# Introduction to Mobile Robotics 

## Summary

Wolfram Burgard, Diego Tipaldi

# Probabilistic Robotics 

## Probabilistic Robotics

Key idea: Explicit representation of uncertainty
(using the calculus of probability theory)

- Perception = state estimation
- Action $=$ utility optimization


## Bayes Formula

$$
\begin{aligned}
P(x, y) & =P(x \mid y) P(y)=P(y \mid x) P(x) \\
& \Rightarrow
\end{aligned}
$$

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}=\frac{\text { likelihood } \cdot \text { prior }}{\text { evidence }}
$$

## Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is $P(o p e n \mid z)$ ?



## Causal vs. Diagnostic Reasoning

- $P($ open $\mid z)$ is diagnostic.
- $P(z \mid o p e n)$ is causal.
- Often causat knowledge is easier to obtain.
- Bayes rule allows us to usধ causal knowledge:

$$
P(\text { open } \mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z)}
$$

## Bayes Filters

$z=$ observation
$u=$ action
$x=$ state
$\operatorname{Bel}\left(x_{t}\right)=P\left(x_{t} \mid u_{1}, z_{1}, \ldots, u_{t}, z_{t}\right)$

$$
\text { Bayes } \quad=\eta P\left(z_{t} \mid x_{t}, u_{1}, z_{1}, \ldots, u_{t}\right) P\left(x_{t} \mid u_{1}, z_{1}, \ldots, u_{t}\right)
$$

Markov $\quad=\eta P\left(z_{t} \mid x_{t}\right) P\left(x_{t} \mid u_{1}, z_{1}, \ldots, u_{t}\right)$
Total prob. $=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{1}, z_{1}, \ldots, u_{t}, x_{t-1}\right)$

$$
P\left(x_{t-1} \mid u_{1}, z_{1}, \ldots, u_{t}\right) d x_{t-1}
$$

Markov

$$
=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) P\left(x_{t-1} \mid u_{1}, z_{1}, \ldots, u_{t}\right) d x_{t-1}
$$

Markov

$$
=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) P\left(x_{t-1} \mid u_{1}, z_{1}, \ldots, z_{t-1}\right) d x_{t-1}
$$

$$
=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}
$$

## Bayes Filters are Familiar!

$$
\operatorname{Bel}\left(x_{t}\right)=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}
$$

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
...


## Sensor and Motion Models

$$
P(z \mid x, m) \quad P\left(x \mid x^{\prime}, u\right)
$$

## Motion Models

- Robot motion is inherently uncertain.
- How can we model this uncertainty?



## Probabilistic Motion Models

- To implement the Bayes Filter, we need the transition model $p\left(x \mid x^{\prime}, u\right)$.
- The term $p(x \mid x,, u)$ specifies a posterior probability, that action $u$ carries the robot from $x$ ' to $x$.


## Typical Motion Models

- In practice, one often finds two types of motion models:
- Odometry-based
- Velocity-based (dead reckoning)
- Odometry-based models are used when systems are equipped with wheel encoders.
- Velocity-based models have to be applied when no wheel encoders are given.
- They calculate the new pose based on the velocities and the time elapsed.


## Odometry Model

- Robot moves from $\langle\bar{x}, \bar{y}, \bar{\theta}\rangle$ to $\left\langle\bar{x}^{\prime}, \bar{y}^{\prime}, \bar{\theta}^{\prime}\right\rangle$.
- Odometry information $u=\left\langle\delta_{\text {rot } 1}, \delta_{\text {rot } 2}, \delta_{\text {trams }}\right\rangle$.

$$
\begin{aligned}
& \delta_{\text {trans }}=\sqrt{\left(\bar{x}^{\prime}-\bar{x}\right)^{2}+\left(\bar{y}^{\prime}-\bar{y}\right)^{2}} \\
& \delta_{\text {rot } 1}=\operatorname{atan2}\left(\bar{y}^{\prime}-\bar{y}, \bar{x}^{\prime}-\bar{x}\right)-\bar{\theta} \\
& \delta_{\text {rot } 2}=\bar{\theta}-\bar{\theta}-\bar{\theta}-\delta_{\text {rot } 1}
\end{aligned}
$$



