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Introduction to 
Mobile Robotics 

Wolfram Burgard, Diego Tipaldi 
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Probabilistic  
Robotics 
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Probabilistic Robotics 

Key idea: Explicit representation of 
uncertainty  

(using the calculus of probability theory) 

 

 Perception  = state estimation 

 Action       = utility optimization 
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Bayes Formula 

evidence

prior likelihood
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Simple Example of State Estimation 

 Suppose a robot obtains measurement z 

 What is P(open|z)? 
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Causal vs. Diagnostic Reasoning 

 P(open|z) is diagnostic. 

 P(z|open) is causal. 

 Often causal knowledge is easier to 
obtain. 

 Bayes rule allows us to use causal 
knowledge: 

)(

)()|(
)|(

zP

openPopenzP
zopenP 

count frequencies! 



7 

111
)(),|()|(


ttttttt

dxxBelxuxPxzP

Bayes Filters 

),,,|(),,,,|(
1111 ttttt

uzuxPuzuxzP Bayes 

z  = observation 
u  = action 
x  = state 

),,,,|()(
11 tttt

zuzuxPxBel 

Markov ),,,|()|(
11 tttt

uzuxPxzP 

Markov 
11111

),,,|(),|()|(


tttttttt
dxuzuxPxuxPxzP 

1111

111

),,,|(

),,,,|()|(





ttt

ttttt

dxuzuxP

xuzuxPxzP



Total prob. 

Markov 
111111

),,,|(),|()|(


tttttttt
dxzzuxPxuxPxzP 



8 

Bayes Filters are Familiar! 

 Kalman filters 

 Particle filters 

 Hidden Markov models 

 Dynamic Bayesian networks 

 … 
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Sensor and 
Motion Models 

),|( mxzP P(x | x ',u)
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Motion Models  

 Robot motion is inherently uncertain. 

 How can we model this uncertainty? 
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Probabilistic Motion Models 

 To implement the Bayes Filter, we 
need the transition model p(x | x’, u). 

 The term p(x | x’, u) specifies a posterior 
probability, that action u carries the 
robot from x’ to x. 
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Typical Motion Models 

 In practice, one often finds two types of 
motion models: 

 Odometry-based 

 Velocity-based (dead reckoning) 

 Odometry-based models are used when 
systems are equipped with wheel encoders. 

 Velocity-based models have to be applied 
when no wheel encoders are given.  

 They calculate the new pose based on the 
velocities and the time elapsed. 
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Odometry Model 
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Sensors for Mobile Robots 

 Contact sensors: Bumpers 

 Internal sensors 

 Accelerometers (spring-mounted masses) 

 Gyroscopes (spinning mass, laser light) 

 Compasses, inclinometers (earth magnetic field, gravity) 

 Proximity sensors 

 Sonar (time of flight) 

 Radar (phase and frequency) 

 Laser range-finders (triangulation, tof, phase) 

 Infrared (intensity) 

 Visual sensors: Cameras 

 Satellite-based sensors: GPS 
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Beam-based Sensor Model 

 Scan z consists of K measurements. 

 

 

 Individual measurements are independent 
given the robot position. 
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Beam-based Proximity Model 

Measurement noise 
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Beam-based Proximity Model 

Random measurement Max range 
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Resulting Mixture Density 













































),|(

),|(

),|(

),|(

),|(

rand

max

unexp

hit

rand

max

unexp

hit

mxzP

mxzP

mxzP

mxzP

mxzP

T









How can we determine the model parameters? 



19 

 Bayes Filter 
in Robotics 
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Bayes Filters in Action 

 Discrete filters 

 Kalman filters 

 Particle filters 



21 

Discrete Filter 

 The belief is typically stored in a 
histogram / grid representation 

 To update the belief upon sensory 
input and to carry out the 
normalization one has to iterate over 
all cells of the grid 
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Piecewise  
Constant 
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Kalman Filter 

 Optimal for linear Gaussian systems! 

 

 Most robotics systems are nonlinear! 

 

 Polynomial in measurement 
dimensionality k and state 
dimensionality n:  
 
             O(k2.376 + n2)  

 



Kalman Filter Algorithm  

1.  Algorithm Kalman_filter( mt-1, St-1, ut, zt): 

 

2.  Prediction: 

3.        

