
1

Path and Motion Planning

Introduction to
Mobile Robotics

Wolfram Burgard, Michael Ruhnke,

Bastian Steder

2

Motion Planning

Latombe (1991):

“… eminently necessary since, by
definition, a robot accomplishes tasks by
moving in the real world.”

Goals:

 Collision-free trajectories.

 Robot should reach the goal location as
quickly as possible.

3

 … in Dynamic Environments

 How to react to unforeseen obstacles?

 efficiency

 reliability

 Dynamic Window Approaches
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

 Grid-map-based planning
[Konolige, 00]

 Nearness-Diagram-Navigation
[Minguez at al., 2001, 2002]

 Vector-Field-Histogram+
 [Ulrich & Borenstein, 98]

 A*, D*, D* Lite, ARA*, …

4

Two Challenges

 Calculate the optimal path taking potential
uncertainties in the actions into account

 Quickly generate actions in the case of
unforeseen objects

5

Classic Two-layered Architecture

Planning

Collision
Avoidance

sensor data

map

robot

low frequency

high frequency

sub-goal

motion command

6

Dynamic Window Approach

 Collision avoidance: Determine collision-
free trajectories using geometric operations

 Here: Robot moves on circular arcs

 Motion commands (v,ω)

 Which (v,ω) are admissible and reachable?

7

Admissible Velocities

 Speeds are admissible if the robot would be
able to stop before reaching the obstacle

8

Reachable Velocities

 Speeds that are reachable by acceleration

9

DWA Search Space

 Vs = all possible speeds of the robot.

 Va = obstacle free area.

 Vd = speeds reachable within a certain time frame based on
 possible accelerations.

10

Dynamic Window Approach

 How to choose <v,ω>?

 Steering commands are chosen by a
heuristic navigation function.

 This function tries to minimize the travel-
time by “driving fast into the right
direction.”

11

Dynamic Window Approach

 Heuristic navigation function.

 Planning restricted to <x,y>-space.

 No planning in the velocity space.

goalnfnfvelNF

Navigation Function: [Brock & Khatib, 99]

12

goalnfnfvelNF

Navigation Function: [Brock & Khatib, 99]

Maximizes
velocity.

 Heuristic navigation function.

 Planning restricted to <x,y>-space.

 No planning in the velocity space.

Dynamic Window Approach

13

goalnfnfvelNF

Navigation Function: [Brock & Khatib, 99]

Considers cost to
reach the goal.

Maximizes
velocity.

 Heuristic navigation function.

 Planning restricted to <x,y>-space.

 No planning in the velocity space.

Dynamic Window Approach

14

goalnfnfvelNF

Navigation Function: [Brock & Khatib, 99]

Maximizes
velocity.

Considers cost to
reach the goal.

Follows grid based path
computed by A*.

 Heuristic navigation function.

 Planning restricted to <x,y>-space.

 No planning in the velocity space.

Dynamic Window Approach

15

Navigation Function: [Brock & Khatib, 99] Goal nearness

Follows grid based path
computed by A*

goalnfnfvelNF
Maximizes

velocity

 Heuristic navigation function.

 Planning restricted to <x,y>-space.

 No planning in the velocity space.

Considers cost to
reach the goal

Dynamic Window Approach

16

Dynamic Window Approach

 Reacts quickly.

 Low computational requirements.

 Guides a robot along a collision-free path.

 Successfully used in a lot of real-world
scenarios.

 Resulting trajectories sometimes sub-
optimal.

 Local minima might prevent the robot from
reaching the goal location.

17

Problems of DWAs

goalnfnfvelNF

18

Problems of DWAs

goalnfnfvelNF

Robot’s
velocity.

19

Problems of DWAs

goalnfnfvelNF

Preferred
direction of NF.

Robot’s
velocity.

20

Problems of DWAs

goalnfnfvelNF

21

Problems of DWAs

goalnfnfvelNF

22

Problems of DWAs

goalnfnfvelNF

The robot drives too fast at c0 to enter
corridor facing south.

23

Problems of DWAs

goalnfnfvelNF

24

Problems of DWAs

goalnfnfvelNF

25

Problems of DWAs

Same situation as in the beginning.

