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What is SLAM? 

 Estimate the pose of a robot and the map of 
the environment at the same time 

 SLAM is hard, because 
 a map is needed for localization and  

 a good pose estimate is needed for mapping 

 

 Localization: inferring location given a 
map  

 Mapping: inferring a map given locations 

 SLAM: learning a map and locating the 
robot simultaneously 

 

 



The SLAM Problem 

 SLAM has long been regarded as a 
chicken-or-egg problem: 
→ a map is needed for localization and  

→ a pose estimate is needed for mapping 
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SLAM Applications 

 SLAM is central to a range of indoor, 
outdoor, in-air and underwater applications 
for both manned and autonomous vehicles. 

 

Examples: 

 At home: vacuum cleaner, lawn mower 

 Air: surveillance with unmanned air vehicles 

 Underwater: reef monitoring 

 Underground: exploration of mines 

 Space: terrain mapping for localization 
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SLAM Applications 
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Indoors 

Space 

Undersea 

Underground 



Map Representations 

Examples: Subway map, city map, 
landmark-based map 
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Maps are topological and/or metric 
models of the environment 



Map Representations in Robotics 

 Grid maps or scans, 2d, 3d 

 

 

  
  

 [Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; 

Haehnel, 01; Grisetti et al., 05; …] 

 

 Landmark-based 
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[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;… 



The SLAM Problem 

 SLAM is considered a fundamental 
problems for robots to become truly 
autonomous 

 Large variety of different SLAM 
approaches have been developed 

 The majority uses probabilistic 
concepts 

 History of SLAM dates back to the 
mid-eighties 
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Feature-Based SLAM  

 Given: 

 The robot’s controls 

 

 Relative observations 
 

 

 Wanted: 

 Map of features 

 

 Path of the robot 
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Feature-Based SLAM 

 Absolute 
robot poses 

 Absolute 
landmark 
positions 

 But only 
relative 
measurements 
of landmarks 
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Why is SLAM a Hard Problem? 
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1. Robot path and map are both unknown  

2. Errors in map and pose estimates correlated 



Why is SLAM a Hard Problem? 

 The mapping between observations and 
landmarks is unknown 

 Picking wrong data associations can have 
catastrophic consequences (divergence) 
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Robot pose 

uncertainty 



SLAM: Simultaneous 
Localization And Mapping 

 Full SLAM: 

 

 
 Online SLAM: 

 

 
 Integrations (marginalization) typically 

done recursively, one at a time 
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Estimates most recent pose and map! 

Estimates entire path and map! 



Graphical Model of Full SLAM  
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Graphical Model of Online SLAM  
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Motion and Observation Model 
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"Motion model" 

"Observation model" 



Remember the KF Algorithm  

1.  Algorithm Kalman_filter(mt-1, St-1, ut, zt): 
 

2.  Prediction: 

3.        

4.    
 

5.  Correction: 

6.        

7.   

8.   

9.  Return mt, St       
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EKF SLAM: State representation 

 Localization 

 3x1 pose vector 

 3x3 cov. matrix 

 

 SLAM 

 Landmarks simply extend the state.  

 Growing state vector and covariance matrix! 
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 Map with n landmarks: (3+2n)-dimensional 
Gaussian 

 

 

 

 

 

 

 

 Can handle hundreds of dimensions 

EKF SLAM: State representation 
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EKF SLAM: Filter Cycle 

1. State prediction (odometry) 

2. Measurement prediction 

3. Measurement 

4. Data association 

5. Update 

6. Integration of new landmarks 



EKF SLAM: Filter Cycle 

1. State prediction (odometry) 

2. Measurement prediction 

3. Measurement 

4. Data association 

5. Update 

6. Integration of new landmarks 



EKF SLAM: State Prediction 

Odometry: 

Robot-landmark cross-
covariance prediction: 



EKF SLAM: Measurement 
Prediction 

Global-to-local 
frame transform h 



EKF SLAM: Obtained 
Measurement 

(x,y)-point landmarks 



EKF SLAM: Data Association 

Associates predicted 
measurements 
with observation 

? 



