\right.
$$

$$
\left.\omega \in\left[\omega-a_{r o t} t, \omega+a_{r o t} t\right]\right\}
$$

DWA Search Space

- $\mathrm{V}_{\mathrm{s}}=$ all possible speeds of the robot.
- $V_{a}=$ obstacle free area.
- $\quad V_{d}=$ speeds reachable within a certain time frame based on possible accelerations.

$$
V_{r}=V_{s} \bigcap V_{a} \bigcap V_{d}
$$

Dynamic Window Approach

- How to choose <v, $\omega>$?
- Steering commands are chosen by a heuristic navigation function.
- This function tries to minimize the traveltime by:
"driving fast in the right direction."

Dynamic Window Approach

- Heuristic navigation function.
- Planning restricted to <x,y>-space.
- No planning in the velocity space.

Navigation Function: [Brock \& Khatib, 99]

$$
N F=\alpha \cdot v e l+\beta \cdot n f+\gamma \cdot \Delta n f+\delta \cdot \text { goal }
$$

Dynamic Window Approach

- Heuristic navigation function.
- Planning restricted to <x,y>-space.
- No planning in the velocity space.

Navigation Function: [Brock \& Khatib, 99]

$$
N F=\alpha \cdot v e l+\beta \cdot n f+\gamma \cdot \Delta n f+\delta \cdot \text { goal }
$$

Maximizes velocity.

Dynamic Window Approach

- Heuristic navigation function.
- Planning restricted to <x,y>-space.
- No planning in the velocity space.

Navigation Function: [Brock \& Khatib, 99]

$$
\quad N F=\alpha \cdot v e l+\beta \cdot n f+\gamma \cdot \Delta n f+\delta \cdot g o a l
$$

Dynamic Window Approach

- Heuristic navigation function.
- Planning restricted to <x,y>-space.
- No planning in the velocity space.

Navigation Function: [Brock \& Khatib, 99]

Dynamic Window Approach

- Heuristic navigation function.
- Planning restricted to <x,y>-space.
- No planning in the velocity space.

Navigation Function:
Goal nearness.

$$
N F=\alpha \cdot v e l+\beta \cdot n f+\gamma \cdot \Delta n f+\delta \cdot g o a l
$$

Maximizes velocity.

Considers cost to reach the goal.

Follows grid based path computed by A*.

Dynamic Window Approach

- Reacts quickly.
- Low CPU power requirements.
- Guides a robot on a collision-free path.
- Successfully used in a lot of real-world scenarios.
- Resulting trajectories sometimes suboptimal.
- Local minima might prevent the robot from reaching the goal location.

Problems of DWAs

Problems of DWAs

Robot's velocity.

Problems of DWAs

Robot's velocity.

Problems of DWAs

Problems of DWAs

Problems of DWAs

- The robot drives too fast at c_{0} to enter corridor facing south.

Problems of DWAs

Problems of DWAs

Problems of DWAs

- Same situation as in the beginning.
\rightarrow DWAs have problems to reach the goal.

Problems of DWAs

- Typical problem in a real world situation:

- Robot does not slow down early enough to enter the doorway.

Motion Planning Formulation

- The problem of motion planning can be stated as follows. Given:
- A start pose of the robot
- A desired goal pose
- A geometric description of the robot
- A geometric description of the world
- Find a path that moves the robot gradually from start to goal while never touching any obstacle

Configuration Space

- Although the motion planning problem is defined in the regular world, it lives in another space: the configuration space
- A robot configuration q is a specification of the positions of all robot points relative to a fixed coordinate system
- Usually a configuration is expressed as a vector of positions and orientations

Configuration Space

Free space and obstacle region

- With $\mathcal{W}=\mathbb{R}^{m}$ being the work space, $\mathcal{O} \in \mathcal{W}$ the set of obstacles, $\mathcal{A}(q)$ the robot in configuration $q \in \mathcal{C}$
$\mathcal{C}_{\text {free }}=\{q \in \mathcal{C} \mid \mathcal{A}(q) \cap \mathcal{O}=\emptyset\}$
$\mathcal{C}_{\text {obs }}=\mathcal{C} / \mathcal{C}_{\text {free }}$
- We further define q_{I} : start configuration q_{G} : goal configuration

Configuration Space

Then, motion planning amounts to

- Finding a continuous path

$$
\tau:[0,1] \rightarrow \mathcal{C}_{\text {free }}
$$

with $\tau(0)=q_{I}, \tau(1)=q_{G}$

- Given this setting, we can do planning with the robot being a point in C-space!