 DWAs have problems to reach the goal.

26

Problems of DWAs

 Typical problem in a real world situation:

 Robot does not slow down early enough to
enter the doorway.

Motion Planning Formulation

 The problem of motion planning can be
stated as follows. Given:

 A start pose of the robot

 A desired goal pose

 A geometric description of the robot

 A geometric representation of the
environment

 Find a path that moves the robot
gradually from start to goal while
never touching any obstacle

27

Configuration Space

 Although the motion planning problem is
defined in the regular world, it lives in
another space: the configuration space

 A robot configuration q is a specification of

the positions of all robot points relative to
a fixed coordinate system

 Usually a configuration is expressed as a
vector of positions and orientations

 28

Configuration Space

 Free space and obstacle region

 With being the work space,
the set of obstacles, the robot in
configuration

 We further define

 : start configuration

 : goal configuration

29

Then, motion planning amounts to

 Finding a continuous path

 with

 Given this setting,
we can do planning
with the robot being
a point in C-space!

Configuration Space

30

C-Space Discretizations

 Continuous terrain needs to be discretized
for path planning

 There are two general approaches to
discretize C-spaces:

 Combinatorial planning

 Characterizes Cfree explicitly by capturing the
connectivity of Cfree into a graph and finds

solutions using search

 Sampling-based planning

 Uses collision-detection to probe and
incrementally search the C-space for a solution

31

Search

The problem of search: finding a sequence
of actions (a path) that leads to desirable
states (a goal)

 Uninformed search: besides the problem
definition, no further information about the
domain (“blind search”)

 The only thing one can do is to expand
nodes differently

 Example algorithms: breadth-first,
uniform-cost, depth-first, bidirectional, etc.

32

Search

The problem of search: finding a sequence
of actions (a path) that leads to desirable
states (a goal)

 Informed search: further information
about the domain through heuristics

 Capability to say that a node is “more
promising” than another node

 Example algorithms: greedy best-first
search, A*, many variants of A*, D*, etc.

33

Search

The performance of a search algorithm is
measured in four different ways:

 Completeness: does the algorithm find a
solution when there is one?

 Optimality: is the solution the best one of
all possible solutions in terms of path cost?

 Time complexity: how long does it take
to find a solution?

 Space complexity: how much memory is
needed to perform the search?

34

Discretized Configuration Space

35

Uninformed Search

 Breadth-first

 Complete

 Optimal if action costs equal

 Time and space: O(bd)

 Depth-first

 Not complete in infinite spaces

 Not optimal

 Time: O(bm)

 Space: O(bm) (can forget

explored subtrees)

(b: branching factor, d: goal depth, m: max. tree depth)

36

37

Informed Search: A*

 What about using A* to plan
the path of a robot?

 Finds the shortest path

 Requires a graph structure

 Limited number of edges

 In robotics: planning on a 2d
occupancy grid map

38

A*: Minimize the Estimated
Path Costs
 g(n) = actual cost from the initial state to n.

 h(n) = estimated cost from n to the next goal.

 f(n) = g(n) + h(n), the estimated cost of the
cheapest solution through n.

 Let h*(n) be the actual cost of the optimal path
from n to the next goal.

 h is admissible if the following holds for all n :

h(n) h*(n)

 We require that for A*, h is admissible (the
straight-line distance is admissible in the
Euclidean Space).

Example: PathPlanning for
Robots in a Grid-World

39

Deterministic Value Iteration

40

 To compute the shortest path from
every state to one goal state, use
(deterministic) value iteration.

 Very similar to Dijkstra’s Algorithm.

 Such a cost distribution is the optimal
heuristic for A*.

Typical Assumption in Robotics
for A* Path Planning

41

1. The robot is assumed to be localized.

2. The robot computes its path based on
an occupancy grid.

3. The correct motion commands are
executed.

Are 1. and 3. always true?

Problems

42

 What if the robot is (slightly) delocalized?

 Moving on the shortest path often guides
the robot along a trajectory close to
obstacles.

 Trajectory aligned to the grid structure.

