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Vectors 

 Arrays of numbers 

 Vectors represent a point in a n dimensional 
space 



Vectors: Scalar Product 

 Scalar-Vector Product 

 Changes the length of the vector, but not 
its direction 



Vectors: Sum 

 Sum of vectors (is commutative) 

 

 

 

 

 Can be visualized as “chaining” the vectors. 



Vectors: Dot Product 

 Inner product of vectors (is a scalar) 

 
 

 If one of the two vectors, e.g.   , has          , 
the inner product       returns the length of 
the projection of    along the direction of 

 If             , the 
two vectors are 
orthogonal 



 A vector    is linearly dependent from    
                  if  

 In other words, if     can be obtained by 
summing up the     properly scaled 

 If there exist no       such that                 
then     is independent from 

 

 

Vectors: Linear (In)Dependence 



 A vector    is linearly dependent from    
                  if  

 In other words, if     can be obtained by 
summing up the     properly scaled 

 If there exist no       such that                 
then     is independent from 

 

 

Vectors: Linear (In)Dependence 



Matrices 

 A matrix is written as a table of values 

 

 

 

 

 

 1st index refers to the row  

 2nd index refers to the column 

 Note: a d-dimensional vector is equivalent 
to a dx1 matrix 

 

columns rows 



Matrices as Collections of 
Vectors 

 Column vectors 



Matrices as Collections of 
Vectors 

 Row vectors 



Important Matrices Operations 

 Multiplication by a scalar 

 Sum (commutative, associative) 

 Multiplication by a vector 

 Product (not commutative) 

 Inversion (square, full rank) 

 Transposition 

 



Scalar Multiplication & Sum 

 In the scalar multiplication, every element 
of the vector or matrix is multiplied with the 
scalar 

 The sum of two vectors is a vector 
consisting of the pair-wise sums of the 
individual entries 

 The sum of two matrices is a matrix 
consisting of the pair-wise sums of the 
individual entries 

 



Matrix Vector Product 

 The ith component of       is the dot product       
. 

 The vector       is linearly dependent from 
the column vectors        with coefficients       

column vectors row vectors 



Matrix Vector Product 

 If the column vectors of    represent a 
reference system, the product         
computes the global transformation of the 
vector    according to 

 
column vectors 



Matrix Matrix Product 

 Can be defined through  

 the dot product of row and column vectors 

 the linear combination of the columns of A 
scaled by the coefficients of the columns of B 

column vectors 



Matrix Matrix Product 

 If we consider the second interpretation, 
we see that the columns of C are the  
“transformations” of the columns of B 
through A 

 All the interpretations made for the matrix 
vector product hold 

column vectors 



 Maximum number of linearly independent rows (columns) 

 Dimension of the image of the transformation 

 

 When     is          we have 

                    and the equality holds iff     is the null matrix  

   

 

 Computation of the rank is done by 

 Gaussian elimination on the matrix 

 Counting the number of non-zero rows 

 

Rank 

b l a



Inverse 

 If A is a square matrix of full rank, then 
there is a unique matrix B=A-1 such that 
AB=I holds 

 The ith row of A is and the jth column of A-1 

are: 

  orthogonal (if i  j) 

  or their dot product is 1 (if i = j) 

 



Matrix Inversion 

 The ith column of A-1  can be found by 
solving the following linear system: 

 
This is the ith column 
of the identity matrix 



 Only defined for square matrices  

 The inverse of     exists if and only if 

 For         matrices: 

 Let               and                   , then 

 

 

 

 

 For         matrices the Sarrus rule holds: 

Determinant (det) 



 For general          matrices? 

 Let       be the submatrix obtained from  
by deleting the i-th row and the j-th column 

 

 

 

 

 

 Rewrite determinant for         matrices: 

Determinant 



 For general          matrices? 

 

 

 

 

 

Let                                 be the (i,j)-cofactor, then 

 

 

 

 

 

This is called the cofactor expansion across the first row  

Determinant 



 Problem: Take a 25 x 25 matrix (which is considered small). 

The cofactor expansion method requires n! multiplications. 

For n = 25, this is 1.5 x 10^25 multiplications for which a 

today supercomputer would take 500,000 years. 

 

 There are much faster methods, namely using Gauss 

elimination to bring the matrix into triangular form. 

 

 

 

 

 Because for triangular matrices the determinant is the 

product of diagonal elements 

  

Determinant 



Determinant: Properties  

 Row operations (    is still a          square matrix) 

 If    results from    by interchanging two rows, 

then 

 If    results from    by multiplying one row with a number   , 

then 

 If    results from    by adding a multiple of one row to another 

row, then 

 

 Transpose: 

 

 Multiplication: 

 

 Does not apply to addition! 



