1. Best-First Search
2. A* and IDA*
3. Local Search Methods
4. Genetic Algorithms
Search procedures differ in the way they determine the next node to expand.

Uninformed Search: Rigid procedure with no knowledge of the cost of a given node to the goal.

Informed Search: Knowledge of the worth of expanding a node n is given in the form of an *evaluation function* $f(n)$, which assigns a real number to each node. Mostly, $f(n)$ includes as a component a *heuristic function* $h(n)$, which estimates the costs of the cheapest path from n to the goal.

Best-First Search: Informed search procedure that expands the node with the “best” f-value first.
function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
 if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
 if the node contains a goal state then return the corresponding solution
 expand the chosen node, adding the resulting nodes to the frontier

Best-first search is an instance of the general TREE-SEARCH algorithm in which frontier is a priority queue ordered by an evaluation function f. When f is always correct, we do not need to search!
Greedy Search

A possible way to judge the “worth” of a node is to estimate its path-costs to the goal.

\[h(n) = \text{estimated path-costs from } n \text{ to the goal} \]

The only real restriction is that \(h(n) = 0 \) if \(n \) is a goal.

A best-first search using \(h(n) \) as the evaluation function, i.e., \(f(n) = h(n) \), is called a greedy search.

Example: route-finding problem:
\(h(n) = \text{straight-line distance from } n \text{ to the goal} \)
Heuristics

The evaluation function h in greedy searches is also called a *heuristic* function or simply a *heuristic*.

- The word *heuristic* is derived from the Greek word $\varepsilonυρισκειν$ (note also: $\varepsilonυρηκα$!)
- The mathematician Polya introduced the word in the context of problem solving techniques.
- In AI it has two meanings:
 - Heuristics are fast but in certain situations incomplete methods for problem-solving [Newell, Shaw, Simon 1963] (The greedy search is actually generally incomplete).
 - Heuristics are methods that improve the search in the average-case.

→ In all cases, the heuristic is *problem-specific* and *focuses* the search!
Greedy Search Example
Greedy Search from Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras
a good heuristic might reduce search time drastically
non-optimal
incomplete
graph-search version is complete only in finite spaces
Can we do better?
A*: Minimization of the Estimated Path Costs

A* combines the greedy search with the uniform-search strategy: Always expand node with lowest $f(n)$ first, where

$$g(n) = \text{actual cost from the initial state to } n.$$
$$h(n) = \text{estimated cost from } n \text{ to the next goal.}$$
$$f(n) = g(n) + h(n),$$
the estimated cost of the cheapest solution through n.

Let $h^*(n)$ be the actual cost of the optimal path from n to the next goal. h is \textit{admissible} if the following holds for all n:

$$h(n) \leq h^*(n)$$

We require that for A*, h is admissible (example: straight-line distance is admissible). In other words, h is an \textit{optimistic} estimate of the costs that actually occur.
A* Search from Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Rimnicu Vilcea
A* Search from Arad to Bucharest

(e) After expanding Fagaras

(f) After expanding Pitesti
Example: Path Planning for Robots in a Grid-World
Claim: The first solution found has the minimum path cost.

Proof: Suppose there exists a goal node G with optimal path cost f^*, but A^* has found another node G_2 with $g(G_2) > f^*$.

![Graph diagram](image-url)
Let \(n \) be a node on the path from the start to \(G \) that has not yet been expanded. Since \(h \) is admissible, we have

\[
f(n) \leq f^*.
\]

Since \(n \) was not expanded before \(G_2 \), the following must hold:

\[
f(G_2) \leq f(n)
\]
and

\[
f(G_2) \leq f^*.
\]

It follows from \(h(G_2) = 0 \) that

\[
g(G_2) \leq f^*.
\]

→ Contradicts the assumption!
Completeness:

If a solution exists, A* will find it provided that (1) every node has a finite number of successor nodes, and (2) there exists a positive constant $\delta > 0$ such that every step has at least cost δ.

\rightarrow there exists only a finite number of nodes n with $f(n) \leq f^*$.

Complexity:

In general, still exponential in the path length of the solution (space, time).

More refined complexity results depend on the assumptions made, e.g. on the quality of the heuristic function. Example:

In the case in which $|h^*(n) - h(n)| \leq O(\log(h^*(n)))$, only one goal state exists, and the search graph is a tree, a sub-exponential number of nodes will be expanded [Gaschnig, 1977, Helmert & Roeger, 2008].
Heuristic Function Example

\[h_1 = \text{the number of tiles in the wrong position} \]
\[h_2 = \text{the sum of the distances of the tiles from their goal positions (Manhattan distance)} \]
\(d = \) distance from goal

