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Probabilistic Robotics

Key idea: Explicit representation of

uncertainty

= Perception
= Action

(using the calculus of probability theory)

state estimation
utility optimization



Bayes Formula

P(x,y)=P(x|y)P(y)=P(y[x)P(x)

—

P (x| y) =

P(y|x) P(x) likelihood -prior

P(y) evidence




Simple Example of State Estimation

= Suppose a robot obtains measurement z
= What is P(open|z)?

-




Causal vs. Diagnostic Reasoning

= P(open|z) is diagnostic.
= P(z|open) is causal.

= Often canedge is easier to

obtain. count frequencies!

= Bayes rule allows us to usg causal
knowledge:

P(z|open)P(open)
P(z)

P(open |z) =



Bayes Filters

Bel (x,) = P(X, U}, 2, U, 2,)
Bayes =nP(z, | X, U, Z,,...,u)P(X |U,2Z,..,u,)
Markov =nP(z, | x,)P(x, |u,z,,...,u,)
Total prob. =17 P (2, |x)jp(x (U, 20U, X )
P(x,_,|u;,z,...,u)dx, ,
Markov

Markov

=P (2,1 %) [ P(X Ui % )P (X [Uy, 2

=P (2,1 %) P(X U, X ,)Bel (x_,)dx,

observation
action
state

,u )dx,

=P (2, 1 %) [ PO UG X )P (X Uy 2y, 20, )dX



Bayes Filters are Familiar!

Bel (x,) =7 P(z,|x,) j P(x, |u,X_) Bel(x_)dx,_,

= Kalman filters

= Particle filters

= Hidden Markov models

= Dynamic Bayesian networks




Sensor and
Motion Models

P(z]x,m) P(x|x',u)




Motion Models

= Robot motion is inherently uncertain.
= How can we model this uncertainty?
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Probabilistic Motion Models

= To implement the Bayes Filter, we
need the transition model p(x | x’, u).

= The term p(x|x’, u) specifies a posterior
probability, that action u carries the
robot from x’ to x.
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Typical Motion Models

In practice, one often finds two types of
motion models:

= Odometry-based
= Velocity-based (dead reckoning)

Odometry-based models are used when
systems are equipped with wheel encoders.

Velocity-based models have to be applied
when no wheel encoders are given.

They calculate the new pose based on the
velocities and the time elapsed.
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Odometry Model

= Robot moves from <>?, y,5> to <>?',y',9_'>.
» Odometry information u =(5,,,, 5,2 Sy -

5trans = \/()?'_)?)2 + (yl_ V)Z
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Sensors for Mobile Robots

= Contact sensors: Bumpers

Internal sensors

= Accelerometers (spring-mounted masses)

= Gyroscopes (spinning mass, laser light)

= Compasses, inclinometers (earth magnetic field, gravity)
* Proximity sensors

= Sonar (time of flight)

= Radar (phase and frequency)

= Laser range-finders (triangulation, tof, phase)

= Infrared (intensity)

= \/isual sensors: Cameras
Satellite-based sensors: GPS
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Beam-based Sensor Model

= Scan z consists of K measurements.

2=12,,2,0 Iy}

= Individual measurements are independent
given the robot position.

P(z|x,m):ﬁ P(z, | x,m)
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Beam-based Proximity Model

Measurement noise Unexpected obstacles

O ZeXp Zmax O Zexp Zmax
1 _l(z_zexp)2 5 ( | ) 4(771612 L < ZeXp ]
P.(z|[x,m)= e ? b anexp \Z | X, M) = ;
e (21X, m) =7 NE i | 0 otherwise |
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Beam-based Proximity Model

Random measurement Max range
. I
O Zexp Zmax O Zexp Zmax
1 1
Prang (21X, M) =17 F’max(2|><,m)=f7Z
Zmax small




Resulting Mixture Density

T
/\\ ahit Phit(zlxim)
/ a P (z|x,m)
,." H'”'x P (Z | X, m) _ unexp . unexp
’J  ax Pmax (Z | X, m)
[
\Hh_xh_“'_“ / \\ & and Prand (Z | X, m)

How can we determine the model parameters?
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Bayes Filter
In Robotics




Bayes Filters in Action

= Discrete filters
= Kalman filters
= Particle filters
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Discrete Filter

= The belief is typically stored in a
histogram / grid representation

= To update the belief upon sensory
input and to carry out the
normalization one has to iterate over
all cells of the grid
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Piecewise
Constant




Kalman Filter

= Optimal for linear Gaussian systems!
= Most robotics systems are nonlinear!

= Polynomial in measurement
dimensionality k and state
dimensionality n:

O(k2-376 + n2)
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Kalman Filter Algorithm

1. Algorithm Kalman_filter( p;.,, . ;, U, Z;):

2. _Prediction:

3. He = A, + B,

4. T.=AZ_A +Q

5. Correction:

6. K,=%ZC/(C,ZC/ +R)"
/. Iut:lut_I_Kt(zt__Ctlut)
8. z, =1 -K.C,)Z:

9. Return p, %
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Extended Kalman Filter

= Approach to handle non-linear models
= Performs a linearization in each step

= Not optimal

= Can diverge if nonlinearities are large!

