
Foundations of Artificial Intelligence
13. Acting under Uncertainty

Maximizing Expected Utility

Joschka Boedecker and Wolfram Burgard and Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

Contents

1 Introduction to Utility Theory

2 Choosing Individual Actions

3 Sequential Decision Problems

4 Markov Decision Processes

5 Value Iteration

(University of Freiburg) Foundations of AI 2 / 32

The Basis of Utility Theory

The utility function rates states and thus formalizes the desirability of a
state by the agent.

U(S) denotes the utility of state S for the agent.

A nondeterministic action A can lead to the outcome states Result i(A).
How high is the probability that the outcome state Result i(A) is reached,
if A is executed in the current state with evidence E?

→ P (Result i(A) | Do(A), E)

Expected Utility:

EU(A | E) =
∑

i P (Result i(A) | Do(A), E)× U(Result i(A))

The principle of maximum expected utility (MEU) says that a rational
agent should choose an action that maximizes EU(A | E).

(University of Freiburg) Foundations of AI 3 / 32

Problems with the MEU Principle

P (Result i(A) | Do(A), E)

requires a complete causal model of the world.

→ Constant updating of belief networks

→ NP-complete for Bayesian networks

U(Result i(A))

requires search or planning, because an agent needs to know the possible
future states in order to assess the worth of the current state (“effect of
the state on the future”).

(University of Freiburg) Foundations of AI 4 / 32

The Axioms of Utility Theory (1)

Justification of the MEU principle, i.e., maximization of the average utility.

Scenario = Lottery L

Possible outcomes = possible prizes

The outcome is determined by chance

L = [p1, C1; p2, C2; . . . ; pn, Cn]

Example:
Lottery L with two outcomes, C1 and C2:

L = [p, C1; 1− p, C2]

Preference between lotteries:
L1 � L2 The agent prefers L1 over L2

L1 ∼ L2 The agent is indifferent between L1 and L2

L1 % L2 The agent prefers L1 or is indifferent between L1 and L2

(University of Freiburg) Foundations of AI 5 / 32

The Axioms of Utility Theory (2)

Given lotteries A, B, C

Orderability
(A � B) ∨ (B � A) ∨ (A ∼ B)
An agent should know what it wants: it must either prefer one of the 2
lotteries or be indifferent to both.

Transitivity
(A � B) ∧ (B � C)⇒ (A � C)
Violating transitivity causes irrational behavior: A � B � C � A. The
agent has A and would pay to exchange it for C. C would do the same
for A.
→ The agent loses money this way.

(University of Freiburg) Foundations of AI 6 / 32

The Axioms of Utility Theory (3)

Continuity
A � B � C ⇒ ∃p[p,A; 1− p, C] ∼ B
If some lottery B is between A and C in preference, then there is some
probability p for which the agent is indifferent between getting B for
sure and the lottery that yields A with probability p and C with
probability 1− p.

Substitutability
A ∼ B ⇒ [p,A; 1− p, C] ∼ [p,B; 1− p, C]
If an agent is indifferent between two lotteries A and B, then the agent
is indifferent beteween two more complex lotteries that are the same
except that B is substituted for A in one of them.

(University of Freiburg) Foundations of AI 7 / 32

The Axioms of Utility Theory (4)

Monotonicity
A � B ⇒ (p > q ⇔ [p,A; 1− p,B] � [q, A; 1− q,B])
If an agent prefers the outcome A, then it must also prefer the lottery
that has a higher probability for A.

Decomposability
[p,A; 1− p, [q,B; 1− q, C]] ∼ [p,A; (1− p)q,B; (1− p)(1− q), C]
Compound lotteries can be reduced to simpler ones using the laws of
probability. This has been called the “no fun in gambling”-rule: two
consecutive gambles can be reduced to a single equivalent lottery.

(University of Freiburg) Foundations of AI 8 / 32

Utility Functions and Axioms

The axioms only make statements about preferences.

The existence of a utility function follows from the axioms!

Utility Principle If an agent’s preferences obey the axioms, then there
exists a function U : S 7→ R with
U(A) > U(B)⇔ A � B
U(A) = U(B)⇔ A ∼ B
Expected Utility of a Lottery:
U([p1, S1; . . . ; pn, Sn]) =

∑
i piU(Si)

→ Since the outcome of a nondeterministic action is a lottery, an agent
can act rationally only by following the Maximum Expected Utility
(MEU) principle.

How do we design utility functions that cause the agent to act as desired?