C-Space Discretizations

- Continuous terrain needs to be discretized for path planning
- There are two general approaches to discretize C-spaces:
- Combinatorial planning

Characterizes $C_{\text {free }}$ explicitely by capturing the connectivity of $C_{\text {free }}$ into a graph and finds solutions using search

- Sampling-based planning

Uses collision-detection to probe and incrementally search the C-space for solution

Search

The problem of search: finding a sequence of actions (a path) that leads to desirable states (a goal)

- Uninformed search: besides the problem definition, no further information about the domain („blind search")
- The only thing one can do is to expand nodes differently
- Example algorithms: breadth-first, uniform-cost, depth-first, bidirectional, etc.

Search

The problem of search: finding a sequence of actions (a path) that leads to desirable states (a goal)

- Informed search: further information about the domain through heuristics
- Capability to say that a node is "more promising" than another node
- Example algorithms: greedy best-first search, A^{*}, many variants of A^{*}, D^{*}, etc.

Search

The performance of a search algorithm is measured in four ways:

- Completeness: does the algorithm find the solution when there is one?
- Optimality: is the solution the best one of all possible solutions in terms of path cost?
- Time complexity: how long does it take to find a solution?
- Space complexity: how much memory is needed to perform the search?

Discretized Configuration Space

Uninformed Search

- Breadth-first
- Complete
- Optimal if action costs equal
- Time and space: $O\left(b^{d}\right)$

- Depth-first
- Not complete in infinite spaces
- Not optimal
- Time: $O\left(b^{m}\right)$
- Space: $O(b m)$ (can forget explored subtrees)

(b : branching factor, d : goal depth, m : max. tree depth)

Informed Search: A*

- What about using A* to plan the path of a robot?
- Finds the shortest path
- Requires a graph structure
- Limited number of edges
- In robotics: planning on a 2 d occupancy grid map

A*: Minimize the estimated path

 costs- $g(n)=$ actual cost from the initial state to n.
- $h(n)=$ estimated cost from n to the next goal.
- $f(n)=g(n)+h(n)$, the estimated cost of the cheapest solution through n.
- Let $h^{*}(n)$ be the actual cost of the optimal path from n to the next goal.
- h is admissible if the following holds for all n :

$$
h(n) \leq h^{*}(n)
$$

- We require that for A^{*}, h is admissible (the straight-line distance is admissible in the Euclidean Space).

Example: Path Planning for Robots in a Grid-World

Deterministic Value Iteration

- To compute the shortest path from every state to one goal state, use (deterministic) value iteration.
- Very similar to Dijkstra's Algorithm.
- Such a cost distribution is the optimal heuristic for A*.

Typical Assumption in Robotics for A* Path Planning

- The robot is assumed to be localized.
- The robot computes its path based on an occupancy grid.
- The correct motion commands are executed.

Is this always true?

Problems

- What if the robot is slightly delocalized?
- Moving on the shortest path guides often the robot on a trajectory close to obstacles.
- Trajectory aligned to the grid structure.

Convolution of the Grid Map

- Convolution blurs the map.
- Obstacles are assumed to be bigger than in reality.
- Perform an A* search in such a convolved map.
- Robot increases distance to obstacles and moves on a short path!

Example: Map Convolution

- 1-d environment, cells c_{0}, \ldots, C_{5}

- Cells before and after 2 convolution runs.

Convolution

- Consider an occupancy map. Than the convolution is defined as:

$$
\begin{aligned}
& P\left(o c x_{x_{i}, y}\right)=\frac{1}{4} \cdot P\left(o c c_{x_{i-1}, y}\right)+\frac{1}{2} \cdot P\left(o c x_{x_{i}, y}\right)+\frac{1}{4} \cdot P\left(\text { occ }_{x_{i+1}, y}\right) \\
& P\left(o c c_{x_{0}, y}\right)=\frac{2}{3} \cdot P\left(\text { occ }_{x_{0}, y}\right)+\frac{1}{3} \cdot P\left(\text { occ }_{x_{1}, y}\right) \\
& P\left(o c x_{x_{n-1}, y}\right)=\frac{1}{3} \cdot P\left(o c c_{x_{n-2}, y}\right)+\frac{2}{3} \cdot P\left(o c c_{x_{n-1}, y}\right)
\end{aligned}
$$

- This is done for each row and each column of the map.
- "Gaussian blur"

A* in Convolved Maps

- The costs are a product of path length and occupancy probability of the cells.
- Cells with higher probability (e.g., caused by convolution) are avoided by the robot.
- Thus, it keeps distance to obstacles.
- This technique is fast and quite reliable.