43

Convolution of the Grid Map

 Convolution blurs the map.

 Obstacles are assumed to be bigger
than in reality.

 Perform an A* search in such a
convolved map (using occupancy as
traversal cost).

 Robot increases distance to obstacles
and moves on a short path!

44

Example: Map Convolution

 one-dimensional environment, cells
c0, …, c5

 Cells before and after 2 convolution runs.

45

Convolution

 Consider an occupancy map. Than the
convolution is defined as:

 This is done for each row and each
column of the map.

 “Gaussian blur”

46

A* in Convolved Maps

 The costs are a product of path length
and occupancy probability of the cells.

 Cells with higher probability (e.g.,
caused by convolution) are avoided by
the robot.

 Thus, it keeps distance to obstacles.

 This technique is fast and quite reliable.

5D-Planning – an Alternative to
the Two-layered Architecture

 Plans in the full <x,y,θ,v,ω>-configuration
space using A*.

 Considers the robot's kinematic constraints.

 Generates a sequence of steering
commands to reach the goal location.

 Maximizes trade-off between driving time
and distance to obstacles.

47

The Search Space (1)

 What is a state in this space?
<x,y,θ,v,ω> = current position and
 speed of the robot

 How does a state transition look like?
<x1,y1,θ1,v1,ω1> <x2,y2,θ2,v2,ω2>

 with motion command (v2,ω2) and
 |v1-v2| < av, |ω1-ω2| < aω.

 The new pose of the Robot <x2,y2,θ2> is a
result of the motion equations.

48

The Search Space (2)

Idea: search in the discretized
 <x,y,θ,v,ω>-space.

Problem: the search space is too huge to be
explored within the time constraints
(5+ Hz for online motion planning).

Solution: restrict the full search space.

49

The Main Steps of the Algorithm

1. Update (static) grid map based on sensory
input.

2. Use A* to find a trajectory in the <x,y>-
space using the updated grid map.

3. Determine a restricted 5d-configuration
space based on step 2.

4. Find a trajectory by planning in the
restricted <x,y,θ,v,ω>-space.

50

Updating the Grid Map

 The environment is represented as a 2d-
occupency grid map.

 Convolution of the map increases security
distance.

 Detected obstacles are added.

 Cells discovered free are cleared.

51
update

Find a Path in the 2d-Space

 Use A* to search for the optimal path in
the 2d-grid map.

 Use heuristic based on a deterministic
value iteration within the static map.

52

53

Restricting the Search Space

Assumption: the projection of the 5d-path
onto the <x,y>-space lies close to the
optimal 2d-path.

Therefore: construct a restricted search
space (channel) based on the 2d-path.

Space Restriction

 Resulting search space =

 <x, y, θ, v, ω> with (x,y) Є channel.

 Choose a sub-goal lying on the 2d-path
within the channel.

54

Find a Path in the 5d-Space

 Use A* in the restricted 5d-space to find a
sequence of steering commands to reach
the sub-goal.

 To estimate cell costs: perform a
deterministic 2d-value iteration within the
channel.

55

Examples

56

Timeouts

 Steering a robot online requires to set new
steering commands frequently.
E.g., every 0.2 secs.

 Abort search after 0.2 secs.

How to find an admissible steering
command?

57

Alternative Steering Command

 Previous trajectory still admissible?
 OK

 If not, drive on the 2d-path or use DWA to
find new command.

58

Timeout Avoidance

 Reduce the size of the channel if the 2d-
path has high cost.

59

60

Example

Robot Albert Planning state

Comparison to the DWA (1)

 DWAs often have problems entering narrow
passages.

61

DWA planned path. 5D approach.

Comparison to the DWA (2)

The 5D approach results in significantly faster
motion when driving through narrow passages!