(University of Freiburg) Foundations of AI 9 / 32

Assessing Utilities

The scale of a utility function can be chosen arbitrarily. We therefore can
define a ’normalized’ utility:

’Best possible prize’ U(S) = umax = 1

’Worst catastrophe’ U(S) = umin = 0

Given a utility scale between umin and umax we can asses the utility of any
particular outcome S by asking the agent to choose between S and a
standard lottery [p, umax ; 1− p, umin]. We adjust p until they are equally
preferred.
Then, p is the utility of S. This is done for each outcome S to determine
U(S).

(University of Freiburg) Foundations of AI 10 / 32

Possible Utility Functions

From economic models: The value of money

U

$ $
�150,000 800,000

(a) (b)

o

o

o

o
o

o
o

o o
o o o o o o

U

left: utility from empirical data; right: typical utility function over the full
range.

(University of Freiburg) Foundations of AI 11 / 32

Sequential Decision Problems (1)

1 2 3

1

2

3

− 1

+ 1

4

START

Beginning in the start state the agent must choose an action at each
time step.

The interaction with the environment terminates if the agent reaches
one of the goal states (4,3) (reward of +1) or (4,2) (reward -1). Each
other location has a reward of -.04.

In each location the available actions are Up, Down, Left , Right .

(University of Freiburg) Foundations of AI 12 / 32

Sequential Decision Problems (2)

Deterministic version: All actions always lead to the next square in the
selected direction, except that moving into a wall results in no change in
position.

Stochastic version: Each action achieves the intended effect with
probability 0.8, but the rest of the time, the agent moves at right angles
to the intended direction.

0.8

0.10.1

(University of Freiburg) Foundations of AI 13 / 32

Markov Decision Problem (MDP)

Given a set of states in an accessible, stochastic environment, an MDP is
defined by

Initial state S0

Transition Model T (s, a, s′)

Reward function R(s)

Transition model: T (s, a, s′) is the probability that state s′ is reached, if
action a is executed in state s.

Policy: Complete mapping π that specifies for each state s which action
π(s) to take.

Wanted: The optimal policy π∗ is the policy that maximizes the expected
utility.

(University of Freiburg) Foundations of AI 14 / 32

Optimal Policies (1)

Given the optimal policy, the agent uses its current percept that tells it
its current state.

It then executes the action π∗(s).

We obtain a simple reflex agent that is computed from the information
used for a utility-based agent.

Optimal policy for stochastic
MDP with R(s) = −0.04:

–1

+1

1

2

3

1 2 3 4

(University of Freiburg) Foundations of AI 15 / 32

Optimal Policies (2)

Optimal policy changes with choice of transition costs R(s).
How to compute optimal policies?

(University of Freiburg) Foundations of AI 16 / 32

Finite and Infinite Horizon Problems

Performance of the agent is measured by the sum of rewards for the
states visited.

To determine an optimal policy we will first calculate the utility of each
state and then use the state utilities to select the optimal action for
each state.

The result depends on whether we have a finite or infinite horizon
problem.

Utility function for state sequences: Uh([s0, s1, . . . , sn])

Finite horizon: Uh([s0, s1, . . . , sN+k]) = Uh([s0, s1, . . . , sN]) for all
k > 0.

For finite horizon problems the optimal policy depends on the current
state and the remaining steps to go. It therefore depends on time and
is called nonstationary.

In infinite horizon problems the optimal policy only depends on the
current state and therefore is stationary.

(University of Freiburg) Foundations of AI 17 / 32

Assigning Utilities to State Sequences

For stationary systems there are two coherent ways to assign utilities to
state sequences.

Additive rewards:
Uh([s0, s1, s2, . . .]) = R(s0) +R(s1) +R(s2) + · · ·

Discounted rewards:
Uh([s0, s1, s2, . . .]) = R(s0) + γR(s1) + γ2R(s2) + · · ·

The term γ ∈ [0, 1[is called the discount factor.

With discounted rewards the utility of an infinite state sequence is
always finite. The discount factor expresses that future rewards have
less value than current rewards.

(University of Freiburg) Foundations of AI 18 / 32

Utilities of States

The utility of a state depends on the utility of the state sequences that
follow it.

Let Uπ(s) be the utility of a state under policy π.

Let st be the state of the agent after executing π for t steps. Thus, the
utility of s under π is

Uπ(s) = E

[∞∑
t=0

γtR(st) | π, s0 = s

]

The true utility U(s) of a state is Uπ
∗
(s).

R(s) is the short-term reward for being in s and
U(s) is the long-term total reward from s onwards.