- Average over 100 instances

<table>
<thead>
<tr>
<th>(d)</th>
<th>Search Cost (nodes generated)</th>
<th>Effective Branching Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IDS</td>
<td>(A^*(h_1))</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
</tr>
<tr>
<td>12</td>
<td>3644035</td>
<td>227</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>539</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>1301</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>3056</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>7276</td>
</tr>
<tr>
<td>22</td>
<td>-</td>
<td>18094</td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>39135</td>
</tr>
</tbody>
</table>
Variants of A^*

A^* in general still suffers from exponential memory growth. Therefore, several refinements have been suggested:

- iterative-deepening A^*, where the f-costs are used to define the cutoff (rather than the depth of the search tree): IDA^*
- Recursive Best First Search (RBFS): introduces a variable $f_{_limit}$ to keep track of the best alternative path available from any ancestor of the current node. If current node exceeds this limit, recursion unwinds back to the alternative path.
- other alternatives memory-bounded A^* (MA^*) and simplified MA^* (SMA^*).
Local Search Methods

- In many problems, it is unimportant how the goal is reached—only the goal itself matters (8-queens problem, VLSI Layout, TSP).
- If in addition a quality measure for states is given, a **local search** can be used to find solutions.
- It operates using a single current node (rather than multiple paths)
- It requires little memory
- Idea: Begin with a randomly-chosen configuration and improve on it step by step → **Hill Climbing**.
- Note: It can be used for maximization or minimization respectively (see 8-queens example)
Example state with heuristic cost estimate $h = 17$ (counts the number of pairs threatening each other directly or indirectly).
function HILL-CLIMBING(problem) returns a state that is a local maximum

 current ← MAKE-NODE(problem.INITIAL-STATE)

loop do
 neighbor ← a highest-valued successor of current
 if neighbor.VALUE ≤ current.VALUE then return current.STATE
 current ← neighbor
Possible realization of a hill-climbing algorithm:
Select a column and move the queen to the square with the fewest conflicts.
Problems with Local Search Methods

- **Local maxima:** The algorithm finds a sub-optimal solution.
- **Plateaus:** Here, the algorithm can only explore at random.
- **Ridges:** Similar to plateaus but might even require suboptimal moves.

Solutions:

- *Start over* when no progress is being made.
- “Inject noise” \rightarrow random walk

Which strategies (with which parameters) are successful (within a problem class) can usually only empirically be determined.
Local minimum \((h = 1)\) of the 8-queens Problem. Every successor has a higher cost.
Illustration of the ridge problem

The grid of states (dark circles) is superimposed on a ridge rising from left to right, creating a sequence of local maxima, that are not directly connected to each other. From each local maximum, all the available actions point downhill.
The 8-queens problem has about $8^8 \approx 17$ million states. Starting from a random initialization, hill-climbing directly finds a solution in about 14% of the cases. On average it requires only 4 steps!

Better algorithm: Allow sideways moves (no improvement), but restrict the number of moves (avoid infinite loops!).

E.g.: max. 100 moves: Solves 94%, number of steps raises to 21 steps for successful instances and 64 for failure cases.
Simulated Annealing

In the simulated annealing algorithm, “noise” is injected systematically: first a lot, then gradually less.

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
    inputs: problem, a problem
             schedule, a mapping from time to “temperature”

    current ← MAKE-NODE(problem.INITIAL-STATE)
    for t = 1 to ∞ do
        T ← schedule(t)
        if T = 0 then return current
        next ← a randomly selected successor of current
        ΔE ← next.VALUE − current.VALUE
        if ΔE > 0 then current ← next
        else current ← next only with probability e^{ΔE/T}
```

Has been used since the early 80’s for VSLI layout and other optimization problems.
Evolution appears to be very successful at finding good solutions.

Idea: Similar to evolution, we search for solutions by three operators: “mutation”, “crossover”, and “selection”.

Ingredients:
- Coding of a solution into a string of symbols or bit-string
- A fitness function to judge the worth of configurations
- A population of configurations

Example: 8-queens problem as a chain of eight numbers. Fitness is judged by the number of non-attacks. The population consists of a set of arrangements of queens.
Selection, Mutation, and Crossing

Many variations:
how selection will be applied, what type of cross-over operators will be used, etc.

Selection of individuals according to a fitness function and pairing

Calculation of the breaking points and recombination

According to a given probability elements in the string are modified.
Summary

- **Heuristics** focus the search
- **Best-first search** expands the node with the highest worth (defined by any measure) first.
- With the minimization of the evaluated costs to the goal h we obtain a greedy search.
- The minimization of $f(n) = g(n) + h(n)$ combines uniform and greedy searches. When $h(n)$ is admissible, i.e., h^* is never overestimated, we obtain the A^* search, which is complete and optimal.
- **IDA** is a combination of the iterative-deepening and A^* searches.
- **Local search methods** only ever work on one state, attempting to improve it step-wise.
- **Genetic algorithms** imitate evolution by combining good solutions.