## Sensors for Mobile Robots

- Contact sensors: Bumpers
- Internal sensors
- Accelerometers (spring-mounted masses)
- Gyroscopes (spinning mass, laser light)
- Compasses, inclinometers (earth magnetic field, gravity)
- Proximity sensors
- Sonar (time of flight)
- Radar (phase and frequency)
- Laser range-finders (triangulation, tof, phase)
- Infrared (intensity)
- Visual sensors: Cameras
- Satellite-based sensors: GPS


## Beam-based Sensor Model

- Scan z consists of $K$ measurements.

$$
z=\left\{z_{1}, z_{2}, \ldots, z_{K}\right\}
$$

- Individual measurements are independent given the robot position.

$$
P(z \mid x, m)=\prod_{k=1}^{K} P\left(z_{k} \mid x, m\right)
$$

## Beam-based Proximity Model

Measurement noise


Unexpected obstacles


$$
P_{\text {unexp }}(z \mid x, m)=\left\{\begin{array}{cc}
\eta \lambda \mathrm{e}^{-\lambda z} & z<z_{\exp } \\
0 & \text { otherwise }
\end{array}\right\}
$$

## Beam-based Proximity Model

Random measurement


$$
P_{\text {rand }}(z \mid x, m)=\eta \frac{1}{z_{\max }}
$$

$$
P_{\max }(z \mid x, m)=\eta \frac{1}{z_{\text {small }}}
$$

## Resulting Mixture Density



$$
P(z \mid x, m)=\left(\begin{array}{c}
\alpha_{\text {hit }} \\
\alpha_{\text {unexp }} \\
\alpha_{\text {max }} \\
\alpha_{\text {rand }}
\end{array}\right)^{T} \cdot\left(\begin{array}{c}
P_{\text {hit }}(z \mid x, m) \\
P_{\text {unexp }}(z \mid x, m) \\
P_{\text {max }}(z \mid x, m) \\
P_{\text {rand }}(z \mid x, m)
\end{array}\right)
$$

How can we determine the model parameters?

## Bayes Filter in Robotics

## Bayes Filters in Action

- Discrete filters
- Kalman filters
- Particle filters


## Discrete Filter

- The belief is typically stored in a histogram / grid representation
- To update the belief upon sensory input and to carry out the normalization one has to iterate over all cells of the grid


## Piecewise Constant








आैा


## Kalman Filter

- Optimal for linear Gaussian systems!
- Most robotics systems are nonlinear!
- Polynomial in measurement dimensionality $k$ and state dimensionality $n$ :

$$
O\left(k^{2.376}+n^{2}\right)
$$

## Kalman Filter Algorithm

1. Algorithm Kalman_filter $\left(\mu_{t-1}, \Sigma_{t-1}, u_{t}, z_{t}\right)$ :
2. Prediction:
3. $\bar{\mu}_{t}=A_{t} \mu_{t-1}+B_{t} u_{t}$
4. $\bar{\Sigma}_{t}=A_{t} \Sigma_{t-1} A_{t}^{T}+Q_{t}$
5. Correction:
6. $K_{t}=\bar{\Sigma}_{t} C_{t}^{T}\left(C_{t} \bar{\Sigma}_{t} C_{t}^{T}+R_{t}\right)^{-1}$
7. $\mu_{t}=\mu_{t}+K_{t}\left(z_{t}-C_{t} \mu_{t}\right)$
8. $\Sigma_{t}=\left(I-K_{t} C_{t}\right) \bar{\Sigma}_{t}$
9. Return $\mu_{t}, \Sigma_{t}$

## Extended Kalman Filter

- Approach to handle non-linear models
- Performs a linearization in each step
- Not optimal
- Can diverge if nonlinearities are large!
- Works surprisingly well even when all assumptions are violated!
- Same complexity than the KF


