Introduction to Mobile Robotics

SLAM – Landmark-based FastSLAM

Wolfram Burgard, Michael Ruhnke, Bastian Steder

Partial slide courtesy of Mike Montemerlo

The SLAM Problem

- SLAM stands for simultaneous localization and mapping
- The task of building a map while estimating the pose of the robot relative to this map

- Why is SLAM hard? Chicken-or-egg problem:
 - A map is needed to localize the robot
 - A pose estimate is needed to build a map

The SLAM Problem

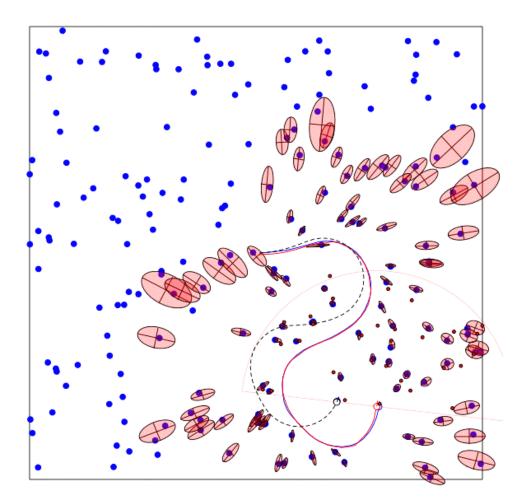
A robot moving through an unknown, static environment

Given:

- The robot's controls
- Observations of nearby features

Estimate:

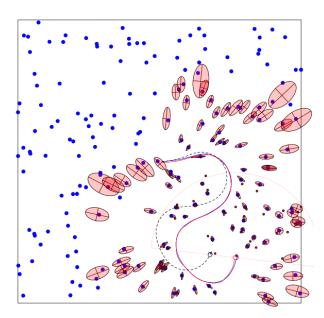
- Map of features
- Path of the robot

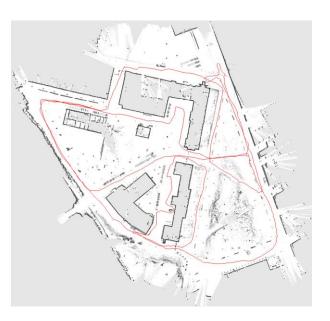


Map Representations

Typical models are:

- Feature maps
- Grid maps (occupancy or reflection probability maps)

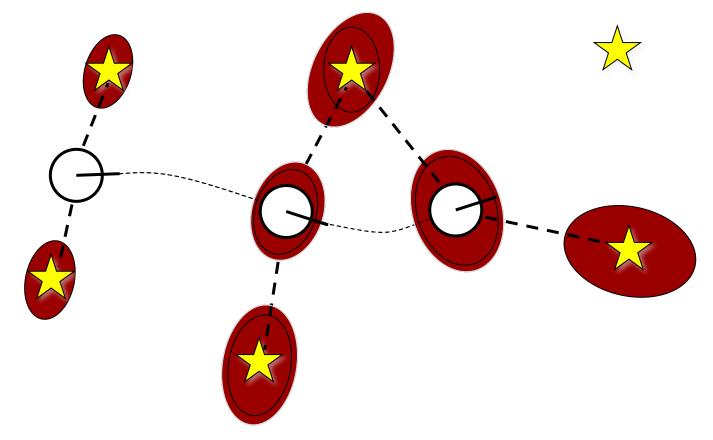




today

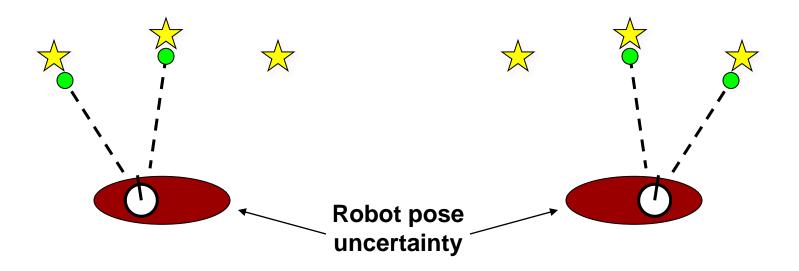
Why is SLAM a Hard Problem?

SLAM: robot path and map are both unknown!



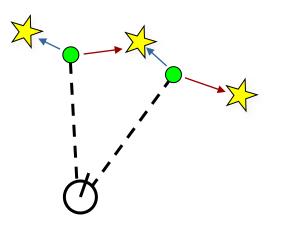
Robot path error correlates errors in the map

Why is SLAM a Hard Problem?