5D-Planning - an Alternative to the Two-layered Architecture

- Plans in the full $<x, y, \theta, v, \omega\rangle$-configuration space using A^{*}.
\rightarrow Considers the robot's kinematic constraints.
- Generates a sequence of steering commands to reach the goal location.
- Maximizes trade-off between driving time and distance to obstacles.

The Search Space (1)

- What is a state in this space? $\langle\mathrm{x}, \mathrm{y}, \theta, \mathrm{v}, \omega\rangle=$ current position and speed of the robot
- How does a state transition look like?
$\left\langle x_{1}, y_{1}, \theta_{1}, v_{1}, \omega_{1}\right\rangle \rightarrow\left\langle x_{2}, y_{2}, \theta_{2}, v_{2}, \omega_{2}\right\rangle$ with motion command (v_{2}, ω_{2}) and
$\left|v_{1}-v_{2}\right|<a_{v},\left|\omega_{1}-\omega_{2}\right|<a_{\omega}$. Pose of the Robot is a result of the motion equations.

The Search Space (2)

Idea: search in the discretized $<x, y, \theta, v, \omega>-$ space.

Problem: the search space is too huge to be explored within the time constraints ($5+\mathrm{Hz}$ for online motion plannig).

Solution: restrict the full search space.

The Main Steps of the Algorithm

1. Update (static) grid map based on sensory input.
2. Use A^{*} to find a trajectory in the $\langle x, y\rangle-$ space using the updated grid map.
3. Determine a restricted 5d-configuration space based on step 2.
4. Find a trajectory by planning in the restricted $\langle x, y, \theta, v, \omega\rangle$-space.

Updating the Grid Map

- The environment is represented as a 2d-occupency grid map.
- Convolution of the map increases security distance.
- Detected obstacles are added.
- Cells discovered free are cleared.

Find a Path in the 2d-Space

- Use A* to search for the optimal path in the 2d-grid map.
- Use heuristic based on a deterministic value iteration within the static map.

Restricting the Search Space

Assumption: the projection of the 5d-path onto the $\langle x, y\rangle$-space lies close to the optimal 2d-path.

Therefore: construct a restricted search space (channel) based on the 2d-path.

Space Restriction

- Resulting search space $=$ $<x, y, \theta, v, \omega>$ with (x, y) \in channel.
- Choose a sub-goal lying on the 2d-path within the channel.

Find a Path in the 5d-Space

- Use A^{*} in the restricted 5d-space to find a sequence of steering commands to reach the sub-goal.
- To estimate cell costs: perform a deterministic 2d-value iteration within the channel.

Examples

Timeouts

- Steering a robot online requires to set a new steering command every .25 secs.

Abort search after .25 secs.

How to find an admissible steering command?

Alternative Steering Command

- Previous trajectory still admissible? \rightarrow OK
- If not, drive on the 2d-path or use DWA to find new command.

Timeout Avoidance

\rightarrow Reduce the size of the channel if the $2 d$-path has high cost.

Example

Robot Albert

Planning state

Comparison to the DWA (1)

- DWAs often have problems entering narrow passages.

DWA planned path.

5D approach.

Comparison to the DWA (1)

- DWAs often have problems entering narrow passages.

DWA planned path.

5D approach.

Comparison to the DWA (2)

The presented approach results in significantly faster motion when driving through narrow passages!

Comparison to the Optimum

Channel: with length $=5 \mathrm{~m}$, width $=1.1 \mathrm{~m}$ Resulting actions are close to the optimal solution.