62

Comparison to the Optimum

Channel: with length=5m, width=1.1m

Resulting actions are close to the optimal solution.
63

Rapidly Exploring Random Trees

 Idea: aggressively probe and explore the
C-space by expanding incrementally
from an initial configuration q0

 The explored territory is marked by a
tree rooted at q0

64

45
iterations

2,345
iterations

RRTs

The algorithm: Given C and q0

65

Sample from a
bounded region
centered around q0

E.g. an axis-aligned
relative random

translation or random
rotation

RRTs

 The algorithm

66

Finds closest vertex in G
using a distance

function

formally a metric
defined on C

RRTs

 The algorithm

67

Several stategies to find
qnear given the closest

vertex on G:

• Take closest vertex

• Check intermediate
points at regular

intervals and split edge
at qnear

RRTs

 The algorithm

68

Connect nearest point
with random point

using a local planner
that travels from qnear

to qrand

• No collision: add
edge

RRTs

 The algorithm

69

Connect nearest point
with random point

using a local planner
that travels from qnear

to qrand

• No collision: add
edge

• Collision: new vertex
is qs, as close as
possible to Cobs

RRTs

 How to perform path planning with RRTs?

1. Start RRT at qI

2. At every, say, 100th iteration, force qrand = qG

3. If qG is reached, problem is solved

 Why not picking qG every time?

 This will fail and waste much effort in
running into CObs instead of exploring the

space

70

RRTs

 However, some problems require more
effective methods: bidirectional search

 Grow two RRTs, one from qI, one from qG

 In every other
step, try to
extend each
tree towards
the newest
vertex of the
other tree

71

Filling a
well

A bug
trap

RRTs

 RRTs are popular, many extensions exist:
real-time RRTs, anytime
RRTs, for dynamic
environments etc.

 Pros:

 Balance between greedy
search and exploration

 Easy to implement

 Cons:

 Metric sensivity

 Unknown rate of convergence

72

Alpha 1.0
puzzle.

Solved with
bidirectional

RRT

Road Map Planning

 A road map is a graph in Cfree in which each
vertex is a configuration in Cfree and each
edge is a collision-free path through Cfree

 Several planning techniques

 Visibility graphs

 Voronoi diagrams

 Exact cell decomposition

 Approximate cell decomposition

 Randomized road maps

73

Road Map Planning

 A road map is a graph in Cfree in which each
vertex is a configuration in Cfree and each
edge is a collision-free path through Cfree

 Several planning techniques

 Visibility graphs

 Voronoi diagrams

 Exact cell decomposition

 Approximate cell decomposition

 Randomized road maps

74

 Defined to be the set of points q whose

cardinality of the set of boundary points of
Cobs with the same distance to q is greater

than 1

 Let us decipher
this definition...

 Informally:
the place with the
same maximal
clearance from
all nearest obstacles

Generalized Voronoi Diagram

75

qI
qG

qI' qG'

 Formally:

Let be the boundary of Cfree, and d(p,q)
the Euclidian distance between p and q. Then, for
all q in Cfree, let

be the clearance of q, and

the set of "base" points on with the same
clearance to q. The Voronoi diagram is then the
set of q's with more than one base point p

Generalized Voronoi Diagram

76

 Geometrically:

 For a polygonal Cobs, the Voronoi diagram
consists of (n) lines and parabolic segments

 Naive algorithm: O(n4), best: O(n log n)

Generalized Voronoi Diagram

77

p

clearance(q)

one closest point

q

q

q

p
p

two closest points

p p

Voronoi Diagram

 Voronoi diagrams have been well studied
for (reactive) mobile robot path planning

 Fast methods exist to compute and
update the diagram in real-time for low-
dim. C's

 Pros: maximize clear-
ance is a good idea for
an uncertain robot

 Cons: unnatural at-
traction to open space,
suboptimal paths

 Needs extensions 78

Randomized Road Maps

 Idea: Take random samples from C,
declare them as vertices if in Cfree, try to

connect nearby vertices with local planner

 The local planner checks if line-of-sight is
collision-free (powerful or simple methods)

 Options for nearby: k-nearest neighbors
or all neighbors within specified radius

 Configurations and connections are added
to graph until roadmap is dense enough

79

Also called Probabilistic Road Maps

Randomized Road Maps

 Example

80

specified
radius

Example local
planner

What does “nearby” mean
on a manifold? Defining a
good metric on C is crucial

Randomized Road Maps

 Pros:

 Probabilistically complete

 Do not construct C-space

 Apply easily to high
dimensional C-spaces

 Randomized road maps have
solved previously unsolved
problems

 Cons:

 Do not work well for some
problems, narrow passages

 Not optimal, not complete

81

Cobs

Cobs

Cobs

Cobs Cobs

Cobs Cobs

qI

qG

qI

qG

Randomized Road Maps

 How to uniformly sample C ? This is not at all

trivial given its topology

 For example over spaces of rotations: Sampling
Euler angles gives more samples near poles, not
uniform over SO(3). Use quaternions!