(University of Freiburg) Foundations of AI 19 / 32

Example

The utilities of the states in our 4× 3 world with γ = 1 and R(s) = −0.04
for non-terminal states:

1 2 3

1

2

3

–1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

(University of Freiburg) Foundations of AI 20 / 32

Choosing Actions using the
Maximum Expected Utility Principle

The agent simply chooses the action that maximizes the expected utility
of the subsequent state:

π(s) = argmax
a

∑
s′

T (s, a, s′)U(s′)

The utility of a state is the immediate reward for that state plus the
expected discounted utility of the next state, assuming that the agent
chooses the optimal action:

U(s) = R(s) + γmax
a

∑
s′

T (s, a, s′)U(s′)

(University of Freiburg) Foundations of AI 21 / 32

Bellman-Equation

The equation

U(s) = R(s) + γmax
a

∑
s′

T (s, a, s′)U(s′)

is also called the Bellman-Equation.

(University of Freiburg) Foundations of AI 22 / 32

Bellman-Equation: Example

In our 4× 3 world the equation for the state (1,1) is

U(1, 1) = −0.04 + γmax{ 0.8U(1, 2) + 0.1U(2, 1) + 0.1U(1, 1), (Up)
0.9U(1, 1) + 0.1U(1, 2), (Left)
0.9U(1, 1) + 0.1U(2, 1), (Down)
0.8U(2, 1) + 0.1U(1, 2) + 0.1U(1, 1)} (Right)

= −0.04 + γmax{ 0.8 · 0.762 + 0.1 · 0.655 + 0.1 · 0.705, (Up)
0.9 · 0.705 + 0.1 · 0.762, (Left)
0.9 · 0.705 + 0.1 · 0.655, (Down)
0.8 · 0.655 + 0.1 · 0.762 + 0.1 · 0.705} (Right)

= −0.04 + 1.0 (0.6096 + 0.0655 + 0.0705), (Up) = −0.04 + 0.7456 = 0.7056

→ Up is the optimal action in (1,1).

1 2 3

1

2

3

–1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

(University of Freiburg) Foundations of AI 23 / 32

Value Iteration (1)

An algorithm to calculate an optimal strategy.

Basic Idea: Calculate the utility of each state. Then use the state utilities
to select an optimal action for each state.

A sequence of actions generates a branch in the tree of possible states
(histories). A utility function on histories Uh is separable iff there exists a
function f such that

Uh([s0, s1, . . . , sn]) = f(s0, Uh([s1, . . . , sn]))

The simplest form is an additive reward function R:

Uh([s0, s1, . . . , sn]) = R(s0) + Uh([s1, . . . , sn]))

In the example, R((4, 3)) = +1, R((4, 2)) = −1, R(other) = −1/25.

(University of Freiburg) Foundations of AI 24 / 32

Value Iteration (2)

If the utilities of the terminal states are known, then in certain cases we
can reduce an n-step decision problem to the calculation of the utilities of
the terminal states of the (n− 1)-step decision problem.

→ Iterative and efficient process

Problem: Typical problems contain cycles, which means the length of the
histories is potentially infinite.

Solution: Use

Ut+1(s) = R(s) + γmax
a

∑
s′

T (s, a, s′)Ut(s
′)

where Ut(s) is the utility of state s after t iterations.

Remark: As t→∞, the utilities of the individual states converge to stable
values.

(University of Freiburg) Foundations of AI 25 / 32

Value Iteration (3)

The Bellman equation is the basis of value iteration.

Because of the max-operator the n equations for the n states are
nonlinear.

We can apply an iterative approach in which we replace the equality by
an assignment:

U ′(s)← R(s) + γmax
a

∑
s′

T (s, a, s′)U(s′)

(University of Freiburg) Foundations of AI 26 / 32

The Value Iteration Algorithm

17 MAKING COMPLEX
DECISIONS

function VALUE -ITERATION(mdp,ǫ) returns a utility function
inputs: mdp, an MDP with statesS , actionsA(s), transition modelP (s′ | s, a),

rewardsR(s), discountγ
ǫ, the maximum error allowed in the utility of any state

local variables: U , U ′, vectors of utilities for states inS , initially zero
δ, the maximum change in the utility of any state in an iteration

repeat
U ←U ′; δ← 0
for each states in S do

U ′[s]←R(s) + γ max
a∈A(s)

X

s′
P (s′ | s, a) U [s′]

if |U ′[s] − U [s]| > δ then δ←|U ′[s] − U [s]|
until δ < ǫ(1− γ)/γ
return U

Figure 17.4 The value iteration algorithm for calculating utilities ofstates. The termination condi-
tion is from Equation (??).

39

(University of Freiburg) Foundations of AI 27 / 32

Convergence of Value Iteration

Since the algorithm is iterative we need a criterion to stop the process if
we are close enough to the correct utility.