Rapidly Exploring Random Trees

- Idea: aggressively probe and explore the C-space by expanding incrementally from an initial configuration q_{0}
- The explored territory is marked by a tree rooted at \boldsymbol{q}_{0}

2345
iterations

RRTs

The algorithm: Given C and q_{0}

Algorithm 1: RRT

```
1 G.init(qu)
2 repeat
lumalol
```

Sample from a bounded region centered around q_{0}
E.g. an axis-aligned relative random translation or random rotation

RRTs

- The algorithm

Algorithm 1: RRT

${ }_{1} G . \operatorname{init}\left(q_{0}\right)$
2 repeat

```
    qrand
    qnear }\leftarrow\operatorname{NEAREST}(G,\mp@subsup{q}{\mathrm{ rand }}{}
    G.add_edge( }\mp@subsup{q}{\mathrm{ near }}{},\mp@subsup{q}{\mathrm{ rand }}{}
    6 until condition
```

- Finds closest vertex in G using a distance function

$$
\rho: \mathcal{C} \times \mathcal{C} \rightarrow[0, \infty)
$$

formally a metric defined on C

RRTs

- The algorithm

Algorithm 1: RRT

${ }_{1} G . \operatorname{init}\left(q_{0}\right)$
2 repeat

```
3 | qrand }->\mathrm{ RANDOM_CONFIG(C)
5 G.add_edge( }\mp@subsup{q}{\mathrm{ near }}{},\mp@subsup{q}{rand}{}
6 until condition
```

$4 \quad q_{\text {near }} \leftarrow \operatorname{NEAREST}\left(G, q_{\text {rand }}\right) \quad \longleftarrow$ Several stategies to find

$q_{\text {near }}$ given the closest vertex on G :

- Take closest vertex
- Check intermediate points at regular intervals and split edge at $q_{\text {near }}$

RRTs

- The algorithm

Algorithm 1: RRT

${ }_{1} G$.init $\left(q_{0}\right)$
2 repeat

```
    qrand}\mp@code{-> RANDOM_CONFIG(\mathcal{C}
    qnear }\leftarrow\operatorname{NEAREST}(G,\mp@subsup{q}{\mathrm{ rand }}{}
    G.add_edge( }\mp@subsup{q}{\mathrm{ near }}{},\mp@subsup{q}{\mathrm{ rand }}{}
6 until condition
```


Connect nearest point with random point using a local planner that travels from $q_{\text {near }}$ to $q_{\text {rand }}$

- No collision: add edge
- Collision: new vertex is q_{i}, as close as possible to $C_{\text {obs }}$

RRTs

- The algorithm

Algorithm 1: RRT

${ }_{1} G . \operatorname{init}\left(q_{0}\right)$
2 repeat

```
                            qrand}->\mathrm{ RANDOM_CONFIG(C)
    qnear }\leftarrow\operatorname{NEAREST}(G,\mp@subsup{q}{\mathrm{ rand }}{}
    G.add_edge( }\mp@subsup{q}{\mathrm{ near }}{},\mp@subsup{q}{\mathrm{ rand }}{}
    6 until condition
```


Connect nearest point with random point using a local planner that travels from $q_{\text {near }}$
to $q_{\text {rand }}$

- No collision: add edge
- Collision: new vertex is q_{s} as close as possible to $C_{\text {obs }}$

RRTs

- How to perform path planning with RRTs?

1. Start RRT at q_{I}
2. At every, say, 100th iteration, force $q_{\text {rand }}=q_{G}$
3. If q_{G} is reached, problem is solved

- Why not picking q_{G} every time?
- This will fail and waste much effort in running into $C_{\text {obs }}$ instead of exploring the space

RRTs

- However, some problems require more effective methods: bidirectional search
- Grow two RRTs, one from q_{I}, one from q_{G}
- In every other step, try to extend each tree towards the newest vertex of the other tree

Filling a well

A bug trap

RRTs

- RRTs are popular, many extensions exist: real-time RRTs, anytime RRTs, for dynamic environments etc.
- Pros:
- Balance between greedy search and exploration
- Easy to implement
- Cons:
- Metric sensivity
- Unknown rate of convergence

Alpha 1.0
puzzle. Solved with bidirectional RRT

Road Map Planning

- A road map is a graph in $C_{f r e e}$ in which each vertex is a configuration in $C_{\text {free }}$ and each edge is a collision-free path through $C_{\text {free }}$
- Several planning techniques
- Visibility graphs
- Voronoi diagrams
- Exact cell decomposition
- Approximate cell decomposition
- Randomized road maps