4.    
 

5.  Correction: 

6.        

7.   

8.   

9.  Return mt, St       
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Extended Kalman Filter 

 Approach to handle non-linear models 

 Performs a linearization in each step 

 Not optimal 

 Can diverge if nonlinearities are large! 

 Works surprisingly well even when all 
assumptions are violated! 

 Same complexity than the KF 
             



Particle Filter  

 Basic principle 

 Set of state hypotheses (“particles”) 

 Survival-of-the-fittest 

 

 Particle filters are a way to efficiently 

represent non-Gaussian distributions 
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Mathematical Description 
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 Set of weighted samples 

 

 

 

 

 

 The samples represent the posterior 

 

State hypothesis Importance weight 
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Particle Filter Algorithm in Brief 

 Sample the next generation for particles 

using the proposal distribution 

 

 Compute the importance weights : 

weight = target distribution / proposal distribution 

 

 Resampling: “Replace unlikely samples by 

more likely ones” 
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 We can even use a different distribution g to 

generate samples from f 

 By introducing an importance weight w, we can 

account for the “differences between g and f ” 

 w = f / g 

 f is often called 

target 

 g is often called 

proposal 

 Pre-condition: 

 f(x)>0  g(x)>0 

Importance Sampling Principle 
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1.  Algorithm particle_filter( St-1, ut-1 zt): 

2.   

3.  For                                                Generate new samples 

4.   Sample index j(i) from the discrete distribution given by wt-1 

5.   Sample     from                         using          and 

6.       Compute importance weight 

7.       Update normalization factor 

8.        Insert 

9.  For  

10.      Normalize weights 

 

Particle Filter Algorithm 
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draw xi
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Particle Filter Algorithm 
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w2 

w3 

w1 wn 

Wn-1 

Resampling 

w2 

w3 

w1 wn 

Wn-1 

 Roulette wheel 

 Binary search, n log n 

 Stochastic universal sampling 

 Systematic resampling 

 Linear time complexity 

 Easy to implement, low variance 
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MCL Example 
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 Mapping 



Why Mapping? 

 Learning maps is one of the fundamental 
problems in mobile robotics 

 Maps allow robots to efficiently carry out 
their tasks, allow localization … 

 Successful robot systems rely on maps for 
localization, path planning, activity planning 
etc 

35 



Occupancy Grid Maps 

 Discretize the world into equally 
spaced cells 

 Each cells stores the probability that 
the corresponding area is occupied by 
an obstacle 

 The cells are assumed to be 
conditionally independent 

 If the pose of the robot is know, 
mapping is easy 
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Updating Occupancy Grid Maps 

 Update the map cells using the inverse 
sensor model 

 

 
 

 Or use the log-odds representation 
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Reflection Probability Maps 

 Value of interest: P(reflects(x,y))  

 For every cell count 
 hits(x,y): number of cases where a beam 

ended at <x,y> 

 misses(x,y): number of cases where a 
beam passed through <x,y> 
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 SLAM 
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 Given: 

 The robot’s controls 

 Observations of nearby features 

 Estimate: 

 Map of features 

 Path of the robot 

The SLAM Problem 

A robot is exploring an 

unknown, static environment. 



Chicken-and-Egg-Problem 

 SLAM is a chicken-and-egg problem 

 A map is needed for localizing a robot 

 A good pose estimate is needed to build a map 

 Thus, SLAM is regarded as a hard problem 
in robotics 

 A variety of different approaches to address 
the SLAM problem have been presented 

 Probabilistic methods outperform most 
other techniques 
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SLAM:  
Simultaneous Localization and Mapping 

 Full SLAM: 

 

 

 Online SLAM: 

 

 
Integrations typically done one at a time  
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Estimates most recent pose and 
map! 

Estimates entire path and map! 
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Why is SLAM a hard problem? 