In principle we want to limit the policy loss ‖Uπt − U‖ that is the most
the agent can lose by executing πt.

It can be shown that value iteration converges and that

if ‖Ut+1 − Ut‖ < ε(1− γ)/γ then ‖Ut+1 − U‖ < ε

if ‖Ut − U‖ < ε then ‖Uπt − U‖ < 2εγ/(1− γ)

The value iteration algorithm yields the optimal policy π∗.

(University of Freiburg) Foundations of AI 28 / 32

Application Example

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

U
til

ity
 e

st
im

at
es

Number of iterations

(4,3)
(3,3)

(1,1)
(3,1)

(4,1)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

M
ax

 e
rr

or
/P

ol
ic

y
lo

ss
Number of iterations

Max error
Policy loss

In practice the policy often becomes optimal before the utility has converged.

(University of Freiburg) Foundations of AI 29 / 32

Policy Iteration

Value iteration computes the optimal policy even at a stage when the
utility function estimate has not yet converged.

If one action is better than all others, then the exact values of the states
involved need not to be known.

Policy iteration alternates the following two steps beginning with an
initial policy π0:

Policy evaluation: given a policy πt, calculate Ut = Uπt , the utility of
each state if πt were executed.
Policy improvement: calculate a new maximum expected utility policy
πt+1 according to

πt+1(s) = argmax
a

∑
s′

T (s, a, s′)Ut(s
′)

(University of Freiburg) Foundations of AI 30 / 32

The Policy Iteration Algorithm

40 Chapter 17. Making Complex Decisions

function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with statesS , actionsA(s), transition modelP (s′ | s, a)
local variables: U , a vector of utilities for states inS , initially zero

π, a policy vector indexed by state, initially random

repeat
U ← POLICY-EVALUATION (π,U ,mdp)
unchanged?← true
for each states in S do

if max
a∈A(s)

X

s′
P (s′ | s, a) U [s′] >

X

s′
P (s′ | s, π[s]) U [s′] then do

π[s]← argmax
a∈A(s)

X

s′
P (s′ | s, a) U [s′]

unchanged?← false
until unchanged?
return π

Figure 17.7 The policy iteration algorithm for calculating an optimal policy.

function POMDP-VALUE -ITERATION(pomdp,ǫ) returns a utility function
inputs: pomdp, a POMDP with statesS , actionsA(s), transition modelP (s′ | s, a),

sensor modelP (e | s), rewardsR(s), discountγ
ǫ, the maximum error allowed in the utility of any state

local variables: U , U ′, sets of plansp with associated utility vectorsαp

U ′←a set containing just the empty plan[], with α[](s)= R(s)
repeat

U ←U ′

U ′← the set of all plans consisting of an action and, for each possible next percept,
a plan inU with utility vectors computed according to Equation (??)

U ′←REMOVE-DOMINATED-PLANS(U ′)
until MAX -DIFFERENCE(U ,U ′) < ǫ(1− γ)/γ
return U

Figure 17.9 A high-level sketch of the value iteration algorithm for POMDPs. The
REMOVE-DOMINATED-PLANS step and MAX -DIFFERENCEtest are typically implemented as linear
programs.

(University of Freiburg) Foundations of AI 31 / 32

Summary

Rational agents can be developed on the basis of a probability theory
and a utility theory.

Agents that make decisions according to the axioms of utility theory
possess a utility function.

Sequential problems in uncertain environments (MDPs) can be solved
by calculating a policy.

Value iteration is a process for calculating optimal policies.

(University of Freiburg) Foundations of AI 32 / 32

	Introduction to Utility Theory
	The Basis of Utility Theory
	Problems with the MEU Principle

	Choosing Individual Actions
	The Axioms of Utility Theory (1)
	The Axioms of Utility Theory (2)
	The Axioms of Utility Theory (3)
	The Axioms of Utility Theory (4)
	Utility Functions and Axioms
	Assessing Utilities
	Possible Utility Functions

	Sequential Decision Problems
	Sequential Decision Problems (1)
	Sequential Decision Problems (2)

	Markov Decision Processes
	Markov Decision Problem (MDP)
	Optimal Policies (1)
	Optimal Policies (2)
	Finite and Infinite Horizon Problems
	Assigning Utilities to State Sequences

	Value Iteration
	Utilities of States
	Example
	Choosing Actions using the Maximum Expected Utility Principle
	Bellman-Equation
	Bellman-Equation: Example
	Value Iteration (1)
	Value Iteration (2)
	Value Iteration (3)
	The Value Iteration Algorithm
	Convergence of Value Iteration
	Application Example
	Policy Iteration
	The Policy Iteration Algorithm