- In the real world, the mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences
- Pose error correlates data associations

Data Association Problem



- A data association is an assignment of observations to landmarks
- In general there are more than ⁿ/_m
 (n observations, m landmarks) possible associations
- Also called "assignment problem"

Particle Filters

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Sampling Importance Resampling (SIR) principle
 - Draw the new generation of particles
 - Assign an importance weight to each particle
 - Resample
- Typical application scenarios are tracking, localization, ...

Localization vs. SLAM

- A particle filter can be used to solve both problems
- Localization: state space <*x*, *y*, *θ*>
- SLAM: state space <x, y, θ, map>
 - for landmark maps = $< I_1, I_2, ..., I_m >$
 - for grid maps = $\langle c_{11}, c_{12}, ..., c_{1n}, c_{21}, ..., c_{nm} \rangle$
- Problem: The number of particles needed to represent a posterior grows exponentially with the dimension of the state space!

Dependencies

- Is there a dependency between certain dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?

Dependencies

- Is there a dependency between certain dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?
- In the SLAM context
 - The map depends on the poses of the robot.
 - We know how to build a map given the position of the sensor is known.

Factored Posterior (Landmarks) poses map observations & movements $p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) =$ $p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t})$

Factorization first introduced by Murphy in 1999

Factored Posterior (Landmarks) poses map observations & movements $p(x_{1:t}, l_{1:m} | z_{1:t}, u_{0:t-1})$ $p(x_{1:t} | z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} | x_{1:t}, z_{1:t})$ **SLAM** posterior Robot path posterior landmark positions **Does this help to solve the problem?**

Factorization first introduced by Murphy in 1999

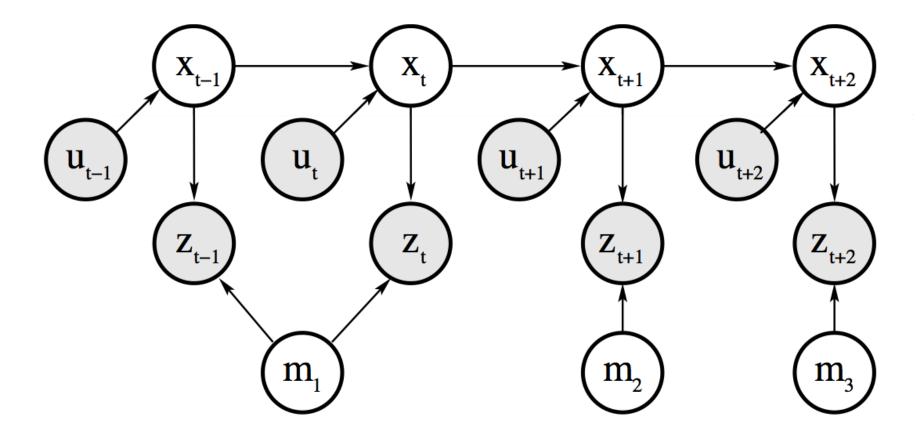
Rao-Blackwellization

 Factorization to exploit dependencies between variables:

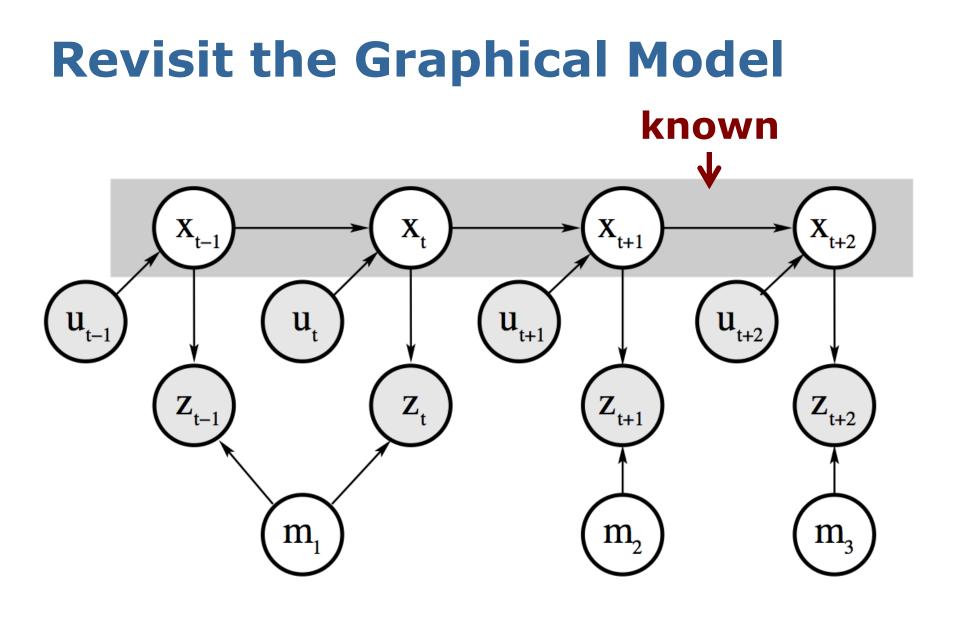
$$p(a,b) = p(a) \cdot p(b \mid a)$$

- If p(b | a) can be computed in closed form, represent only p(a) with samples and compute p(b | a) for every sample
- It comes from the Rao-Blackwell theorem

Revisit the Graphical Model

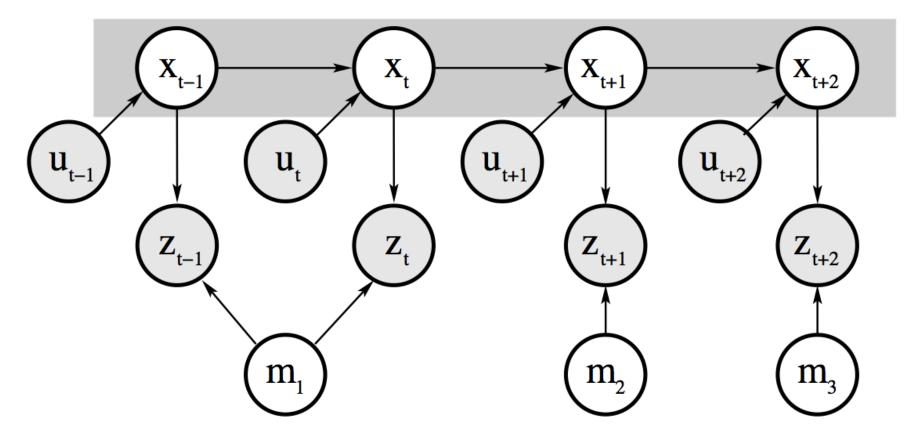


Courtesy: Thrun, Burgard, Fox



Courtesy: Thrun, Burgard, Fox

Landmarks are Conditionally Independent Given the Poses



Landmark variables are all disconnected (i.e. independent) given the robot's path

Factored Posterior

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$
Robot path posterior ocalization problem)
Conditionally independent

landmark positions

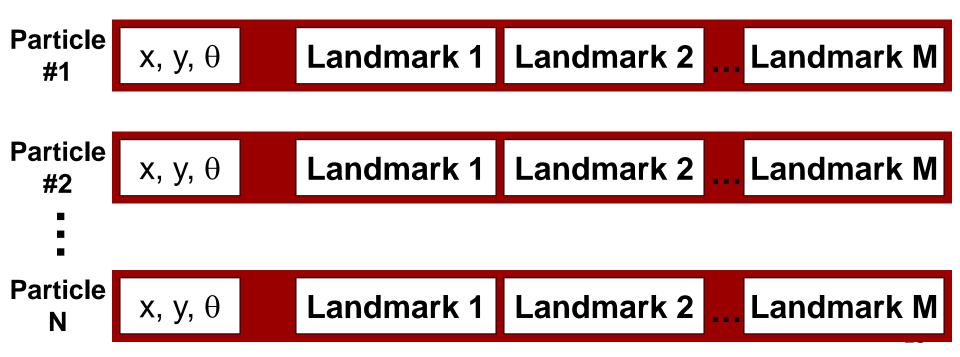
Rao-Blackwellization for SLAM

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) = p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

