Introduction to Mobile Robotics

Bayes Filter – Extended Kalman Filter

Wolfram Burgard, Michael Ruhnke, Bastian Steder
Bayes Filter Reminder

\[
bel (x_t) = \eta \ p(z_t \mid x_t) \int p(x_t \mid u_t, x_{t-1})bel (x_{t-1})dx_{t-1}
\]

- **Prediction**

\[
bel (x_t) = \int p(x_t \mid u_t, x_{t-1})bel (x_{t-1})dx_{t-1}
\]

- **Correction**

\[
bel (x_t) = \eta \ p(z_t \mid x_t) \overline{bel} (x_t)
\]
Discrete Kalman Filter

Estimates the state x of a discrete-time controlled process

\[x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t \]

with a measurement

\[z_t = C_t x_t + \delta_t \]
Components of a Kalman Filter

A_t Matrix (nxn) that describes how the state evolves from $t-1$ to t without controls or noise.

B_t Matrix (nxl) that describes how the control u_t changes the state from $t-1$ to t.

C_t Matrix (kxn) that describes how to map the state x_t to an observation z_t.

ε_t Random variables representing the process and measurement noise that are assumed to be independent and normally distributed with covariance Q_t and R_t respectively.
Kalman Filter Update Example

It's a weighted mean!
Kalman Filter Update Example

- **Prediction**
- **Measurement**
- **Correction**
Kalman Filter Algorithm

1. Algorithm **Kalman_filter**(μ_{t-1}, Σ_{t-1}, u_t, z_t):

2. Prediction:

 3. $\mu_t = A_t \mu_{t-1} + B_t u_t$

 4. $\Sigma_t = A_t \Sigma_{t-1} A_t^T + Q_t$

5. Correction:

 6. $K_t = \Sigma_t C_t^T (C_t \Sigma_t C_t^T + R_t)^{-1}$

 7. $\mu_t = \mu_t + K_t (z_t - C_t \mu_t)$

 8. $\Sigma_t = (I - K_t C_t) \Sigma_t$

9. Return μ_t, Σ_t
Nonlinear Dynamic Systems

- Most realistic robotic problems involve nonlinear functions

\[
x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t
\]

\[
z_t = C_t x_t + \delta_t
\]

\[
x_t = g(u_t, x_{t-1})
\]

\[
z_t = h(x_t)
\]
Linearity Assumption Revisited
Non-Linear Function

Non-Gaussian!
Non-Gaussian Distributions

- The non-linear functions lead to non-Gaussian distributions
- Kalman filter is not applicable anymore!

What can be done to resolve this?
Non-Gaussian Distributions

- The non-linear functions lead to non-Gaussian distributions
- Kalman filter is not applicable anymore!

What can be done to resolve this?

Local linearization!
EKF Linearization: First Order Taylor Expansion

- **Prediction:**
 \[
 g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})
 \]

 \[
 g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1})
 \]

- **Correction:**

 Jacobian matrices

 \[
 h(x_t) \approx h(\mu_t) + \frac{\partial h(\mu_t)}{\partial x_t} (x_t - \mu_t)
 \]

 \[
 h(x_t) \approx h(\mu_t) + H_t (x_t - \mu_t)
 \]
Reminder: Jacobian Matrix

- It is a **non-square matrix** \(n \times m \) in general

- Given a vector-valued function

\[
\mathbf{f}(\mathbf{x}) = \begin{bmatrix}
 f_1(x) \\
 f_2(x) \\
 \vdots \\
 f_m(x)
\end{bmatrix}
\]

- The **Jacobian matrix** is defined as

\[
\mathbf{F}_x = \begin{bmatrix}
 \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_1} \\
 \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_2} \\
 \vdots & \vdots & \cdots & \vdots \\
 \frac{\partial f_1}{\partial x_n} & \frac{\partial f_2}{\partial x_n} & \cdots & \frac{\partial f_m}{\partial x_n}
\end{bmatrix}
\]
Reminder: Jacobian Matrix

- It is the orientation of the tangent plane to the vector-valued function at a given point.

- Generalizes the gradient of a scalar valued function.
EKF Linearization: First Order Taylor Expansion

- **Prediction:**

 \[g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1}) \]

 \[g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1}) \]

- **Correction:**

 \[h(x_t) \approx h(\bar{\mu}_t) + \frac{\partial h(\bar{\mu}_t)}{\partial x_t} (x_t - \bar{\mu}_t) \]

 \[h(x_t) \approx h(\bar{\mu}_t) + H_t (x_t - \bar{\mu}_t) \]
Linearity Assumption Revisited
Non-Linear Function

- $p(y)$
- Gaussian of $p(y)$
- Mean of $p(y)$

- Function $g(x)$
- Mean μ
- $g(\mu)$
EKF Linearization (1)
EKF Linearization (2)
EKF Linearization (3)
EKF Algorithm

1. **Extended_Kalman_filter**($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

2. **Prediction**:

3. \[\overline{\mu}_t = g(u_t, \mu_{t-1}) \]

