Foundations of Artificial Intelligence

4. Informed Search Methods
Heuristics, Local Search Methods, Genetic Algorithms

Joschka Boedecker and Wolfram Burgard and Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

May 3, 2017
Contents

1. Best-First Search
2. A* and IDA*
3. Local Search Methods
4. Genetic Algorithms
Search procedures differ in the way they determine the next node to expand.

Uninformed Search: Rigid procedure with no knowledge of the cost of a given node to the goal.

Informed Search: Knowledge of the worth of expanding a node n is given in the form of an *evaluation function* $f(n)$, which assigns a real number to each node. Mostly, $f(n)$ includes as a component a *heuristic function* $h(n)$, which estimates the costs of the cheapest path from n to the goal.

Best-First Search: Informed search procedure that expands the node with the “best” f-value first.
function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
 if the frontier is empty then return failure
 choose a leaf node and remove it from the frontier
 if the node contains a goal state then return the corresponding solution
 expand the chosen node, adding the resulting nodes to the frontier

Best-first search is an instance of the general TREE-SEARCH algorithm in which frontier is a priority queue ordered by an evaluation function f.

When f is always correct, we do not need to search!
Greedy Search

A possible way to judge the “worth” of a node is to estimate its path-costs to the goal.

\[h(n) = \text{estimated path-costs from } n \text{ to the goal} \]

The only real restriction is that \(h(n) = 0 \) if \(n \) is a goal.

A best-first search using \(h(n) \) as the evaluation function, i.e., \(f(n) = h(n) \) is called a greedy search.

Example: route-finding problem:
\[h(n) = \]
A possible way to judge the “worth” of a node is to estimate its path-costs to the goal.

\[h(n) = \text{estimated path-costs from } n \text{ to the goal} \]

The only real restriction is that \(h(n) = 0 \) if \(n \) is a goal.

A best-first search using \(h(n) \) as the evaluation function, i.e., \(f(n) = h(n) \) is called a greedy search.

Example: route-finding problem:
\(h(n) = \text{straight-line distance from } n \text{ to the goal} \)
The evaluation function h in greedy searches is also called a *heuristic* function or simply a *heuristic*.

- The word *heuristic* is derived from the Greek word $\varepsilon\upsilon\rho\iota\sigma\kappa\varepsilon\iota\nu$ (note also: $\varepsilon\upsilon\rho\eta\kappa\alpha$!)

- The mathematician Polya introduced the word in the context of problem solving techniques.

- In AI it has two meanings:
 - Heuristics are fast but in certain situations incomplete methods for problem-solving [Newell, Shaw, Simon 1963] (The greedy search is actually generally incomplete).
 - Heuristics are methods that improve the search in the average-case.

→ In all cases, the heuristic is *problem-specific* and *focuses* the search!
Greedy Search Example
Greedy Search from Arad to Bucharest

(a) The initial state

(b) After expanding Arad
Greedy Search from Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu
Greedy Search from Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras
Greedy Search - Properties

- a good heuristic might reduce search time drastically
- non-optimal
- incomplete
- graph-search version is complete only in finite spaces

Can we do better?
A*: Minimization of the Estimated Path Costs

A* combines greedy search with the uniform-cost search: Always expand node with lowest $f(n)$ first, where

$g(n) =$ actual cost from the initial state to n.

$h(n) =$ estimated cost from n to the nearest goal.

$f(n) = g(n) + h(n)$,

the estimated cost of the cheapest solution through n.

Let $h^*(n)$ be the actual cost of the optimal path from n to the nearest goal. h is admissible if the following holds for all n:

$$h(n) \leq h^*(n)$$

We require that for A*, h is admissible (example: straight-line distance is admissible).

In other words, h is an optimistic estimate of the costs that actually occur.
A* Search Example
A* Search from Arad to Bucharest

(a) The initial state

(University of Freiburg) Foundations of AI May 3, 2017 12 / 32
A* Search from Arad to Bucharest

(a) The initial state

(b) After expanding Arad
A* Search from Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

...
A* Search from Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Rimnicu Vilcea
A* Search from Arad to Bucharest

(e) After expanding Fagaras

![A* Search Diagram]

- **Arad**
 - **Sibiu**: 646 = 280 + 366
 - **Fagaras**: 671 = 291 + 380
 - **Sibiu**: 591 = 338 + 253
 - **Bucharest**: 450 = 450 + 0
 - **Oradea**: 526 = 366 + 160
 - **Craiova**: 418 = 418 + 0
 - **Pitesti**: 417 = 317 + 100
 - **Sibiu**: 553 = 300 + 253
 - **Rimnicu Vilcea**: 447 = 118 + 329
- **Bucharest**: 671 = 291 + 380
- **Zerind**: 449 = 75 + 374

Total cost from Arad to Bucharest: 646
A* Search from Arad to Bucharest

(e) After expanding Fagaras

(f) After expanding Pitesti
Example: Path Planning for Robots in a Grid-World

Live-Demo: http://qiao.github.io/PathFinding.js/visual/
Optimality of A*

Claim: The first solution found (= node is expanded and found to be a goal node) has the minimum path cost.

