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Motivation

= Recall: Discrete filter
= Discretize the continuous state space
= High memory complexity
= Fixed resolution (does not adapt to the belief)

= Particle filters are a way to efficiently represent
non-Gaussian distribution

= Basic principle
= Set of state hypotheses (“particles™)
= Survival-of-the-fittest



mple-based Localization (sonar)
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Mathematical Description

= Set of weighted samples

S = {<s[i],w[i]>\i=1,...

[

State hypothesis Importance weight

= The samples represent the posterior

N
p(z) = > w6 ()
i—=1



Function Approximation

= Particle sets can be used to approximate functions

f(x)

samples

f(x)

samples

probability / weight

probability / weight
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= The more particles fall into an interval, the higher
the probability of that interval

= How to draw samples from a function/distribution? i



Rejection Sampling

Let us assume that f(x)<1 for all x
Sample x from a uniform distribution

= Sample ¢ from [0,1]

= ff(x)>c keep the sample
otherwise reject the sample
f(x)
= samples
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Importance Sampling Principle

We can even use a different distribution g to
generate samples from f

By introducing an importance weight w, we can
account for the “differences between g and f ”

w=1f/g
] proposal(x)
f is called target target(x)
samples

g is called proposal

Pre-condition:
f(x)>0 =2 g(x)>0

probability / weight

Derivation: See
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Importance Sampling with Resampling:
Landmark Detection Example




Distributions
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Distributions

Wanted: samples distributed according to
p(Xl Zl/ ZZ/ 23)
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This is Easy!

We can draw samples from p(x|z,) by adding
noise to the detection parameters.




Importance Sampling

Hp(zk [ X)p(x)

p(zlazz 9vey Zn)

Target distribution f : p(x| z,, z,,...,z, )=

1, 2,..., n

p(z; | x)p(x)
p(z;)

Sampling distribution g : p(x|z,)=

p(Z;)H p(z, | x)

k#1

S pxlz,z,,..,z,)

Importance weights w :— = -
g p(x|ZZ) p(zlazZ:""aZn)




Importance Sampling with
Resampling

Weighted samples After resampling



Particle Filters




Sensor Information: Importance Sampling
Bel(x) <« «a p(z|x)Bel (x)

a p(z|x)Bel (x)
W — Bel(x) = a p(z|x)
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Robot Motion
Bel (x) <« J.p(x|u,x')BeZ(x') dx'




Sensor Information: Importance Sampling
Bel(x) <« «ap(z|x)Bel (x)
a p(z|x) Bel (x)
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Robot Motion

Bel (x) <« J.p(x|u,x')Bel(x') dx'




Particle Filter Algorithm

= Sample the next generation for particles using the
proposal distribution

= Compute the importance weights :
weight = target distribution / proposal distribution

= Resampling: “Replace unlikely samples by more
likely ones”
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Particle Filter Algorithm

1. Algorithm particle_filter( S, ;, u, z,):

2. s =@, =0
3. Fori=1,...,n

Generate new samples

Sample index j(1) from the discrete distribution given by w;_,

Sample x' from p(x, |x,,,u,) using x/® andy

4

5

6. wi=p(zIx)

7. nenp+w

8 S, =S, u{<x,w >}
9. Fori=1,..n
10.  w =w/p

11.return s,

Compute importance weight
Update normalization factor

Add to new particle set

Normalize weights
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Particle Filter Algorithm

Bel (x,)=7np(z, | Xt)j p(x, [ x._,,u)Bel (x,_,)dx,

draw x',_; from Bel(x,_,)

— draw x', from p(x,| X',_;,u,)

— Importance factor for x\:

i target distributi on

W, =
proposal distributi on

:77 p(zt | Xt) p(xt | Xt—1’ut)BEI (Xt—l)
p(X, | x._;,u.)Bel (x._;)
< p(z,|x,)




Resampling

= Given: Set S of weighted samples.

= Wanted : Random sample, where the
probability of drawing x; is given by w..

= Typically done n times with replacement to
generate new sample set S”.



Resampling

= Stochastic universal sampling
= Roulette wheel = Systematic resampling
= Binary search, n log n = Linear time complexity
= Easy to implement, low variance



Resampling Algorithm

1. Algorithm systematic_resampling(S,n):

2. S'= J,c, = w'

3. For i=2...n Generate cdf

4. cC,=C,_, + w'

5. u,~Ulo,n"]i=1 Initialize threshold

6. For j=1...n Draw samples ...

1. While (u, > ¢, ) Skip until next threshold reached
8. I=1+1

9. s'=s'ui{<x',n'>}  Insert

10. u,,=u,+n" Increment threshold

11. Return S~

Also called stochastic universal sampling



Mobile Robot Localization

« Each particle is a potential pose of the robot

» Proposal distribution is the motion model of
the robot (prediction step)

» The observation model is used to compute
the importance weight (correction step)

[For details, see PDF file on the lecture web page]
25



Motion Model Reminder

end pose

start pose @

According to the estimated motion



Motion Model Reminder
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« Decompose the motion into
« Traveled distance
« Start rotation
« End rotation



Motion Model Reminder

« Uncertainty in the translation of the robot:
Gaussian over the traveled distance

« Uncertainty in the rotation of the robot:
Gaussians over start and end rotation

« For each particle, draw a new pose by sampling
from these three individual normal distributions




Motion Model Reminder

10 meters



probability

Proximity Sensor Model Reminder
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Mobile Robot Localization Using
Particle Filters (1)

« Each particle is a potential pose of the robot

« The set of weighted particles approximates
the posterior belief about the robot’s pose
(target distribution)
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Mobile Robot Localization Using
Particle Filters (2)

= Particles are drawn from the motion model
(proposal distribution)

« Particles are weighted according to the
observation model (sensor model)

« Particles are resampled according to the
particle weights
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Mobile Robot Localization Using
Particle Filters (3)

Why is resampling needed?
« We only have a finite number of particles

« Without resampling: The filter is likely to
loose track of the “"good” hypotheses

« Resampling ensures that particles stay in
the meaningful area of the state space

33






















































mple-based Localization (sonar)
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After Incorporating Ten
Ultrasound Scans
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After Incorporating 65 Ultrasound
Scans
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Estimated Path




Localization for AIBO robots
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Using Ceiling Maps for Localization

[Dellaert et al. 99]



Vision-based Localization

P(z|x)
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Under a Light

Measurement z:

P(z|x):




Next to a Light

Measurement z: P(z|x):




Elsewhere

Measurement z: P(z|x):




Global Localization Using Vision




Limitations

» The approach described so far is able
« to track the pose of a mobile robot and
« to globally localize the robot

= How can we deal with localization errors
(i.e., the kidnapped robot problem)?
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Approaches

« Randomly insert a fixed number of samples

= This assumes that the robot can be
teleported at any point in time

» Alternatively, insert random samples

proportional to the average likelihood of the
particles
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Summary - Particle Filters

« Particle filters are an implementation of
recursive Bayesian filtering

» They represent the posterior by a set of
weighted samples

» They can model non-Gaussian distributions
= Proposal to draw new samples

« Weight to account for the differences
between the proposal and the target

« Monte Carlo filter, Survival of the fittest,
Condensation, Bootstrap filter
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Summary - PF Localization

» In the context of localization, the particles
are propagated according to the motion
model.

» They are then weighted according to the
likelihood of the observations.

« In a re-sampling step, new particles are
drawn with a probability proportional to the
likelihood of the observation.
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