= Works surprisingly well even when all
assumptions are violated!

= Same complexity than the KF

25



Particle Filter

= Basic principle
= Set of state hypotheses (“particles”)
= Survival-of-the-fittest

= Particle filters are a way to efficiently
represent non-Gaussian distributions

26



Mathematical Description

® Set of weighted samples
S = {<s[i],w[i]> |1 = 1,...,N}

[ ]

State hypothesis Importance weight

" The samples represent the posterior

N
p(z) = > w6 ()
i—=1

27



Particle Filter Algorithm in Brief

" Sample the next generation for particles
using the proposal distribution

" Compute the importance weights :
weight = target distribution / proposal distribution

" Resampling: "Replace unlikely samples by
more likely ones”
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Importance Sampling Principle

= We can even use a different distribution g to
generate samples from f

= By introducing an importance weight w, we can
account for the “differences between g and f”

= w=f/g

= fis often called = p“’tﬂ?;iiﬁii
target ?ﬁ samples

= g is often called =
proposal =

= Pre-condition: E’_
f(x)>0 = g(x)>0 ........uummlllllﬂlmumjlw ‘ |

X
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Particle Filter Algorithm

1. Algorithm particle_filter( S._;, u;; z,):

2. S, =0, n=0

3. For i=1...n Generate new samples

4. Sample index j(i) from the discrete distribution given by w,_,
B. Sample x! from p(x, |x,,.u,,) using x!*© and u,,

6. w, = p(z,|x,) Compute importance weight
7. n=1n+W, Update normalization factor
8. S, =S, uf<x,w >} Insert

9. For i=1...n

10, w =w, /7y Normalize weights

30




Particle Filter Algorithm

Bel (Xt) = 77 p(zt | Xt)j p(Xt |Xt—1’ut—1) Bel (Xt—l) dXt—l

— draw x',_; from Bel(x,_,)

— draw x|, from p(x,| X',_1,U;_;)

— Importance factor for x';:
,  target distribution
" proposal distribution
:ﬂp(zf | x)p(x, | X, ,u, ) Bel(x, )
p(x, [ x,,u, ) Bel(x, )

xp(z,|x,)
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Resampling

= Stochastic universal sampling
= Roulette wheel = Systematic resampling
= Binary search, n log n = Linear time complexity
= Easy to implement, low variance
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MCL Example
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Mapping



Why Mapping?

= | earning maps is one of the fundamental
problems in mobile robotics

= Maps allow robots to efficiently carry out
their tasks, allow localization ...

= Successful robot systems rely on maps for
localization, path planning, activity planning
etc
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Occupancy Grid Maps

= Discretize the world into equally
spaced cells

= Each cells stores the probability that
the corresponding area is occupied by
an obstacle

= The cells are assumed to be
conditionally independent

= [f the pose of the robot is know,
mapping is easy
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Updating Occupancy Grid Maps

= Update the map cells using the inverse
sensor model

Bel(m[xy]):]__ 14+ P( [y]|ZtUtl) .1—P(mt[xy]). Be|(mt[i<>1/]
| 1_P( [y]|ztut1) P(mt[xy]) l—BeI(mf

= Or use the log-odds representation

B( [ y]) |Og odds ( [xy] | Z,,U,_ 1) B( [Xy]) |Og odds (m[xy])
— log odds ( bo1) P(x)
St w0
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Reflection Probability Maps

= \Value of interest: P(reflects(x,y))

= For every cell count

= hits(x,y): number of cases where a beam
ended at <x,y>

= misses(x,y): number of cases where a
beam passed through <x,y>

hits( x, y)

Bel (m™1) = .
hits( x, y) + misses( X, y)
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SLAM



The SLAM Problem

A robot Is exploring an
unknown, static environment.

Given:

= The robot’ s controls
= Observations of nearby features
Estimate:

= Map of features
= Path of the robot
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Chicken-and-Egg-Problem

SLAM is a chicken-and-egg problem
= A map is needed for localizing a robot
= A good pose estimate is needed to build a map

Thus, SLAM is regarded as a hard problem
in robotics

A variety of different approaches to address

the SLAM problem have been presented

Probabilistic methods outperform most
other techniques

41



SLAM:

Simultaneous Localization and Mapping
= Full SLAM: p(x,.m]z,,u,.)

Estimates entire path and map!

= Online SLAM:

p(x,m|z,,U,)= ”j p(X,,m|z.,u,)dx,dx,..dx,

Integrations typically done one at a time

Estimates most recent pose and
map!

42



Why is SLAM a hard problem?