Proof: Suppose there exists a goal node G with optimal path cost f^*, but A^* has found another node G_2 with $g(G_2) > f^*$.
Optimality of A^*

Let n be a node on the path from the start to G that has not yet been expanded. Since h is admissible, we have

$$f(n) \leq f^*.$$

Since n was not expanded before G_2, the following must hold:

$$f(G_2) \leq f(n)$$

and

$$f(G_2) \leq f^*.$$

It follows from $h(G_2) = 0$ that

$$g(G_2) \leq f^*.$$

\rightarrow Contradicts the assumption!
Completeness and Complexity

Completeness:

If a solution exists, A* will find it provided that (1) every node has a finite number of successor nodes, and (2) there exists a positive constant $\delta > 0$ such that every step has at least cost δ.

\rightarrow there exists only a finite number of nodes n with $f(n) \leq f^*$.

Complexity:

In general, still exponential in the path length of the solution (space, time)

More refined complexity results depend on the assumptions made, e.g. on the quality of the heuristic function. Example:

In the case in which $|h^*(n) - h(n)| \leq O(\log(h^*(n)))$, only one goal state exists, and the search graph is a tree, a sub-exponential number of nodes will be expanded [Gaschnig, 1977, Helmert & Roeger, 2008]. Unfortunately, this almost never holds.
A note on Graph- vs. Tree-Search

- A* as described is a tree-search (and may consider duplicates)
- For the graph-based variant, one
 - either needs to consider re-opening nodes from the explored set, when a better estimate becomes known, or
 - one needs to require stronger restrictions on the heuristic estimate: it needs to be consistent.

→ A heuristic h is called consistent iff for all actions a leading from s to s': $h(s) - h(s') \leq c(a)$, where $c(a)$ denotes the cost of action a.

- Note: Consistency implies admissibility.
Heuristic Function Example

Start State

Goal State

\[h_1 = \text{the number of tiles in the wrong position} \]

\[h_2 = \text{the sum of the distances of the tiles from their goal positions} \]

(Manhattan distance)
Heuristic Function Example

\[h_1 = \text{the number of tiles in the wrong position} \]
Heuristic Function Example

\[h_1 = \text{the number of tiles in the wrong position} \]
\[h_2 = \text{the sum of the distances of the tiles from their goal positions} \]
\[(\text{Manhattan distance}) \]
Empirical Evaluation

- $d = \text{distance from goal}$
- Average over 100 instances

<table>
<thead>
<tr>
<th>d</th>
<th>IDS</th>
<th>$A^*(h_1)$</th>
<th>$A^*(h_2)$</th>
<th>IDS</th>
<th>$A^*(h_1)$</th>
<th>$A^*(h_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>2.45</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
<td>2.87</td>
<td>1.48</td>
<td>1.45</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
<td>2.73</td>
<td>1.34</td>
<td>1.30</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>25</td>
<td>2.80</td>
<td>1.33</td>
<td>1.24</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
<td>39</td>
<td>2.79</td>
<td>1.38</td>
<td>1.22</td>
</tr>
<tr>
<td>12</td>
<td>3644035</td>
<td>227</td>
<td>73</td>
<td>2.78</td>
<td>1.42</td>
<td>1.24</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>539</td>
<td>113</td>
<td>-</td>
<td>1.44</td>
<td>1.23</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>1301</td>
<td>211</td>
<td>-</td>
<td>1.45</td>
<td>1.25</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>3056</td>
<td>363</td>
<td>-</td>
<td>1.46</td>
<td>1.26</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>7276</td>
<td>676</td>
<td>-</td>
<td>1.47</td>
<td>1.47</td>
</tr>
<tr>
<td>22</td>
<td>-</td>
<td>18094</td>
<td>1219</td>
<td>-</td>
<td>1.48</td>
<td>1.28</td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>39135</td>
<td>1641</td>
<td>-</td>
<td>1.48</td>
<td>1.26</td>
</tr>
</tbody>
</table>
Variants of A*

A* in general still suffers from exponential memory growth. Therefore, several refinements have been suggested:

- iterative-deepening A*, where the f-costs are used to define the cutoff (rather than the depth of the search tree): IDA*

- Recursive Best First Search (RBFS): introduces a variable f_{limit} to keep track of the best alternative path available from any ancestor of the current node. If current node exceeds this limit, recursion unwinds back to the alternative path.