Determinant: Applications 

 Compute Eigenvalues: 

 Solve the characteristic polynomial 

 

 Area and Volume:  

(    is i-th row) 



 A matrix     is orthogonal iff its column (row) 
vectors represent an orthonormal basis 

 

 

 

 As linear transformation, it is norm preserving 

 

 Some properties: 

 The transpose is the inverse 

 Determinant has unity norm (±1) 

 

Orthogonal Matrix 



 A Rotation matrix is an orthonormal matrix with det =+1 
 
 2D Rotations 

 
 3D Rotations along the main axes 

 
 
 
 

 IMPORTANT: Rotations are not commutative 
 

  
 
 
  
 

Rotation Matrix 



Matrices to Represent Affine 
Transformations 

 A general and easy way to describe a 3D 
transformation is via matrices 

 

 

 

 

 

 

 Takes naturally into account the non-
commutativity of the transformations 

 Homogeneous coordinates 

Rotation Matrix 

Translation Vector 



Combining Transformations 

 A simple interpretation: chaining of transformations 
(represented as homogeneous matrices) 

 Matrix A represents the pose of a robot in the space 

 Matrix B represents the position of a sensor on the robot 

 The sensor perceives an object at a given location p, in 
its own frame [the sensor has no clue on where it is in the 
world] 

 Where is the object in the global frame? 

p 



Combining Transformations 

 A simple interpretation: chaining of transformations 
(represented as homogeneous matrices) 

 Matrix A represents the pose of a robot in the space 

 Matrix B represents the position of a sensor on the robot 

 The sensor perceives an object at a given location p, in 
its own frame [the sensor has no clue on where it is in the 
world] 

 Where is the object in the global frame? 

B 

Bp gives the pose of the 
object wrt the robot 



Combining Transformations 

 A simple interpretation: chaining of transformations 
(represented as homogeneous matrices) 

 Matrix A represents the pose of a robot in the space 

 Matrix B represents the position of a sensor on the robot 

 The sensor perceives an object at a given location p, in 
its own frame [the sensor has no clue on where it is in the 
world] 

 Where is the object in the global frame? 

Bp gives the pose of the 
object wrt the robot 

ABp gives the pose of the 
object wrt the world 

A 



 The analogous of positive number 

 

 Definition 

 

 

 Example 

 

   

 

 

Positive Definite Matrix 



 Properties 

 Invertible, with positive definite inverse 

 All real eigenvalues > 0 

 Trace is > 0 

 Cholesky decomposition 

  

  

 

 

Positive Definite Matrix 



Linear Systems (1) 

Interpretations: 

 A set of linear equations 

 A way to find the coordinates x in the 
reference system of A such that b is the 
result of the transformation of Ax 

 Solvable by Gaussian elimination  

 



Gaussian Elimination 

A method to solve systems of linear equations. 
  

Example for three variables: 

 

 

 
 

We want to transform this to 



Gaussian Elimination 

Written as an extended coefficient matrix: 

 

 

 

To reach this form we only need two 
elementary row operations: 

 Add to one row a scalar multiple of another. 

 Swap the positions of two rows. 

 

Another commonly used term for Gaussian 
Elimination is row reduction. 

 



Linear Systems (2) 

Notes: 

 Many efficient solvers exist, e.g., conjugate 
gradients, sparse Cholesky decomposition  

 One can obtain a reduced system (A’, b’) by 
considering the matrix (A, b) and suppressing all 
the rows which are linearly dependent 

 Let A'x=b' the reduced system with A':n'xm and 
b':n'x1 and rank A' = min(n',m) 

 The system might be either over-constrained 
(n’>m) or under-constrained (n’<m) 

 

columns rows 



Over-Constrained Systems 

 “More (ind.) equations than variables” 

 An over-constrained system does not 
admit an exact solution 

 However, if  rank A’ = cols(A) one often 
computes a minimum norm solution  

 

Note: rank = Maximum number of linearly independent rows/columns 
 



Under-Constrained Systems 

 “More variables than (ind.) equations” 

 The system is under-constrained if the 
number of linearly independent rows of A’  
is smaller than the dimension of b’ 

 An under-constrained system admits infinite 
solutions 

 The degree of these infinite solutions is 
cols(A’) - rows(A’) 



Jacobian Matrix 

 It is a non-square matrix           in general 

 Given a vector-valued function 

 

 

 Then, the Jacobian matrix is defined as 



 It is the orientation of the tangent 

plane to the vector-valued function at a 

given point 

 

 

 

 

 Generalizes the gradient of a scalar 

valued function  

 

Jacobian Matrix 



Further Reading 

 A “quick and dirty” guide to matrices is the 
Matrix Cookbook. 
Just google for ‘matrix cook book’ to find 
the pdf version. 