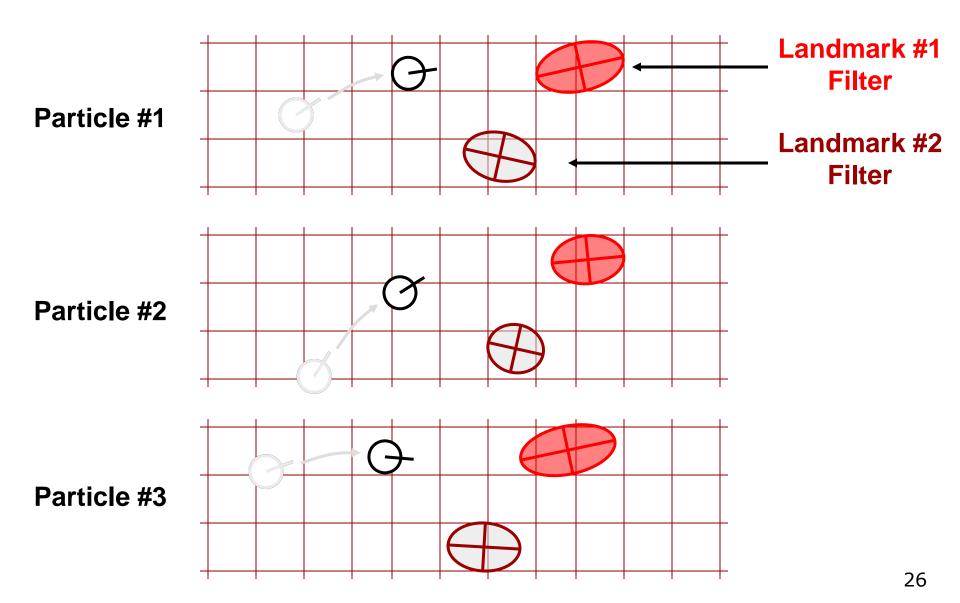
 Given that the second term can be computed efficiently, particle filtering becomes possible!

FastSLAM

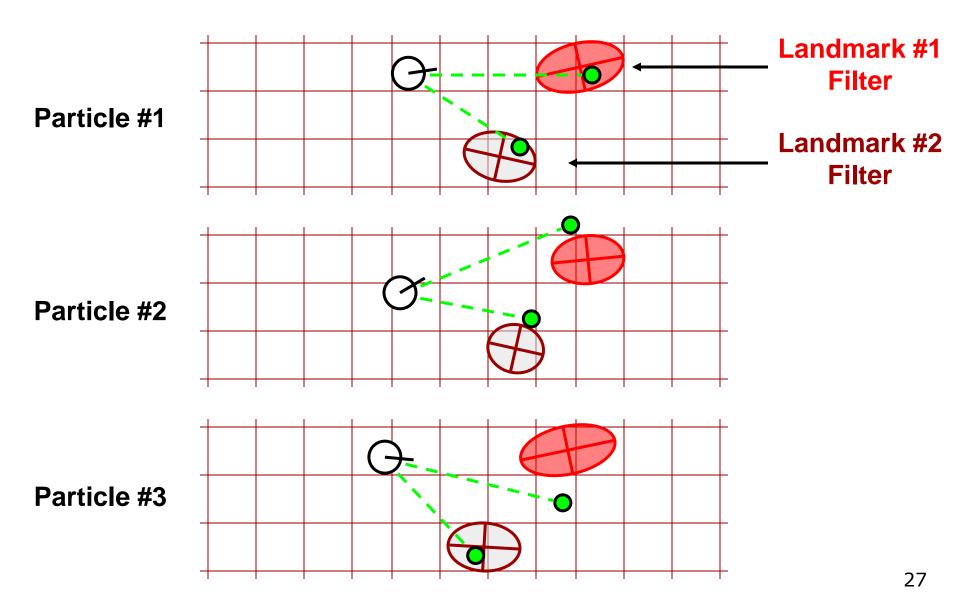
- Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]
- Each landmark is represented by a 2x2 Extended Kalman Filter (EKF)
- Each particle therefore has to maintain M EKFs