- other alternatives memory-bounded A* (MA*) and simplified MA* (SMA*).
Local Search Methods

- In many problems, it is unimportant how the goal is reached—only the goal itself matters (8-queens problem, VLSI Layout, TSP).
- If in addition a quality measure for states is given, **local search** can be used to find solutions.
- It operates using a single current node (rather than multiple paths).
- It requires little memory.
- **Idea:** Begin with a randomly-chosen configuration and improve on it step by step → **Hill Climbing**.
- **Note:** It can be used for maximization or minimization respectively (see 8-queens example)
Example state with heuristic cost estimate $h = 17$ (counts the number of pairs threatening each other directly or indirectly).
function HILL-CLIMBING(problem) returns a state that is a local maximum

current ← MAKE-NODE(problem.INITIAL-STATE)
loop do
 neighbor ← a highest-valued successor of current
 if neighbor.VALUE ≤ current.VALUE then return current.STATE
 current ← neighbor
Possible realization of a hill-climbing algorithm:
Select a column and move the queen to the square with the fewest conflicts.
Problems with Local Search Methods

- **Local maxima**: The algorithm finds a sub-optimal solution.
- **Plateaus**: Here, the algorithm can only explore at random.
- **Ridges**: Similar to plateaus but might even require suboptimal moves.

Solutions:

- *Start over* when no progress is being made.
- “Inject noise” \rightarrow random walk

Which strategies (with which parameters) are successful (within a problem class) can usually only empirically be determined.
Local minimum \((h = 1)\) of the 8-queens Problem. Every successor has a higher cost.
Illustration of the ridge problem

The grid of states (dark circles) is superimposed on a ridge rising from left to right, creating a sequence of local maxima, that are not directly connected to each other. From each local maximum, all the available actions point downhill.
The 8-queens problem has about $8^8 \approx 17$ million states. Starting from a random initialization, hill-climbing directly finds a solution in about 14% of the cases. On average it requires only 4 steps!

Better algorithm: Allow sideways moves (no improvement), but restrict the number of moves (avoid infinite loops!).

E.g.: max. 100 moves: Solves 94%, number of steps raises to 21 steps for successful instances and 64 for failure cases.
Simulated Annealing

In the simulated annealing algorithm, “noise” is injected systematically: first a lot, then gradually less.

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
    inputs: problem, a problem
             schedule, a mapping from time to “temperature”
    current ← MAKE-NODE(problem.INITIAL-STATE)
    for t = 1 to ∞ do
        T ← schedule(t)
        if T = 0 then return current
        next ← a randomly selected successor of current
        ΔE ← next.VALUE − current.VALUE
        if ΔE > 0 then current ← next
        else current ← next only with probability \( e^{ΔE/T} \)
```

Has been used since the early 80’s for VSLI layout and other optimization problems.
Genetic Algorithms

Evolution appears to be very successful at finding good solutions.

Idea: Similar to evolution, we search for solutions by three operators: “mutation”, “crossover”, and “selection”.

Ingredients:
- Coding of a solution into a string of symbols or bit-string
- A fitness function to judge the worth of configurations
- A population of configurations

Example: 8-queens problem as a chain of eight numbers. Fitness is judged by the number of non-attacks. The population consists of a set of arrangements of queens.
Selection, Mutation, and Crossing

Many variations:
how selection will be applied, what
type of cross-over operators will be
used, etc.

Selection of individuals according
to a fitness function and pairing

Calculation of the breaking points
and recombination

According to a given probability
elements in the string are modified.
• **Heuristics** focus the search

• **Best-first search** expands the node with the highest worth (defined by any measure) first.

• With the minimization of the evaluated costs to the goal h we obtain a **greedy search**.

• The minimization of $f(n) = g(n) + h(n)$ combines uniform and greedy searches. When $h(n)$ is **admissible**, i.e., h^* is never overestimated, we obtain the **A* search**, which is complete and optimal.

• **IDA*** is a combination of the iterative-deepening and A* searches.

• **Local search methods** only ever work on one state, attempting to improve it step-wise.

• **Genetic algorithms** imitate evolution by combining good solutions.