 However, Randomized Road Maps are powerful,
popular and many extensions exist: advanced
sampling strategies (e.g. near obstacles), PRMs
for deformable objects, closed-chain systems,
etc.

82

From Road Maps to Paths

 All methods discussed so far construct a
road map (without considering the query
pair qI and qG)

 Once the investment is made, the same
road map can be reused for all queries
(provided world and robot do not change)

1. Find the cell/vertex that contain/is close to qI
and qG (not needed for visibility graphs)

2. Connect qI and qG to the road map

3. Search the road map for a path from qI to qG

83

 Consider an agent acting in this
environment

 Its mission is to reach the goal marked
by +1 avoiding the cell labelled -1

Markov Decision Process

84

 Consider an agent acting in this
environment

 Its mission is to reach the goal marked
by +1 avoiding the cell labelled -1

Markov Decision Process

85

Markov Decision Process

 Easy! Use a search algorithm such as A*

 Best solution (shortest path) is the action
sequence [Right, Up, Up, Right]

86

What is the problem?

 Consider a non-perfect system
in which actions are performed with a
probability less than 1

 What are the best actions for an agent
under this constraint?

 Example: a mobile robot does not
exactly perform a desired motion

 Example: human navigation

Uncertainty about performing actions!

87

MDP Example

 Consider the non-deterministic
transition model (N / E / S / W):

 Intended action is executed with p=0.8

 With p=0.1, the agent moves left or right

 Bumping into a wall “reflects” the robot

desired action

p=0.8

p=0.1 p=0.1

88

MDP Example

 Executing the A* plan in this environment

89

MDP Example

 Executing the A* plan in this environment

 But: transitions are non-deterministic!
90

MDP Example

 Executing the A* plan in this environment

 This will happen sooner or later...
91

MDP Example

 Use a longer path with lower probability
to end up in cell labelled -1

 This path has the highest overall utility

 Probability 0.86 = 0.2621
92

Transition Model

 The probability to reach the next state s'
from state s by choosing action a

 is called transition model

93

Markov Property:

The transition probabilities from s to s'
depend only on the current state s
and not on the history of earlier states

Reward

 In each state s, the agent receives a
reward R(s)

 The reward may be positive or negative
but must be bounded

 This can be generalized to be a function
R(s,a,s').
Here: considering only R(s), does not

change the problem

94

Reward

 In our example, the reward is -0.04 in all
states (e.g. the cost of motion) except the
terminal states (that have rewards +1/-1)

 A negative reward
gives agents an in-
centive to reach
the goal quickly

 Or: “living in this
environment is
not enjoyable”

95

MDP Definition

 Given a sequential decision problem in
a fully observable, stochastic environment
with a known Markovian transition model

 Then a Markov Decision Process is
defined by the components

 • Set of states:

• Set of actions:

• Initial state:

• Transition model:

• Reward funciton:

96

Policy

 An MDP solution is called policy

 A policy is a mapping from states to actions

 In each state, a policy tells the agent
what to do next

 Let (s) be the action that specifies for s

 Among the many policies that solve an
MDP, the optimal policy * is what we
seek. We'll see later what optimal means

 97

Policy

 The optimal policy for our example

98

Conservative choice
Take long way around
as the cost per step of

-0.04 is small compared
with the penality to fall

down the stairs and
receive a -1 reward

Policy

 When the balance of risk and reward
changes, other policies are optimal

100

R = -2

R = -0.01

R = -0.2

R > 0

Leave as soon as possible Take shortcut, minor risks

No risks are taken Never leave (inf. #policies)

