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Agents that Think Rationally

Until now, the focus has been on agents that act rationally.

Often, however, rational action requires rational (logical) thought on the
agent’s part.

To that purpose, portions of the world must be represented in a
knowledge base, or KB.

A KB is composed of sentences in a language with a truth theory (logic),
i.e., we (being external) can interpret sentences as statements about the
world. (semantics)
Through their form, the sentences themselves have a causal influence on the
agent’s behavior in a way that is correlated with the contents of the
sentences. (syntax)

Interaction with the KB through Ask and Tell (simplified):
Ask(KB,α) = yes exactly when α follows from the KB
Tell(KB,α) = KB’ so that α follows from KB’
Forget(KB,α) = KB’ non-monotonic (will not be discussed)
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3 Levels

In the context of knowledge representation, we can distinguish three levels
[Newell 1990]:

Knowledge level: Most abstract level. Concerns the total knowledge
contained in the KB. For example, the automated DB information system
knows that a trip from Freiburg to Basel SBB with an ICE costs 24.70 e.

Logical level: Encoding of knowledge in a formal language.
Price(Freiburg ,Basel , 24.70)

Implementation level: The internal representation of the sentences, for
example:

As a string ‘‘Price(Freiburg, Basel, 24.70)’’

As a value in a matrix

When Ask and Tell are working correctly, it is possible to remain on the
knowledge level. Advantage: very comfortable user interface. The user has
his/her own mental model of the world (statements about the world) and
communicates it to the agent (Tell).
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A Knowledge-Based Agent

A knowledge-based agent uses its knowledge base to

represent its background knowledge

store its observations

store its executed actions

. . . derive actions

7 LOGICAL AGENTS

function KB-AGENT(percept ) returns anaction
persistent: KB , a knowledge base

t , a counter, initially 0, indicating time

TELL(KB , MAKE-PERCEPT-SENTENCE(percept , t))
action← ASK(KB , MAKE-ACTION-QUERY(t))
TELL(KB , MAKE-ACTION-SENTENCE(action, t))
t← t + 1
return action

Figure 7.1 A generic knowledge-based agent. Given a percept, the agentadds the percept to its
knowledge base, asks the knowledge base for the best action,and tells the knowledge base that it has in
fact taken that action.

16
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The Wumpus World (1)

A 4× 4 grid

In the square containing the wumpus and in the directly adjacent
squares, the agent perceives a stench.

In the squares adjacent to a pit, the agent perceives a breeze.

In the square where the gold is, the agent perceives a glitter.

When the agent walks into a wall, it perceives a bump.

When the wumpus is killed, its scream is heard everywhere.

Percepts are represented as a 5-tuple, e.g.,

[Stench,Breeze,Glitter ,None,None]

means that it stinks, there is a breeze and a glitter, but no bump and no
scream. The agent cannot perceive its own location, cannot look in
adjacent square.
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The Wumpus World (2)

Actions: Go forward, turn right by 90◦, turn left by 90◦, pick up an
object in the same square (grab), shoot (there is only one arrow), leave
the cave (only works in square [1,1]).

The agent dies if it falls down a pit or meets a live wumpus.

Initial situation: The agent is in square [1,1] facing east. Somewhere
exists a wumpus, a pile of gold and 3 pits.

Goal: Find the gold and leave the cave.
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The Wumpus World (3): A Sample Configuration
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The Wumpus World (4)

[1,2] and [2,1] are safe:
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The Wumpus World (5)

The wumpus is in [1,3]!

BB P!

A

OK OK

OK

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4  3,4  4,4

V

OK

W!

V
P!

A

OK OK

OK

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4  3,4  4,4

V

S

OK

W!

V

V V

B
S G

P?

P?

(b)(a)

S

A
B
G

P
S

W

 = Agent
 = Breeze
 = Glitter, Gold

 = Pit
 = Stench

 = Wumpus

OK  = Safe square

V  = Visited

(University of Freiburg) Foundations of AI May 17, 2016 10 / 42



Declarative Languages

Before a system that is capable of learning, thinking, planning, explaining,
. . . can be built, one must find a way to express knowledge.

We need a precise, declarative language.

Declarative: System believes P if and only if (iff) it considers P to be
true (one cannot believe P without an idea of what it means for the
world to fulfill P).

Precise: We must know,

- which symbols represent sentences,
- what it means for a sentence to be true, and
- when a sentence follows from other sentences.

One possibility: Propositional Logic
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Basics of Propositional Logic (1)

Propositions: The building blocks of propositional logic are indivisible,
atomic statements (atomic propositions), e.g.,

“The block is red”, expressed, e.g., by the symbol “Bred”

“The wumpus is in [1,3]”, expressed, e.g., by the symbol “W1,3”

and the logical connectives “and”, “or”, and “not”, which we can use to
build formulae.
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Basics of Propositional Logic (2)

We are interested in knowing the following:

When is a proposition true?

When does a proposition follow from a knowledge base (KB)?

Symbolically: KB |= ϕ

Can we (syntactically) define the concept of derivation,

Symbolically: KB ` ϕ
And can we make sure that |= and ` are equivalent?

→ Meaning and implementation of Ask
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Syntax of Propositional Logic

Countable alphabet Σ of atomic propositions: P , Q, R, . . .