Road Map Planning

- A road map is a graph in $C_{\text {free }}$ in which each vertex is a configuration in $C_{\text {free }}$ and each edge is a collision-free path through $C_{\text {free }}$
- Several planning techniques
- Visibility graphs
- Voronoi diagrams
- Exact cell decomposition
- Approximate cell decomposition
- Randomized road maps

Generalized Voronoi Diagram

- Defined to be the set of points q whose cardinality of the set of boundary points of $C_{o b s}$ with the same distance to q is greater than 1
- Let us decipher this definition...
- Informally: the place with the same maximal clearance from all nearest obstacles

Generalized Voronoi Diagram

- Formally:

Let $\beta=\partial \mathcal{C}_{\text {free }}$ be the boundary of $C_{\text {free }}$, and $d(p, q)$ the Euclidian distance between p and q. Then, for all q in $C_{\text {free }}$ let

$$
\text { clearance }(q)=\min _{p \in \beta} d(p, q)
$$

be the clearance of q, and

$$
\operatorname{near}(q)=\{p \in \beta \mid d(p, q)=\operatorname{clearance}(q)\}
$$

the set of "base" points on β with the same clearance to q. The Voronoi diagram is then the set of q 's with more than one base point p

$$
\underline{V\left(\mathcal{C}_{\text {free }}\right)}=\left\{q \in \mathcal{C}_{\text {free }}| | \text { near }(q) \mid>1\right\}
$$

Generalized Voronoi Diagram

- Geometrically:

- For a polygonal $C_{o b s}$, the Voronoi diagram consists of (n) lines and parabolic segments
- Naive algorithm: $O\left(n^{4}\right)$, best: $O(n \log n)$

Voronoi Diagram

- Voronoi diagrams have been well studied for (reactive) mobile robot path planning
- Fast methods exist to compute and update the diagram in real-time for lowdim. C^{\prime} s
- Pros: maximize clearance is a good idea for an uncertain robot
- Cons: unnatural attraction to open space, suboptimal paths

- Needs extensions

Randomized Road Maps

- Idea: Take random samples from C, declare them as vertices if in $C_{\text {free }}$, try to connect nearby vertices with local planner
- The local planner checks if line-of-sight is collision-free (powerful or simple methods)
- Options for nearby: k-nearest neighbors or all neighbors within specified radius
- Configurations and connections are added to graph until roadmap is dense enough

Randomized Road Maps

- Example

Example local planner

What does "nearby" mean on a manifold? Defining a good metric on C is crucial

Randomized Road Maps

- Pros:
- Probabilistically complete
- Do not construct C-space
- Apply easily to high dimensional C-spaces
- Randomized road maps have solved previously unsolved problems
- Cons:
- Do not work well for some problems, narrow passages
- Not optimal, not complete

Randomized Road Maps

- How to uniformly sample C ? This is not at all trivial given its topology
- For example over spaces of rotations: Sampling Euler angles gives more samples near poles, not uniform over $S O(3)$. Use quaternions!
- However, Randomized Road Maps are powerful, popular and many extensions exist: advanced sampling strategies (e.g. near obstacles), PRMs for deformable objects, closed-chain systems, etc.

From Road Maps to Paths

- All methods discussed so far construct a road map (without considering the query pair q_{I} and q_{G})
- Once the investment is made, the same road map can be reused for all queries (provided world and robot do not change)

1. Find the cell/vertex that contain/is close to q_{I} and q_{G} (not needed for visibility graphs)
2. Connect q_{I} and q_{G} to the road map
3. Search the road map for a path from q_{I} to q_{G}

Markov Decision Process

- Consider an agent acting in this environment

- Its mission is to reach the goal marked by +1 avoiding the cell labelled -1

Markov Decision Process

- Consider an agent acting in this environment

- Its mission is to reach the goal marked by +1 avoiding the cell labelled -1

Markov Decision Process

- Easy! Use a search algorithm such as A*

- Best solution (shortest path) is the action sequence [Right, Up, Up, Right]

What is the problem?

- Consider a non-perfect system in which actions are performed with a probability less than 1
- What are the best actions for an agent under this constraint?
- Example: a mobile robot does not exactly perform a desired motion
- Example: human navigation

Uncertainty about performing actions!

