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Vectors 

 Arrays of numbers 

 Vectors represent a point in a n dimensional 
space 



Vectors: Scalar Product 

 Scalar-Vector Product 

 Changes the length of the vector, but not 
its direction 



Vectors: Sum 

 Sum of vectors (is commutative) 

 

 

 

 

 Can be visualized as “chaining” the vectors. 



Vectors: Dot Product 

 Inner product of vectors (is a scalar) 

 
 

 If one of the two vectors, e.g.   , has          , 
the inner product       returns the length of 
the projection of    along the direction of 

 If             , the 
two vectors are 
orthogonal 



 A vector    is linearly dependent from    
                  if  

 In other words, if     can be obtained by 
summing up the     properly scaled 

 If there exist no       such that                 
then     is independent from 

 

 

Vectors: Linear (In)Dependence 



 A vector    is linearly dependent from    
                  if  

 In other words, if     can be obtained by 
summing up the     properly scaled 

 If there exist no       such that                 
then     is independent from 

 

 

Vectors: Linear (In)Dependence 



Matrices 

 A matrix is written as a table of values 

 

 

 

 

 

 1st index refers to the row  

 2nd index refers to the column 

 Note: a d-dimensional vector is equivalent 
to a dx1 matrix 

 

columns rows 



Matrices as Collections of 
Vectors 

 Column vectors 



Matrices as Collections of 
Vectors 

 Row vectors 



Important Matrices Operations 

 Multiplication by a scalar 

 Sum (commutative, associative) 

 Multiplication by a vector 

 Product (not commutative) 

 Inversion (square, full rank) 

 Transposition 

 



Scalar Multiplication & Sum 

 In the scalar multiplication, every element 
of the vector or matrix is multiplied with the 
scalar 

 The sum of two vectors is a vector 
consisting of the pair-wise sums of the 
individual entries 

 The sum of two matrices is a matrix 
consisting of the pair-wise sums of the 
individual entries 

 



Matrix Vector Product 

 The ith component of       is the dot product       
. 

 The vector       is linearly dependent from 
the column vectors        with coefficients       

column vectors row vectors 



Matrix Vector Product 

 If the column vectors of    represent a 
reference system, the product         
computes the global transformation of the 
vector    according to 

 
column vectors 



Matrix Matrix Product 

 Can be defined through  

 the dot product of row and column vectors 

 the linear combination of the columns of A 
scaled by the coefficients of the columns of B 

column vectors 



Matrix Matrix Product 

 If we consider the second interpretation, 
we see that the columns of C are the  
“transformations” of the columns of B 
through A 

 All the interpretations made for the matrix 
vector product hold 

column vectors 



 Maximum number of linearly independent rows (columns) 

 Dimension of the image of the transformation 

 

 When     is          we have 

                    and the equality holds iff     is the null matrix  

   

 

 Computation of the rank is done by 

 Gaussian elimination on the matrix 

 Counting the number of non-zero rows 

 

Rank 

b l a



Inverse 

 If A is a square matrix of full rank, then 
there is a unique matrix B=A-1 such that 
AB=I holds 

 The ith row of A is and the jth column of A-1 

are: 

  orthogonal (if i  j) 

  or their dot product is 1 (if i = j) 

 



Matrix Inversion 

 The ith column of A-1  can be found by 
solving the following linear system: 

 
This is the ith column 
of the identity matrix 



 Only defined for square matrices  

 The inverse of     exists if and only if 

 For         matrices: 

 Let               and                   , then 

 

 

 

 

 For         matrices the Sarrus rule holds: 

Determinant (det) 



 For general          matrices? 

 Let       be the submatrix obtained from  
by deleting the i-th row and the j-th column 

 

 

 

 

 

 Rewrite determinant for         matrices: 

Determinant 



 For general          matrices? 

 

 

 

 

 

Let                                 be the (i,j)-cofactor, then 

 

 

 

 

 

This is called the cofactor expansion across the first row  

Determinant 



 Problem: Take a 25 x 25 matrix (which is considered small). 

The cofactor expansion method requires n! multiplications. 

For n = 25, this is 1.5 x 10^25 multiplications for which a 

today supercomputer would take 500,000 years. 

 

 There are much faster methods, namely using Gauss 

elimination to bring the matrix into triangular form. 

 

 

 

 

 Because for triangular matrices the determinant is the 

product of diagonal elements 

  

Determinant 



Determinant: Properties  

 Row operations (    is still a          square matrix) 

 If    results from    by interchanging two rows, 

then 

 If    results from    by multiplying one row with a number   , 

then 

 If    results from    by adding a multiple of one row to another 

row, then 

 

 Transpose: 

 

 Multiplication: 

 

 Does not apply to addition! 