4. \[\overline{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + Q_t \]

5. **Correction**:

6. \[K_t = \overline{\Sigma}_t H_t^T (H_t \overline{\Sigma}_t H_t^T + R_t)^{-1} \]

7. \[\mu_t = \overline{\mu}_t + K_t (z_t - h(\overline{\mu}_t)) \]

8. \[\Sigma_t = (I - K_t H_t) \overline{\Sigma}_t \]

9. **Return** μ_t, Σ_t

\[H_t = \frac{\partial h(\overline{\mu}_t)}{\partial x_t} \]

\[G_t = \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}} \]
Example: EKF Localization

- EKF localization with landmarks (point features)
1. **EKF_localization** \((\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, m) \):

Prediction:

3. \[G_t = \frac{\partial g (u_t, \mu_{t-1})}{\partial \mu_{t-1}} = \begin{bmatrix} \frac{\partial x'}{\partial \mu_{t-1,x}} & \frac{\partial x'}{\partial \mu_{t-1,y}} & \frac{\partial x'}{\partial \mu_{t-1,\theta}} \\ \frac{\partial y'}{\partial \mu_{t-1,x}} & \frac{\partial y'}{\partial \mu_{t-1,y}} & \frac{\partial y'}{\partial \mu_{t-1,\theta}} \\ \frac{\partial \theta'}{\partial \mu_{t-1,x}} & \frac{\partial \theta'}{\partial \mu_{t-1,y}} & \frac{\partial \theta'}{\partial \mu_{t-1,\theta}} \end{bmatrix} \]

Jacobian of \(g \) w.r.t location

5. \[V_t = \frac{\partial g (u_t, \mu_{t-1})}{\partial u_t} = \begin{bmatrix} \frac{\partial x'}{\partial v_t} & \frac{\partial x'}{\partial \omega_t} \\ \frac{\partial y'}{\partial v_t} & \frac{\partial y'}{\partial \omega_t} \\ \frac{\partial \theta'}{\partial v_t} & \frac{\partial \theta'}{\partial \omega_t} \end{bmatrix} \]

Jacobian of \(g \) w.r.t control

1. \[Q_t = \begin{pmatrix} (\alpha_1 | v_t | + \alpha_2 | \omega_t |)^2 & 0 \\ 0 & (\alpha_3 | v_t | + \alpha_4 | \omega_t |)^2 \end{pmatrix} \]

Motion noise

2. \[\mu_t = g (u_t, \mu_{t-1}) \]

Predicted mean

3. \[\Sigma_t = G_t \Sigma_{t-1} G_t^T + V_t Q_t V_t^T \]

Predicted covariance (\(V \) maps \(Q \) into state space)
1. **EKF_localization** \((\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, m) \):

Correction:

3. \[\hat{z}_t = \begin{cases} \sqrt{(m_x - \overline{\mu}_{t,x})^2 + (m_y - \overline{\mu}_{t,y})^2} \\ \text{atan} \left(\frac{2(m_y - \overline{\mu}_{t,y}, m_x - \overline{\mu}_{t,x}) - \overline{\mu}_{t,\theta}}{2(m_y - \overline{\mu}_{t,y}, m_x - \overline{\mu}_{t,x}) + \overline{\mu}_{t,\theta}} \right) \end{cases} \]

 Predicted measurement mean (depends on observation type)

5. \[H_t = \frac{\partial h(\overline{\mu}_t, m)}{\partial x_t} = \begin{bmatrix} \frac{\partial r_t}{\partial \overline{\mu}_{t,x}} & \frac{\partial r_t}{\partial \overline{\mu}_{t,y}} & \frac{\partial r_t}{\partial \overline{\mu}_{t,\theta}} \\ \frac{\partial \phi_t}{\partial \overline{\mu}_{t,x}} & \frac{\partial \phi_t}{\partial \overline{\mu}_{t,y}} & \frac{\partial \phi_t}{\partial \overline{\mu}_{t,\theta}} \end{bmatrix} \]

 Jacobian of \(h \) w.r.t location

6. \[R_t = \begin{pmatrix} \sigma_r^2 & 0 \\ 0 & \sigma_r^2 \end{pmatrix} \]

7. \[S_t = H_t \Sigma_t H_t^T + R_t \]

8. \[K_t = \Sigma_t H_t^T S_t^{-1} \]

9. \[\mu_t = \overline{\mu}_t + K_t (z_t - \hat{z}_t) \]

10. \[\Sigma_t = (I - K_t H_t) \overline{\Sigma}_t \]

 Innovation covariance

 Kalman gain

 Updated mean

 Updated covariance
EKF Prediction Step Examples
EKF Observation Prediction Step
EKF Correction Step
Estimation Sequence (1)
Estimation Sequence (2)
Extended Kalman Filter Summary

- Ad-hoc solution to deal with non-linearities
- Performs local linearization in each step
- Works well in practice for moderate non-linearities
- Example: landmark localization
- There exist better ways for dealing with non-linearities such as the unscented Kalman filter called UKF