MDP Example

- Consider the non-deterministic transition model (N / E / S / W) :
desired action

- Intended action is executed with $\mathrm{p}=0.8$
- With $p=0.1$, the agent moves left or right
- Bumping into a wall "reflects" the robot

MDP Example

- Executing the $\mathbf{A *}^{*}$ plan in this environment

Step $=0$, Tota reward $=-0.04$

MDP Example

- Executing the $\mathbf{A *}^{*}$ plan in this environment

But: transitions are non-deterministic!

MDP Example

- Executing the \mathbf{A}^{*} plan in this environment

Step $=0$, Total reward $=-0.04$

This will happen sooner or later...

MDP Example

- Use a Ionger path with lower probability to end up in cell labelled -1

- This path has the highest overall utility
- Probability $0.8^{6}=0.2621$

Transition Model

- The probability to reach the next state s^{\prime} from state s by choosing action a

$$
T\left(s, a, s^{\prime}\right)
$$

is called transition model

Markov Property:

The transition probabilities from s to s^{\prime} depend only on the current state s and not on the history of earlier states

Reward

- In each state s, the agent receives a reward $R(s)$
- The reward may be positive or negative but must be bounded
- This can be generalized to be a function $R\left(s, a, s^{\prime}\right)$. Here: consider only $R(s)$, does not change the problem

Reward

- In our example, the reward is $\mathbf{- 0 . 0 4}$ in all states (e.g. the cost of motion) except the terminal states (that have rewards $\mathbf{+ 1 / - 1}$)
- A negative reward gives agent an incentive to reach the goal quickly
- Or: "living in this environment is not enjoyable"

-0.04	-0.04	-0.04	+1
-0.04		-0.04	-1
-0.04	-0.04	-0.04	-0.04

MDP Definition

- Given a sequential decision problem in a fully observable, stochastic environment with a known Markovian transition model
- Then a Markov Decision Process is defined by the components
- Set of states: S
- Set of actions: A
- Initial state: s_{0}
- Transition model: $T\left(s, a, s^{\prime}\right)$
- Reward funciton: $R(s)$

Policy

- An MDP solution is called policy π
- A policy is a mapping from states to actions

$$
\text { policy : States } \mapsto \text { Actions }
$$

- In each state, a policy tells the agent what to do next
- Let $\pi(s)$ be the action that π specifies for s
- Among the many policies that solve an MDP, the optimal policy π^{*} is what we seek. We'll see later what optimal means

Policy

- The optimal policy for our example

Conservative choice Take long way around as the cost per step of 0.04 is small compared with the penality to fall down the stairs and receive a -1 reward

Policy

- When the balance of risk and reward changes, other policies are optimal

Leave as soon as possible

$-0.02<$
$R<0$

No risks are taken

Take shortcut, minor risks

Utility of a State

- The utility of a state $U(s)$ quantifies the benefit of a state for the overall task
- We first define $U^{\pi}(s)$ to be the expected utility of all state sequences that start in s given π

$$
U^{\pi}(s)=E\left[\sum_{t=0}^{\infty} R\left(s_{t}\right) \mid \pi, s_{0}=s\right]
$$

- $U(s)$ evaluates (and encapsulates) all possible futures from s onwards

Utility of a State

- With this definition, we can express $U^{\pi}(s)$ as a function of its next state s^{\prime}

$$
\begin{aligned}
U^{\pi}(s) & =E\left[\sum_{t=0}^{\infty} R\left(s_{t}\right) \mid \pi, s_{0}=s\right] \\
& =E\left[R\left(s_{0}\right)+R\left(s_{1}\right)+R\left(s_{2}\right)+\ldots \mid \pi, s_{0}=s\right] \\
& =E\left[R\left(s_{0}\right) \mid s_{0}=s\right]+E\left[R\left(s_{1}\right)+R\left(s_{2}\right)+\ldots \mid \pi\right] \\
& =R(s)+E\left[\sum_{t=0}^{\infty} R\left(s_{t}\right) \mid \pi, s_{0}=s^{\prime}\right] \\
& =R(s)+U^{\pi}\left(s^{\prime}\right)
\end{aligned}
$$