## Particle Filter

- Basic principle
- Set of state hypotheses ("particles")
- Survival-of-the-fittest
- Particle filters are a way to efficiently represent non-Gaussian distributions


## Mathematical Description

- Set of weighted samples

$$
S=\left\{\left\langle s_{\uparrow}^{[i]}, w^{[i]}\right\rangle \mid i=1, \ldots, N\right\}
$$

State hypothesis Importance weight

- The samples represent the posterior

$$
p(x)=\sum_{i=1}^{N} w_{i} \cdot \delta_{s}[i](x)
$$

## Particle Filter Algorithm in Brief

- Sample the next generation for particles using the proposal distribution
- Compute the importance weights : weight $=$ target distribution / proposal distribution
- Resampling: "Replace unlikely samples by more likely ones"


## Importance Sampling Principle

- We can even use a different distribution $g$ to generate samples from $f$
- By introducing an importance weight w, we can account for the "differences between $g$ and $f$ "
- $w=f / g$
- $f$ is often called target
- $g$ is often called proposal
- Pre-condition:
$f(x)>0 \rightarrow g(x)>0$



## Particle Filter Algorithm

1. Algorithm particle_filter $\left(S_{t-1}, u_{t-1} z_{t}\right)$ :
2. $S_{t}=\varnothing, \quad \eta=0$
3. For $i=1 \ldots n$

Generate new samples
4. Sample index $j(i)$ from the discrete distribution given by $w_{t-1}$
5. Sample $x_{t}^{i}$ from $p\left(x_{t} \mid x_{t-1}, u_{t-1}\right)$ using $x_{t-1}^{j(i)}$ and $u_{t-1}$
6. $w_{t}^{i}=p\left(z_{t} \mid x_{t}^{i}\right) \quad$ Compute importance weight
7. $\quad \eta=\eta+w_{t}^{i}$

Update normalization factor
8. $S_{t}=S_{t} \cup\left\{\left\langle x_{t}^{i}, w_{t}^{i}\right\rangle\right\}$ Insert
9. For $i=1 \ldots n$
10. $\quad w_{t}^{i}=w_{t}^{i} / \eta$

Normalize weights

## Particle Filter Algorithm

$$
\operatorname{Bel}\left(x_{t}\right)=\eta p\left(z_{t} \mid x_{t}\right) \int p\left(x_{t} \mid x_{t-1}, u_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}
$$

$$
\longrightarrow \text { draw } x_{t-1}^{i} \text { from } \operatorname{Bel}\left(\mathrm{x}_{t-1}\right)
$$

$\longrightarrow \quad$ draw $x_{t}^{i}$ from $p\left(x_{t} \mid x_{t-1}^{i}, u_{t-1}\right)$
$\longrightarrow$ Importance factor for $x_{t}^{i}$ :

$$
\begin{aligned}
w_{t}^{i} & =\frac{\text { target distribution }}{\text { proposal distribution }} \\
& =\frac{\eta p\left(z_{t} \mid x_{t}\right) p\left(x_{t} \mid x_{t-1}, u_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right)}{p\left(x_{t} \mid x_{t-1}, u_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right)} \\
& \propto p\left(z_{t} \mid x_{t}\right)
\end{aligned}
$$

## Resampling



- Roulette wheel
- Binary search, n log n

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance


## MCL Example



## Mapping

## Why Mapping?

- Learning maps is one of the fundamental problems in mobile robotics
- Maps allow robots to efficiently carry out their tasks, allow localization ...
- Successful robot systems rely on maps for localization, path planning, activity planning etc


## Occupancy Grid Maps

- Discretize the world into equally spaced cells
- Each cells stores the probability that the corresponding area is occupied by an obstacle
- The cells are assumed to be conditionally independent
- If the pose of the robot is know, mapping is easy