Utility of a State

 The utility of a state U(s) quantifies the

benefit of a state for the overall task

 We first define U (s) to be the expected

utility of all state sequences that start
in s given

 U(s) evaluates (and encapsulates) all
possible futures from s onwards

101

Utility of a State

 With this definition, we can express U (s)
as a function of its next state s'

102

Optimal Policy

 The utility of a state allows us to apply the
Maximum Expected Utility principle to
define the optimal policy *

 The optimal policy * in s chooses the
action a that maximizes the expected
utility of s (and of s')

 Expectation taken over all policies

103

Optimal Policy

 Substituting U (s)

 Recall that E[X] is the weighted average of
all possible values that X can take on

104

Utility of a State

 The true utility of a state U(s) is then

obtained by application of the optimal
policy, i.e. . We find

105

Utility of a State

 This result is noteworthy:

 We have found a direct relationship
between the utility of a state and the
utility of its neighbors

 The utility of a state is the immediate
reward for that state plus the expected
utility of the next state, provided the
agent chooses the optimal action

106

Bellman Equation

 For each state there is a Bellman equation
to compute its utility

 There are n states and n unknowns

 Solve the system using Linear Algebra?

 No! The max-operator that chooses the
optimal action makes the system nonlinear

 We must go for an iterative approach
107

Discounting

We have made a simplification on the way:

 The utility of a state sequence is often
defined as the sum of discounted rewards

 with being the discount factor

 Discounting says that future rewards are
less significant than current rewards.
This is a natural model for many domains

 The other expressions change accordingly

108

Separability

We have made an assumption on the way:

 Not all utility functions (for state
sequences) can be used

 The utility function must have the
property of separability (a.k.a. station-
arity), e.g. additive utility functions:

 Loosely speaking: the preference between
two state sequences is unchanged over
different start states

109

Utility of a State

 The state utilities for our example

 Note that utilities are higher closer to the
goal as fewer steps are needed to reach it

110

Idea:

 The utility is computed iteratively:

 Optimal utility:

 Abort, if change in utility is below a
threshold

Iterative Computation

111

 Calculate utility of the center cell

Value Iteration Example

u=10

u=-8 u=5

u=1

r=1

Transition Model State space

(u=utility, r=reward)

desired action = Up

p=0.8

p=0.1 p=0.1

114

Value Iteration Example

u=10

u=-8 u=5

u=1

r=1

115

p=0.8

p=0.1 p=0.1

Value Iteration Example

 In our example

 States far from the goal first accumulate
negative rewards until a path is found to
the goal

116

(1,1) nr. of iterations →

Convergence

 The condition in the
algorithm can be formulated by

 Different ways to detect convergence:

 RMS error: root mean square error

 Max error:

 Policy loss

 117

Value Iteration

 Value Iteration finds the optimal solution
to the Markov Decision Problem!

 Converges to the unique solution of
the Bellman equation system

 Initial values for U' are arbitrary

 Proof involves the concept of contraction.
 with B being

the Bellman operator (see textbook)

 VI propagates information through the
state space by means of local updates

119

Optimal Policy

 How to finally compute the optimal
policy? Can be easily extracted along
the way by

 Note: U(s) and R(s) are quite different
quantities. R(s) is the short-term reward
for being in s, whereas U(s) is the long-
term reward from s onwards

120

121

Summary

 Robust navigation requires combined path
planning & collision avoidance.

 Approaches need to consider robot's kinematic
constraints and plans in the velocity space.

 Combination of search and reactive techniques
show better results than the pure DWA in a
variety of situations.

 Using the 5D-approach the quality of the
trajectory scales with the performance of the
underlying hardware.

 The resulting paths are often close to the
optimal ones.

122

Summary

 Planning is a complex problem.

 Focus on subset of the configuration space:

 road maps,

 grids.

 Sampling algorithms are faster and have a
trade-off between optimality and speed.

 Uncertainty in motion leads to the need of
Markov Decision Problems.

123

What’s Missing?

 More complex vehicles (e.g., cars, legged

robots, manipulators, …).

 Moving obstacles, motion prediction.

 High dimensional spaces.

 Heuristics for improved performances.

 Learning.