Optimal Policy

- The utility of a state allows us to apply the Maximum Expected Utility principle to define the optimal policy π^{*}
- The optimal policy π^{*} in s chooses the action a that maximizes the expected utility of s (and of s^{\prime})

$$
\pi^{*}(s)=\underset{a}{\operatorname{argmax}} E\left[U^{\pi}(s)\right]
$$

- Expectation taken over all policies

Optimal Policy

- Substituting $U^{\pi}(s)$

$$
\begin{aligned}
\pi^{*}(s) & =\underset{a}{\operatorname{argmax}} E\left[U^{\pi}(s)\right] \\
& =\underset{a}{\operatorname{argmax}} E\left[R(s)+U^{\pi}\left(s^{\prime}\right)\right] \\
& =\underset{a}{\operatorname{argmax}} E[R(s)]+E\left[U^{\pi}\left(s^{\prime}\right)\right] \\
& =\underset{a}{\operatorname{argmax}} E\left[U\left(s^{\prime}\right)\right] \\
& =\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U\left(s^{\prime}\right)
\end{aligned}
$$

- Recall that $E[X]$ is the weighted average of all possible values that X can take on

Utility of a State

- The true utility of a state $U(s)$ is then obtained by application of the optimal policy, i.e. $U^{\pi^{*}}(s)=U(s)$. We find

$$
\begin{aligned}
U(s) & =\max _{a} E\left[U^{\pi}(s)\right] \\
& =\max _{a} E\left[R(s)+U^{\pi}\left(s^{\prime}\right)\right] \\
& =\max _{a} E[R(s)]+E\left[U^{\pi}\left(s^{\prime}\right)\right] \\
& =R(s)+\max _{a} E\left[U\left(s^{\prime}\right)\right] \\
& =\xrightarrow{R(s)+\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U\left(s^{\prime}\right)}
\end{aligned}
$$

Utility of a State

- This result is noteworthy:

$$
U(s)=R(s)+\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U\left(s^{\prime}\right)
$$

We have found a direct relationship between the utility of a state and the utility of its neighbors

- The utility of a state is the immediate reward for that state plus the expected utility of the next state, provided the agent chooses the optimal action

Bellman Equation

$$
U(s)=R(s)+\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U\left(s^{\prime}\right)
$$

- For each state there is a Bellman equation to compute its utility
- There are \boldsymbol{n} states and \boldsymbol{n} unknowns
- Solve the system using Linear Algebra?
- No! The max-operator that chooses the optimal action makes the system nonlinear
- We must go for an iterative approach

Discounting

We have made a simplification on the way:

- The utility of a state sequence is often defined as the sum of discounted rewards

$$
U^{\pi}(s)=E\left[\sum_{t=0}^{\infty} \underline{\gamma^{t}} R\left(s_{t}\right) \mid \pi, s_{0}=s\right]
$$

with $0 \delta \gamma \delta 1$ being the discount factor

- Discounting says that future rewards are less significant than current rewards. This is a natural model for many domains
- The other expressions change accordingly

Separability

We have made an assumption on the way:

- Not all utility functions (for state sequences) can be used
- The utility function must have the property of separability (a.k.a. stationarity), e.g. additive utility functions: $U\left(\left[s_{0}+s_{1}+\ldots+s_{n}\right]\right)=R\left(s_{0}\right)+U\left(\left[s_{1}+\ldots+s_{n}\right]\right)$
- Loosely speaking: the preference between two state sequences is unchanged over different start states

Utility of a State

- The state utilities for our example

0.812	0.868	0.918	+1
0.762		0.66	-1
0.705	0.655	0.611	0.388

- Note that utilities are higher closer to the goal as fewer steps are needed to reach it

Iterative Computation

Idea:

- The utility is computed iteratively:

$$
U_{i+1}(s) \leftarrow R(s)+\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U_{i}\left(s^{\prime}\right)
$$

- Optimal utility: $U^{*}=\lim _{t \rightarrow \infty} U_{t}$
- Abort, if change in utility is below a threshold

Dynamic Programming

- The utility function is the basis for "Dynamic Programming"
- Fast solution to compute n-step decision problems
- Naive solution: $O\left(|A|^{n}\right)$
- Dynamic Programming: $O(n|A||S|)$
- But: what is the correct value of n ?
- If the graph has loops: $n \rightarrow \infty$