EKF SLAM: Update Step 

The usual Kalman 
filter expressions  



EKF SLAM: New Landmarks 

State augmented by 

Cross-covariances: 



EKF SLAM 
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Map              Correlation matrix 



EKF SLAM 
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Map              Correlation matrix 



EKF SLAM 
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Map              Correlation matrix 



 What if we neglected cross-correlations? 

 

 
 

EKF SLAM: Correlations Matter 
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EKF SLAM: Correlations Matter 

 What if we neglected cross-correlations? 

 

 
 

 Landmark and robot uncertainties would 
become overly optimistic 

 Data association would fail 

 Multiple map entries of the same landmark 

 Inconsistent map 

32 



SLAM: Loop Closure 

 Recognizing an already mapped area, 
typically after a long exploration path (the 
robot “closes a loop”) 

 Structurally identical to data association, 
but 

 high levels of ambiguity 

 possibly useless validation gates 

 environment symmetries 

 Uncertainties collapse after a loop closure 
(whether the closure was correct or not) 
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SLAM: Loop Closure 

 Before loop closure 
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SLAM: Loop Closure 

 After loop closure 
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SLAM: Loop Closure 

 By revisiting already mapped areas, 
uncertainties in robot and landmark 
estimates can be reduced 

 This can be exploited when exploring an 
environment for the sake of better (e.g. 
more accurate) maps 

 Exploration: the problem of where to 
acquire new information 

→ See separate chapter on exploration 
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KF-SLAM Properties  
(Linear Case) 

 The determinant of any sub-matrix of the map 
covariance matrix decreases monotonically as 
successive observations are made 

41 [Dissanayake et al., 2001] 

 When a new land-
mark is initialized, 
its uncertainty is 
maximal 

 Landmark 
uncertainty 
decreases 
monotonically 
with each new 
observation 



KF-SLAM Properties  
(Linear Case) 

 In the limit, the landmark estimates 
become fully correlated 

42 [Dissanayake et al., 2001] 



KF-SLAM Properties  
(Linear Case) 

 In the limit, the covariance associated with 
any single landmark location estimate is 
determined only by the initial covariance 
in the vehicle location estimate. 

43 [Dissanayake et al., 2001] 



EKF SLAM Example:  
Victoria Park Dataset 
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Victoria Park: Data Acquisition 

45 [courtesy by E. Nebot] 



Victoria Park: Estimated 
Trajectory 

46 [courtesy by E. Nebot] 



Victoria Park: Landmarks 

47 [courtesy by E. Nebot] 



EKF SLAM Example: Tennis 
Court 

48 [courtesy by J. Leonard] 



EKF SLAM Example: Tennis 
Court 
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odometry estimated trajectory 

[courtesy by John Leonard] 



EKF SLAM Example: Line 
Features 
 KTH Bakery Data Set 

50 [Wulf et al., ICRA 04] 



EKF-SLAM: Complexity 

 Cost per step: quadratic in n, the 
number of landmarks: O(n2) 

 Total cost to build a map with n 
landmarks: O(n3) 

 Memory consumption: O(n2) 

 Problem: becomes computationally 
intractable for large maps! 

 There exists variants to circumvent 
these problems 
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SLAM Techniques 

 EKF SLAM 

 FastSLAM 

 Graph-based SLAM 

 Topological SLAM 
(mainly place recognition) 

 Scan Matching / Visual Odometry 
(only locally consistent maps) 

 Approximations for SLAM: Local submaps, 
Sparse extended information filters, Sparse 
links, Thin junction tree filters, etc. 

 … 
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EKF-SLAM: Summary 

 The first SLAM solution 

 Convergence proof for linear Gaussian 
case 

 Can diverge if nonlinearities are large 
(and the real world is nonlinear ...) 

 Can deal only with a single mode 

 Successful in medium-scale scenes 

 Approximations exists to reduce the 
computational complexity 
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