## Updating Occupancy Grid Maps

- Update the map cells using the inverse sensor model

$$
\operatorname{Bel}\left(m_{t}^{[x y]}\right)=1-\left(1+\frac{P\left(m_{t}^{[x y]} \mid z_{t}, u_{t-1}\right)}{1-P\left(m_{t}^{[x y]} \mid z_{t}, u_{t-1}\right)} \cdot \frac{1-P\left(m_{t}^{[x y]}\right)}{P\left(m_{t}^{[x y]}\right)} \cdot \frac{\operatorname{Bel}\left(m_{t-1}^{[x y]}\right)}{1-\operatorname{Bel}\left(m_{t-1}^{[x y]}\right)}\right)^{-1}
$$

- Or use the log-odds representation

$$
\begin{aligned}
\bar{B}\left(m_{t}^{[x y]}\right) & =\log \operatorname{odds}\left(m_{t}^{[x y]} \mid z_{t}, u_{t-1}\right) \\
& -\log \operatorname{odds}\left(m_{t}^{[x y]}\right) \\
& +\bar{B}\left(m_{t-1}^{[x y]}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{B}\left(m_{t}^{[x y]}\right)=\log \text { odds }\left(m_{t}^{[x y]}\right) \\
& o d d s(x)=\left(\frac{P(x)}{1-P(x)}\right)
\end{aligned}
$$

## Reflection Probability Maps

- Value of interest: P(reflects $(x, y))$
- For every cell count
- hits $(x, y)$ : number of cases where a beam ended at $\langle x, y\rangle$
- misses $(x, y)$ : number of cases where a beam passed through $\langle x, y\rangle$

$$
\operatorname{Bel}\left(m^{[x y]}\right)=\frac{\operatorname{hits}(x, y)}{\operatorname{hits}(x, y)+\operatorname{misses}(x, y)}
$$

## SLAM

## The SLAM Problem

A robot is exploring an unknown, static environment.

## Given:



- The robot's controls
- Observations of nearby features


## Estimate:

- Map of features
- Path of the robot


## Chicken-and-Egg-Problem

- SLAM is a chicken-and-egg problem
- A map is needed for localizing a robot
- A good pose estimate is needed to build a map
- Thus, SLAM is regarded as a hard problem in robotics
- A variety of different approaches to address the SLAM problem have been presented
- Probabilistic methods outperform most other techniques


## SLAM:

Simultaneous Localization and Mapping

- Full SLAM: $p\left(x_{1: t}, m \mid z_{1: i}, u_{1: i}\right)$


## Estimates entire path and map!

- Online SLAM:

$$
p\left(x_{t}, m \mid z_{1: t}, u_{1: t}\right)=\iint \ldots \int p\left(x_{1: t}, m \mid z_{1: t}, u_{1: t}\right) d x_{1} d x_{2} \ldots d x_{t-1}
$$

Integrations typically done one at a time
Estimates most recent pose and map!

## Why is SLAM a hard problem?



- In the real world, the mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences
- Pose error correlates data associations


## (E)KF-SLAM

- Map with N landmarks:(3+2N)-dimensional Gaussian

- Can handle hundreds of dimensions


## EKF-SLAM



Map $\quad$ Correlation matrix

## EKF-SLAM



Map

## Correlation matrix

## EKF-SLAM



Map

## Correlation matrix

## FastSLAM

- Use a particle filter for map learning
- Problem: the map is high-dimensional
- Solution: separate the estimation of the robot' s trajectory from the one of the map of the environment
- This is done by means of a factorization in the SLAM posterior often called Rao-Blackwellization


## Rao-Blackwellization


$\left.\prod_{\text {SLAM posterior }} \prod_{\text {Robot path posterior }} \prod_{1} \mid z_{1: t}, u_{0: t-1}\right) \cdot p\left(m \mid x_{1: t}, z_{1: t}\right)$
Mapping with known poses
Factorization first introduced by Murphy in 1999