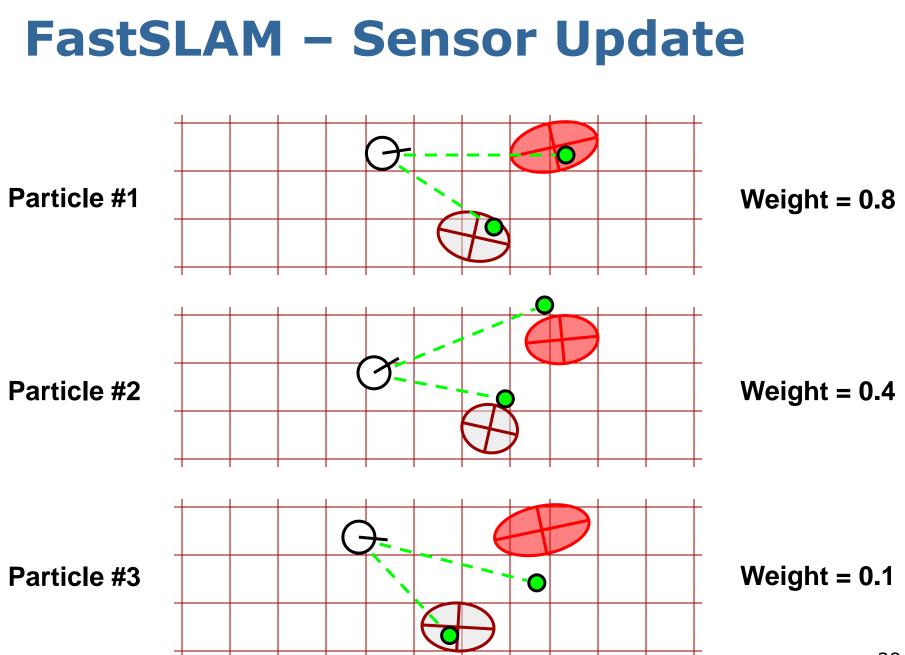


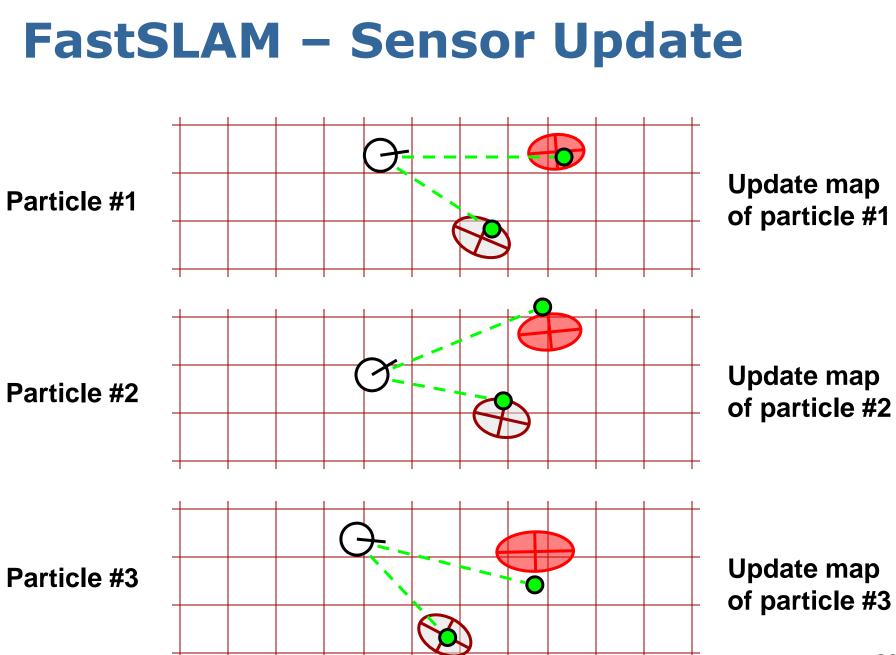
FastSLAM – Action Update



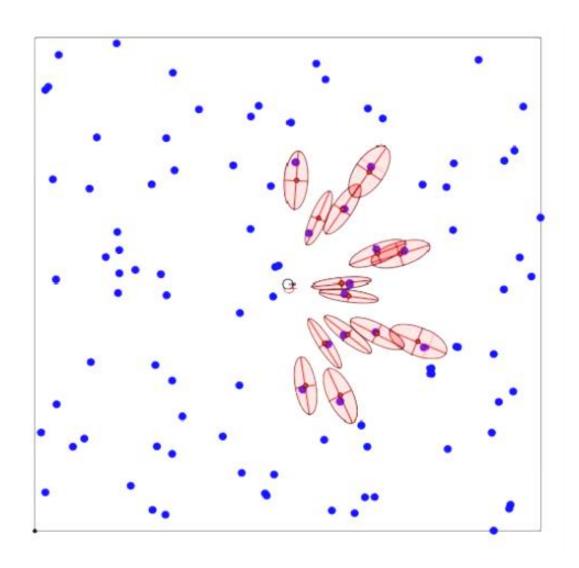
FastSLAM – Sensor Update







FastSLAM - Video



FastSLAM Complexity – Naive

 Update robot particles based on the control

 $\mathcal{O}(N)$

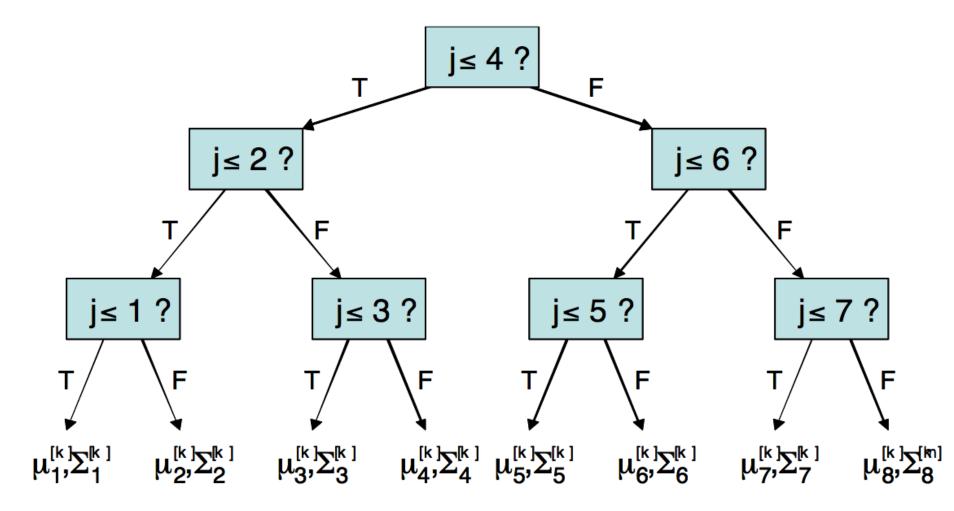
- Incorporate an observation into the Kalman filters (given the data association)
- $\mathcal{O}(N)$

 $\mathcal{O}(NM)$

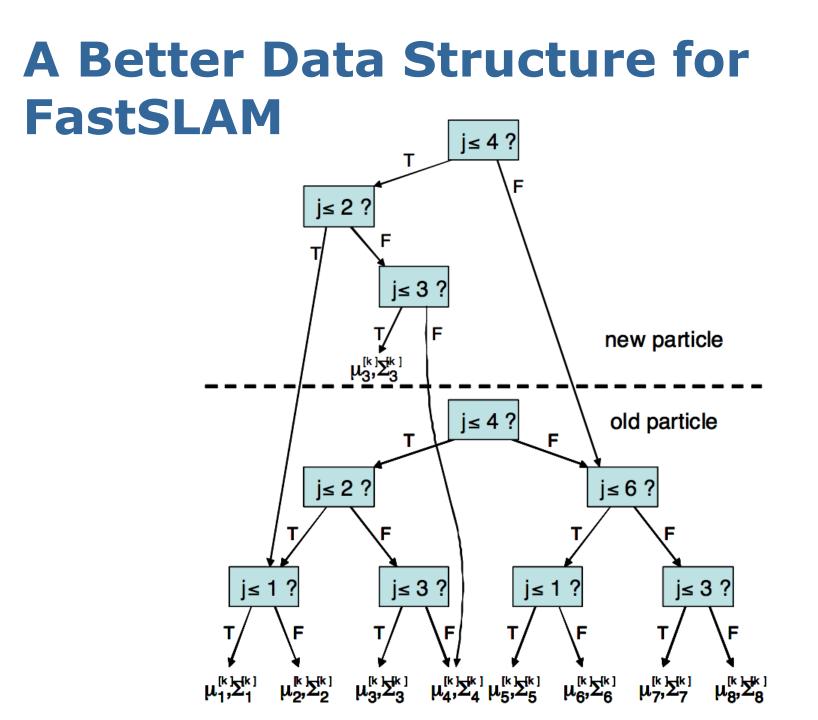
 $\mathcal{O}(NM)$

- Resample particle set
 - N = Number of particles M = Number of map features

A Better Data Structure for FastSLAM



Courtesy: M. Montemerlo



FastSLAM Complexity

 Update robot particles based on the control

 $\mathcal{O}(N)$

 Incorporate an observation into the Kalman filters (given the data association)

 $\mathcal{O}(N \log M)$

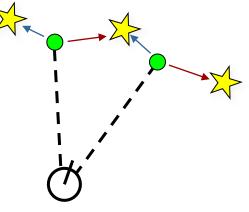
- Resample particle set
 - N = Number of particles M = Number of map features

 $\mathcal{O}(N\log M)$

 $\mathcal{O}(N \log M)$

Data Association Problem

Which observation belongs to which landmark?