The Value Iteration Algorithm

Algorithm 1: Value Iteration
In: An MDP with

- States and action sets S, A,
- Transition model $T\left(s, a, s^{\prime}\right)$,
- Reward function $R(s)$,
- Discount factor γ

Out: The utility of all states U
$U^{\prime} \leftarrow 0$
repeat
$U \leftarrow U^{\prime}$
foreach state s in S do $U(s) \leftarrow R(s)+\gamma \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U\left(s^{\prime}\right)$
end
until close-enough $\left(U, U^{\prime}\right)$
return U

Value Iteration Example

- Calculate utility of the center cell

$$
U_{i+1}(s) \leftarrow R(s)+\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U_{i}\left(s^{\prime}\right)
$$

desired action $=U p$

Value Iteration Example

$$
U_{i+1}(s) \leftarrow R(s)+\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U_{i}\left(s^{\prime}\right)
$$

$$
\begin{align*}
= & \text { reward }+\max \{ \\
& 0.1 \cdot 1+0.8 \cdot 5+0.1 \cdot 10 \quad(\leftarrow), \\
& 0.1 \cdot 5+0.8 \cdot 10+0.1 \cdot-8 \quad(\uparrow), \\
& 0.1 \cdot 10+0.8 \cdot-8+0.1 \cdot 1 \quad(\rightarrow), \\
& 0.1 \cdot-8+0.8 \cdot 1+0.1 \cdot 5 \quad(\downarrow)\} \\
= & 1+\max \{5.1(\leftarrow), 7.7(\uparrow), \\
& -5.3(\rightarrow), 0.5(\downarrow)\} \\
= & 1+7.7 \\
= & 8.7
\end{align*}
$$

Value Iteration Example

- In our example

0.812	0.868	0.918	+1
0.762		0.66	-1
0.705	0.655	0.611	0.388

- States far from the goal first accumulate negative rewards until a path is found to the goal

Convergence

- The condition close-enough $\left(U, U^{\prime}\right)$ in the algorithm can be formulated by

$$
\begin{aligned}
R M S= & \frac{1}{|S|} \sqrt{\sum_{s}\left(U(s)-U^{\prime}(s)\right)^{2}} \\
& R M S\left(U, U^{\prime}\right)<\epsilon
\end{aligned}
$$

- Different ways to detect convergence:
- RMS error: root mean square error
- Max error: $\left\|U-U^{\prime}\right\|=\max _{s}\left|U(s)-U^{\prime}(s)\right|$
- Policy loss

Convergence Example

- What the agent cares about is policy loss: How well a policy based on $U_{i}(s)$ performs
- Policy loss converges much faster (because of the argmax)

Value Iteration

- Value Iteration finds the optimal solution to the Markov Decision Problem!
- Converges to the unique solution of the Bellman equation system
- Initial values for U^{\prime} are arbitrary
- Proof involves the concept of contraction. | $B U_{i}-B U_{i}^{\prime}\|\leq \gamma\| U_{i}-U_{i}^{\prime} \|$ with B being the Bellman operator (see textbook)
- VI propagates information through the state space by means of local updates

Optimal Policy

- How to finally compute the optimal policy? Can be easily extracted along the way by

$$
\pi^{*}(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U\left(s^{\prime}\right)
$$

- Note: $U(s)$ and $R(s)$ are quite different quantities. $R(s)$ is the short-term reward for being in s, whereas $U(s)$ is the longterm reward from s onwards

Summary

- Robust navigation requires combined path planning \& collision avoidance.
- Approaches need to consider robot's kinematic constraints and plans in the velocity space.
- Combination of search and reactive techniques show better results than the pure DWA in a variety of situations.
- Using the 5D-approach the quality of the trajectory scales with the performance of the underlying hardware.
- The resulting paths are often close to the optimal ones.

Summary

- Planning is a complex problem.
- Focus on subset of the configuration space:
- road maps,
- grids.
- Sampling algorithms are faster and have a trade-off between optimality and speed.
- Uncertainty in motion leads to the need of Markov Decision Problems.

What' s Missing?

- More complex vehicles (e.g., cars).
- Moving obstacles, motion prediction.
- High dimensional spaces.
- Heuristics for improved performances.
- Learning.