 In the real world, the mapping between 
observations and landmarks is unknown 

 Picking wrong data associations can have 
catastrophic consequences 

 Pose error correlates data associations 

Robot pose 

uncertainty 
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 Map with N landmarks:(3+2N)-dimensional 
Gaussian 

 

 

 

 

 

 

 

 Can handle hundreds of dimensions 

(E)KF-SLAM 
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EKF-SLAM 

Map              Correlation matrix 



46 

EKF-SLAM 

Map              Correlation matrix 
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EKF-SLAM 

Map              Correlation matrix 
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FastSLAM 

 Use a particle filter for map learning 

 Problem: the map is high-dimensional 

 Solution: separate the estimation of 
the robot’s trajectory from the one of 
the map of the environment 

 This is done by means of a 
factorization in the SLAM posterior 
often called Rao-Blackwellization 
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Rao-Blackwellization 

SLAM posterior 

Robot path posterior 

Mapping with known poses 

Factorization first introduced by Murphy in 1999 

poses map observations & movements 
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Rao-Blackwellized Mapping 

 Each particle represents a possible 
trajectory of the robot 

 

 Each particle  

 maintains its own map and  

 updates it upon “mapping with known 
poses” 
 

 Each particle survives with a probability 
proportional to the likelihood of the 
observations relative to its own map 
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FastSLAM 
 Rao-Blackwellized particle filtering based on 

landmarks      

 Each landmark is represented by a 2x2  

Extended Kalman Filter (EKF) 

 Each particle therefore has to maintain M EKFs 

Landmark 1 Landmark 2 Landmark M … x, y,  

Landmark 1 Landmark 2 Landmark M … x, y,  
Particle 

#1 

Landmark 1 Landmark 2 Landmark M … x, y,  
Particle 

#2 

Particle 

N 

…
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Grid-based FastSLAM 

 Similar ideas can be used to learn grid maps 

 To obtain a practical solution, an efficiently 
computable, informed proposal distribution 
is needed 

 Idea: in the SLAM posterior, the observation 
model dominates the motion model (given 
an accurate sensor) 
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Proposal Distribution 

Approximate this equation by a Gaussian: 

Sampled points around  
the maximum 

maximum reported 
by a scan matcher 

Gaussian  
approximation 

Draw next 
generation of 
samples 
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Typical Results 
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Robot Motion 
 



56 

Robot Motion Planning 

Latombe (1991): “… eminently necessary 
since, by definition, a robot accomplishes 
tasks by moving in the real world.” 

Goals: 

 Collision-free trajectories. 

 Robot should reach the goal location as 
fast as possible. 
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Two Challenges 

 Calculate the optimal path taking 
potential uncertainties in the actions 
into account 

 

 Quickly generate actions in the case of 
unforeseen objects 
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Classic Two-layered Architecture 

Planning 

Collision 
Avoidance 

sensor data 

map 

robot 

low frequency 

high frequency 

sub-goal 

motion command 



62 

Information Gain-based 
Exploration 

 SLAM is typically passive, because it 
consumes incoming sensor data 

 Exploration actively guides the robot to 
cover the environment with its sensors 

 Exploration in combination with SLAM: 
Acting under pose and map uncertainty 

 Uncertainty should/needs to be taken into 
account when selecting an action 

 Key question: Where to move next? 

 



Mutual Information 

 The mutual information I is given by the 

reduction of entropy in the belief 

 

action to be carried out 

uncertainty of the filter – 
 “uncertainty of the filter 
 after carrying out action a” 



Integrating Over Observations 

 Computing the mutual information requires 
to integrate over potential observations 

 

potential observation  
sequences 



Integral Approximation 

 The particle filter represents a posterior 
about possible maps 

map of particle 1 map of particle 3 map of particle 2 

… 



Integral Approximation 

 The particle filter represents a posterior 
about possible maps 

 Simulate laser measurements in the maps 
of the particles 

measurement sequences 

simulated in the maps 

likelihood  
(particle weight) 
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Summary on Information Gain-
based Exploration 

 A decision-theoretic approach to 
exploration in the context of RBPF-SLAM 

 The approach utilizes the factorization of 
the Rao-Blackwellization to efficiently 
calculate the expected information gain 

 Reasons about measurements obtained 
along the path of the robot 

 Considers a reduced action set consisting 
of exploration, loop-closing, and place-
revisiting actions 



68 

The Exam is Approaching … 

 This lecture gave a short overview over the 
most important topics addressed in this 
course 

 For the exam, you need to know at least the 
basic formulas (e.g., Bayes filter, MCL eqs., 
Rao-Blackwellization, entropy, …) 

 

Good luck for the exam! 