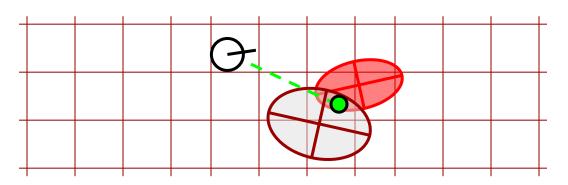


- A robust SLAM solution must consider possible data associations
- Potential data associations depend also on the pose of the robot

Multi-Hypothesis Data Association

- Data association is done on a per-particle basis
- Robot pose error is factored out of data association decisions

Per-Particle Data Association



Was the observation generated by the red or the brown landmark?

P(observation | red) = 0.3 P(observation | brown) = 0.7

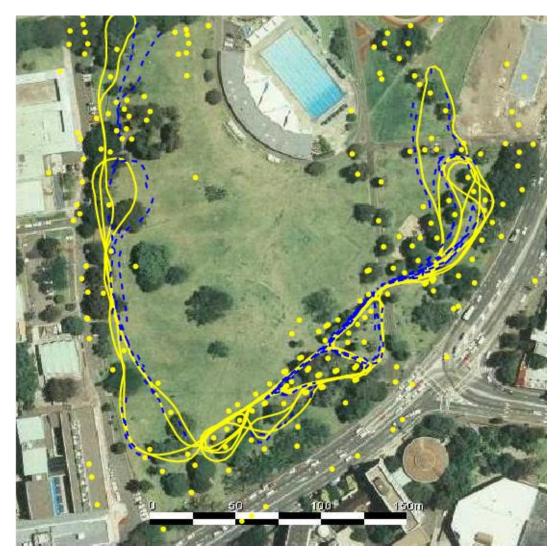
- Two options for per-particle data association
 - Pick the most probable match
 - Pick a random association weighted by the observation likelihoods
- If the probability is too low, generate a new landmark

Results – Victoria Park

- 4 km traverse
- < 5 m RMS position error
- 100 particles

Blue = GPS

Yelow = FastSLAM

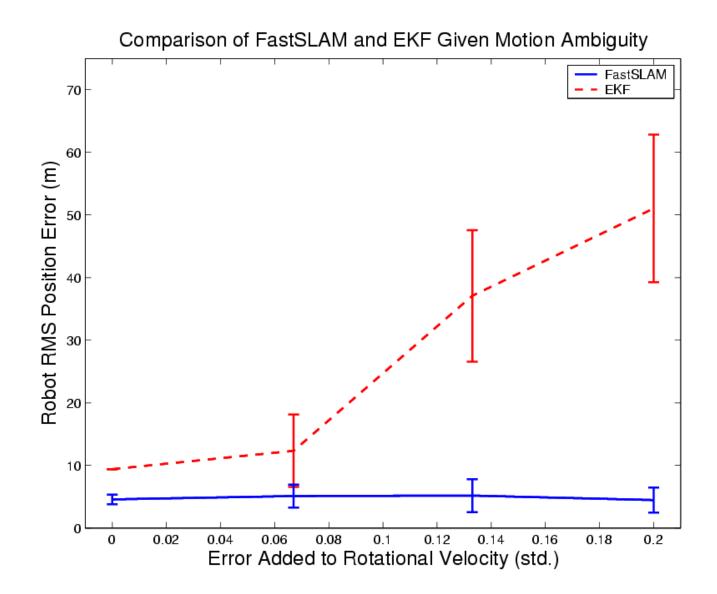


Dataset courtesy of University of Sydney ³⁸

Results – Victoria Park (Video)

Dataset courtesy of University of Sydney ³⁹

Results – Data Association



FastSLAM Summary

- FastSLAM factors the SLAM posterior into low-dimensional estimation problems
 - Scales to problems with over 1 million features
- FastSLAM factors robot pose uncertainty out of the data association problem
 - Robust to significant ambiguity in data association
 - Allows data association decisions to be delayed until unambiguous evidence is collected
- Advantages compared to the classical EKF approach (especially with non-linearities)
- Complexity of O(N log M)