## Rao-Blackwellized Mapping

- Each particle represents a possible trajectory of the robot
- Each particle
- maintains its own map and
- updates it upon "mapping with known poses"
- Each particle survives with a probability proportional to the likelihood of the observations relative to its own map


## FastSLAM

- Rao-Blackwellized particle filtering based on landmarks
- Each landmark is represented by a $2 \times 2$ Extended Kalman Filter (EKF)
- Each particle therefore has to maintain M EKFs


Particle N $x, y, \theta$ Landmark 1 Landmark 2 Landmark M

## Grid-based FastSLAM

- Similar ideas can be used to learn grid maps
- To obtain a practical solution, an efficiently computable, informed proposal distribution is needed
- Idea: in the SLAM posterior, the observation model dominates the motion model (given an accurate sensor)


## Proposal Distribution

$$
p\left(x_{t} \mid x_{t-1}^{(i)}, m^{(i)}, z_{t}, u_{t}\right) \simeq \frac{p\left(z_{t} \mid x_{t}, m^{(i)}\right)}{\int_{x_{t} \in\left\{x \mid p\left(z_{t} \mid x, m^{(i)}\right)>\epsilon\right\}} p\left(z_{t} \mid x_{t}, m^{(i)}\right) d x_{t}}
$$

## Approximate this equation by a Gaussian:

maximum reported
by a scan matcher

 the maximum

## Typical Results



## Robot Motion

## Robot Motion Planning

Latombe (1991): "... eminently necessary since, by definition, a robot accomplishes tasks by moving in the real world."

## Goals:

- Collision-free trajectories.
- Robot should reach the goal location as fast as possible.


## Two Challenges

- Calculate the optimal path taking potential uncertainties in the actions into account
- Quickly generate actions in the case of unforeseen objects


## Classic Two-layered Architecture


low frequency
sensor data
high frequency


## Information Gain-based Exploration

- SLAM is typically passive, because it consumes incoming sensor data
- Exploration actively guides the robot to cover the environment with its sensors
- Exploration in combination with SLAM: Acting under pose and map uncertainty
- Uncertainty should/needs to be taken into account when selecting an action
- Key question: Where to move next?


## Mutual Information

- The mutual information $I$ is given by the reduction of entropy in the belief
action to be carried out
$I\left(X, M ; Z^{a}\right)=$
uncertainty of the filter "uncertainty of the filter after carrying out action $a^{\prime \prime}$


## Integrating Over Observations

- Computing the mutual information requires to integrate over potential observations

$$
I\left(X, M ; Z^{a}\right)=H(X, M)-H\left(X, M \mid Z^{a}\right)
$$

$$
H\left(X, M \mid Z^{a}\right)=\int_{z} p(z \mid a) H\left(X, M \mid Z^{a}=z\right) d z
$$

potential observation sequences

## Integral Approximation

- The particle filter represents a posterior about possible maps

map of particle 1

map of particle 2

map of particle 3


## Integral Approximation

- The particle filter represents a posterior about possible maps
- Simulate laser measurements in the maps of the particles

$$
H\left(X, M \mid Z^{a}\right)=\sum_{z} p(z \mid a) H\left(X, M \mid Z^{a}=z\right)
$$

measurement sequences
simulated in the maps

$$
=\sum_{i} \omega^{[i]} H\left(X, M \mid Z^{a}=z_{\operatorname{sim}_{a}}^{[i]}\right)
$$

# Summary on Information Gainbased Exploration 

- A decision-theoretic approach to exploration in the context of RBPF-SLAM
- The approach utilizes the factorization of the Rao-Blackwellization to efficiently calculate the expected information gain
- Reasons about measurements obtained along the path of the robot
- Considers a reduced action set consisting of exploration, loop-closing, and placerevisiting actions


## The Exam is Approaching ...

- This lecture gave a short overview over the most important topics addressed in this course
- For the exam, you need to know at least the basic formulas (e.g., Bayes filter, MCL eqs., Rao-Blackwellization, entropy, ...)


## Good luck for the exam!