Q) O
\ /
\ /

\
\

% ¥ % * ¥ %

/
\ /

o — Robot pose — o

uncertainty

= In the real world, the mapping between
observations and landmarks is unknown

= Picking wrong data associations can have
catastrophic consequences

= Pose error correlates data associations

43



(E)KF-SLAM

= Map with N landmarks:(3+2N)-dimensional

Gaussian

X

D <

_________/
Q

Bel (x,,m,) =

= Can handle hundreds of dimensions
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EKF-SLAM

Map

Correlation matrix
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EKF-SLAM

Map

Correlation matrix
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EKF-SLAM

Correlation matrix

Map



FastSLAM

= Use a particle filter for map learning
= Problem: the map is high-dimensional

= Solution: separate the estimation of
the robot’ s trajectory from the one of
the map of the environment

= This is done by means of a
factorization in the SLAM posterior
often called Rao-Blackwellization
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Rao-Blackwellization

poses map observations & movements

SN,

p(T1:¢,m | 21:¢, U0r—1) =
] p(x1:¢ | Zl:tauo:t—l) - p(m | T1:¢, 21:¢)

SLAM posterior I

Robot path posterior

Mapping with known poses

Factorization first introduced by Murphy in 1999 49



Rao-Blackwellized Mapping

= Each particle represents a possible
trajectory of the robot

= Each particle
= maintains its own map and
= updates it upon "mapping with known
poses”

= Fach particle survives with a probability
proportional to the likelihood of the
observations relative to its own map
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FastSLAM

" Rao-Blackwellized particle filtering based on
landmarks

" Each landmark is represented by a 2x2
Extended Kalman Filter (EKF)

" Each particle therefore has to maintain M EKFs

Pa”'c'e - Landmark 1 | Landmark 2

Pa”'c'e - Landmark 1 | Landmark 2 8l Landmark M

Landmark M

PamCle - Landmark 1 § Landmark 2 Landmark M




Grid-based FastSLAM

= Similar ideas can be used to learn grid maps

= To obtain a practical solution, an efficiently
computable, informed proposal distribution
IS needed

= Idea: in the SLAM posterior, the observation
model dominates the motion model (given
an accurate sensor)
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Proposal Distribution

p(zt|xg, m(D)

p($t|w§i)]_7 m(Z)a 2t Ut) =

fxtE{x|p(zt|aﬁ,m(i))>e} p(zt|xt’ m(i))dxt

Approximate this equation by a Gaussian:

maximum reported —
by a scan matcher

Gaussian
approximation

Draw next
“.Q' generation of
Sampled points around samples

the maximum 53



Typical Results




Robot Motion



Robot Motion Planning

Latombe (1991): “... eminently necessary
since, by definition, a robot accomplishes
tasks by moving in the real world.”

Goals:
= Collision-free trajectories.

= Robot should reach the goal location as
fast as possible.
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Two Challenges

= Calculate the optimal path taking
potential uncertainties in the actions
iInto account

= Quickly generate actions in the case of
unforeseen objects
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Classic Two-layered Architecture

Planning low frequency

lsub—goal

Collision

Avoidance high frequency

‘motion command
sensor data
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Information Gain-based
Exploration

= SLAM is typically passive, because it
consumes incoming sensor data

= Exploration actively guides the robot to
cover the environment with its sensors

= Exploration in combination with SLAM:
Acting under pose and map uncertainty

= Uncertainty should/needs to be taken into
account when selecting an action

= Key question: Where to move next?
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Mutual Information

= The mutual information I is given by the
reduction of entropy in the belief

action to be carried out

|

I[(X,M;Z%) = uncertainty of the filter -
“uncertainty of the filter
after carrying out action a”



Integrating Over Observations

= Computing the mutual information requires
to integrate over potential observations

I(X.M;Z") =H(X,M)—H(X,M | Z%
J
—

H(X.M | Z%) = /p(z QH(X.M | Z° = 7) dz

<

1
potential observation
sequences



Integral Approximation

= The particle filter represents a posterior
about possible maps

map of particle 1 map of particle 2 map of particle 3



Integral Approximation

= The particle filter represents a posterior
about possible maps

= Simulate laser measurements in the maps
of the particles

H(X,M|Z% sz|a (X,M | Z =7)

/7 N\

measurement sequences likelihood
simulated in the maps (particle weight)

:\Z’ [{(XM\ZG—ZM )

Sin,



Summary on Information Gain-
based Exploration

= A decision-theoretic approach to
exploration in the context of RBPF-SLAM

= The approach utilizes the factorization of
the Rao-Blackwellization to efficiently

calculate t
= Reasons a

ne expected information gain
bout measurements obtained

along the
= Considers

path of the robot
a reduced action set consisting

of exploration, loop-closing, and place-
revisiting actions
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The Exam is Approaching ...

= This lecture gave a short overview over the

most important topics addressed in this
course

= For the exam, you need to know at least the
basic formulas (e.qg., Bayes filter, MCL egs.,
Rao-Blackwellization, entropy, ...)

Good luck for the exam!
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