Exercise 5.1 (Conditional Independence)
Suppose you are given a bag containing n unbiased coins, out of which $n - 1$ are normal, with heads on one side and tails on the other, whereas one coin is a fake, with heads on both sides.

(a) Suppose you reach into the bag, pick out a coin uniformly at random, toss it, and get a head. What is the (conditional) probability that the coin you chose is the fake coin?

(b) Suppose you continue flipping the coin for a total of k times after picking it and see k heads. Now what is the conditional probability that you picked the fake coin?

(c) Suppose you wanted to decide whether the chosen coin was fake by flipping it k times. The decision procedure returns FAKE if all k flips come up heads, otherwise it returns NORMAL. What is the (unconditional) probability that this procedure makes an error?

Exercise 5.2 (Bayes Rules)
In Freiburg 80% of all cars are red. You see a car at night that does not appear red to you. You know that you can correctly identify a red car only in 70% of all cases, given the car is red. However you identify a non-red car correctly in 90% of the cases.

(a) List all conditional and non-conditional probabilities that you can determine directly from the task description. Note: Differentiate between the statement that a car is red and the statement that you have seen a red car.

(b) Compute the probability that the car is actually red, wenn you perceive a car as red in Freiburg at night.
Exercise 5.3 (Bayesian Networks)

Consider the following Bayesian network:

(a) Determine which of the following conditional independence statements follow from the structure of the Bayesian network ($\text{Ind}(U, V | W)$ denotes that U is conditionally independent of V given W, and $\text{Ind}(U, V)$ denotes unconditional independence of U and V):

(i) $\text{Ind}(\text{Cold}, \text{Winter})$
(ii) $\text{Ind}(\text{Winter}, \text{NegligentDriver})$
(iii) $\text{Ind}(\text{Winter}, \text{RadioSilent} | \text{BatteryProblem})$
(iv) $\text{Ind}(\text{Winter}, \text{EngineNotStarting} | \text{BatteryProblem})$
(v) $\text{Ind}(\text{Cold}, \text{NegligentDriver} | \text{RadioSilent})$

(b) Compute $P(\text{EngineNotStarting} | \text{NegligentDriver}, \neg \text{Cold})$. The relevant entries in the conditional probability tables are given below:

- $P(\text{LightsOnOverNight} | \text{NegligentDriver}) = 0.3$
- $P(\text{LightsOnOverNight} | \neg \text{NegligentDriver}) = 0.02$
- $P(\text{TankEmpty} | \text{NegligentDriver}) = 0.1$
- $P(\text{TankEmpty} | \neg \text{NegligentDriver}) = 0.01$
- $P(\text{BatteryProblem} | \text{Cold}, \text{LightsOnOverNight}) = 0.9$
- $P(\text{BatteryProblem} | \neg \text{Cold}, \neg \text{LightsOnOverNight}) = 0.2$
- $P(\text{BatteryProblem} | \neg \text{Cold}, \text{LightsOnOverNight}) = 0.8$
- $P(\text{BatteryProblem} | \text{Cold}, \neg \text{LightsOnOverNight}) = 0.01$
- $P(\text{EngineNotStarting} | \text{BatteryProblem}, \text{TankEmpty}) = 0.9$
- $P(\text{EngineNotStarting} | \neg \text{BatteryProblem}, \neg \text{TankEmpty}) = 0.7$
- $P(\text{EngineNotStarting} | \text{BatteryProblem}, \text{TankEmpty}) = 0.8$
- $P(\text{EngineNotStarting} | \neg \text{BatteryProblem}, \text{TankEmpty}) = 0.05$

(c) List all nodes in the Markov blanket for node LightsOnOverNight.

The exercise sheets may and should be worked on in groups of three (3) students. Please write all your names and the number of your exercise group on your solution.