Determinant: Applications 

 Compute Eigenvalues: 

 Solve the characteristic polynomial 

 

 Area and Volume:  

(    is i-th row) 



 A matrix     is orthogonal iff its column (row) 
vectors represent an orthonormal basis 

 

 

 

 As linear transformation, it is norm preserving 

 

 Some properties: 

 The transpose is the inverse 

 Determinant has unity norm (±1) 

 

Orthogonal Matrix 



 A Rotation matrix is an orthonormal matrix with det =+1 
 
 2D Rotations 

 
 3D Rotations along the main axes 

 
 
 
 

 IMPORTANT: Rotations are not commutative 
 

  
 
 
  
 

Rotation Matrix 



Matrices to Represent Affine 
Transformations 

 A general and easy way to describe a 3D 
transformation is via matrices 

 

 

 

 

 

 

 Takes naturally into account the non-
commutativity of the transformations 

 Homogeneous coordinates 

Rotation Matrix 

Translation Vector 



Combining Transformations 

 A simple interpretation: chaining of transformations 
(represented as homogeneous matrices) 

 Matrix A represents the pose of a robot in the space 

 Matrix B represents the position of a sensor on the robot 

 The sensor perceives an object at a given location p, in 
its own frame [the sensor has no clue on where it is in the 
world] 

 Where is the object in the global frame? 

p 



Combining Transformations 

 A simple interpretation: chaining of transformations 
(represented as homogeneous matrices) 

 Matrix A represents the pose of a robot in the space 

 Matrix B represents the position of a sensor on the robot 

 The sensor perceives an object at a given location p, in 
its own frame [the sensor has no clue on where it is in the 
world] 

 Where is the object in the global frame? 

B 

Bp gives the pose of the 
object wrt the robot 



Combining Transformations 

 A simple interpretation: chaining of transformations 
(represented as homogeneous matrices) 

 Matrix A represents the pose of a robot in the space 

 Matrix B represents the position of a sensor on the robot 

 The sensor perceives an object at a given location p, in 
its own frame [the sensor has no clue on where it is in the 
world] 

 Where is the object in the global frame? 

Bp gives the pose of the 
object wrt the robot 

ABp gives the pose of the 
object wrt the world 

A 



 The analogous of positive number 

 

 Definition 

 

 

 Example 

 

   

 

 

Positive Definite Matrix 



 Properties 

 Invertible, with positive definite inverse 

 All real eigenvalues > 0 

 Trace is > 0 

 Cholesky decomposition 

  

  

 

 

Positive Definite Matrix 



Linear Systems (1) 

Interpretations: 

 A set of linear equations 

 A way to find the coordinates x in the 
reference system of A such that b is the 
result of the transformation of Ax 

 Solvable by Gaussian elimination  

 



Gaussian Elimination 

A method to solve systems of linear equations. 
  

Example for three variables: 

 

 

 
 

We want to transform this to 



Gaussian Elimination 

Written as an extended coefficient matrix: 

 

 

 

To reach this form we only need two 
elementary row operations: 

 Add to one row a scalar multiple of another. 

 Swap the positions of two rows. 

 

Another commonly used term for Gaussian 
Elimination is row reduction. 

 



Linear Systems (2) 

Notes: 

 Many efficient solvers exist, e.g., conjugate 
gradients, sparse Cholesky decomposition  

 One can obtain a reduced system (A’, b’) by 
considering the matrix (A, b) and suppressing all 
the rows which are linearly dependent 

 Let A'x=b' the reduced system with A':n'xm and 
b':n'x1 and rank A' = min(n',m) 

 The system might be either over-constrained 
(n’>m) or under-constrained (n’<m) 

 

columns rows 



Over-Constrained Systems 

 “More (ind.) equations than variables” 

 An over-constrained system does not 
admit an exact solution 

 However, if  rank A’ = cols(A) one often 
computes a minimum norm solution  

 

Note: rank = Maximum number of linearly independent rows/columns 
 



Under-Constrained Systems 

 “More variables than (ind.) equations” 

 The system is under-constrained if the 
number of linearly independent rows of A’  
is smaller than the dimension of b’ 

 An under-constrained system admits infinite 
solutions 

 The degree of these infinite solutions is 
cols(A’) - rows(A’) 



Jacobian Matrix 

 It is a non-square matrix           in general 

 Given a vector-valued function 

 

 

 Then, the Jacobian matrix is defined as 



 It is the orientation of the tangent 

plane to the vector-valued function at a 

given point 

 

 

 

 

 Generalizes the gradient of a scalar 

valued function  

 

Jacobian Matrix 



Further Reading 

 A “quick and dirty” guide to matrices is the 
Matrix Cookbook. 
Just google for ‘matrix cook book’ to find 
the pdf version. 