Logical formulae: P ∈ Σ
⊥
>
¬ϕ
ϕ ∧ ψ
ϕ ∨ ψ
ϕ⇒ ψ
ϕ⇔ ψ

atomic formula
falseness
truth
negation
conjunction
disjunction
implication
equivalence

Operator precedence: ¬ > ∧ > ∨ > ⇒ > ⇔. (use brackets when
necessary)

Atom: atomic formula
Literal: (possibly negated) atomic formula
Clause: disjunction of literals
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Semantics: Intuition

Atomic propositions can be true (T ) or false (F ).

The truth of a formula follows from the truth of its atomic propositions
(truth assignment or interpretation) and the connectives.

Example:
(P ∨Q) ∧R

If P and Q are false and R is true, the formula is false

If P and R are true, the formula is true regardless of what Q is.
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Semantics: Formally

A truth assignment of the atoms in Σ, or an interpretation I over Σ, is a
function

I : Σ 7→ {T, F}

Interpretation I satisfies a formula ϕ (’I |= ϕ’):

I |= >
I 6|= ⊥
I |= P iff P I = T
I 6|= ¬ϕ iff I |= ϕ
I |= ϕ ∧ ψ iff I |= ϕ and I |= ψ
I |= ϕ ∨ ψ iff I |= ϕ or I |= ψ
I |= ϕ⇒ ψ iff if I |= ϕ, then I |= ψ
I |= ϕ⇔ ψ iff if I |= ϕ if and only if I |= ψ

I satisfies ϕ (I |= ϕ) or ϕ is true under I, when I(ϕ) = T .
I can be seen as a ’possible world’
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Example

I :



P 7→ T

Q 7→ T

R 7→ F

S 7→ F

· · ·

ϕ = ((P ∨Q)⇔ (R ∨ S)) ∧ (¬(P ∧Q) ∧ (R ∧ ¬S))

Question: I |= ϕ?
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Terminology

An interpretation I is called a model of ϕ if I |= ϕ.

An interpretation is a model of a set of formulae if it fulfils all formulae of
the set.

A formula ϕ is

satisfiable if there exists I that satisfies ϕ,

unsatisfiable if ϕ is not satisfiable,

falsifiable if there exists I that doesn’t satisfy ϕ, and

valid (a tautology) if I |= ϕ holds for all I.

Two formulae are

logically equivalent (ϕ ≡ ψ) if I |= ϕ iff I |= ψ holds for all I.
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The Truth Table Method

How can we decide if a formula is satisfiable, valid, etc.?

→ Generate a truth table

Example: Is ϕ = ((P ∨H) ∧ ¬H)⇒ P valid?

P H P ∨H (P ∨H) ∧ ¬H (P ∨H) ∧ ¬H ⇒ P

F F F F T

F T T F T

T F T T T

T T T F T

Since the formula is true for all possible combinations of truth values
(satisfied under all interpretations), ϕ is valid.

Satisfiability, falsifiability, unsatisfiability likewise.
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Logical Implications

Goal: Find an algorithmic way to derive new knowledge out of a
knowledge base

1 Transform KB into a standardized representation

2 define rules that syntactically modify formulae while keeping semantic
correctness

(University of Freiburg) Foundations of AI May 17, 2016 20 / 42



Wumpus World in Propositional Logic

Symbols: B1,1, B1,2, . . . , B2,1, . . . , S1,1, . . . , P1,1, . . . ,W1,1, . . .
Meaning: B = Breeze, Bi,j = there is a breeze in (i, j) etc.

Facts and Rules:
R1: B1,1 ⇔ (P1,2 ∨ P2,1)
R2: B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1)
R3: B1,2 ⇔ (P1,1 ∨ P2,2 ∨ P1,3)
. . .
F1: ¬P1,1

F2: ¬B1,1 (no percept in (1,1))
F3: B2,1 (percept)
F4: ¬B1,2 (no percept)
. . .
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Normal Forms

A formula is in conjunctive normal form (CNF) if it consists of a
conjunction of disjunctions of literals li,j , i.e., if it has the following
form: ∧n

i=1

(∨mi
j=1 li,j

)
A formula is in disjunctive normal form (DNF) if it consists of a
disjunction of conjunctions of literals:∨n

i=1

(∧mi
j=1 li,j

)
For every formula, there exists at least one equivalent formula in CNF
and one in DNF.

A formula in DNF is satisfiable iff one disjunct is satisfiable.

A formula in CNF is valid iff every conjunct is valid.
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Producing CNF

1. Eliminate ⇒ and ⇔: α⇒ β → (¬α ∨ β) etc.

2. Move ¬ inwards: ¬(α ∧ β) → (¬α ∨ ¬β) etc.

3. Distribute ∨ over ∧: ((α ∧ β) ∨ γ) → (α ∨ γ) ∧ (β ∨ γ)

4. Simplify: α ∨ α → α etc.

The result is a conjunction of disjunctions of literals

An analogous process converts any formula to an equivalent formula in
DNF.

During conversion, formulae can expand exponentially.

Note: Conversion to CNF formula can be done polynomially if only
satisfiability should be preserved
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Logical Implication: Intuition

A set of formulae (a KB) usually provides an incomplete description of the
world, i.e., it leaves the truth values of certain propositions open.

Example: KB = {(P ∨Q) ∧ (R ∨ ¬P ) ∧ S} is definitive with respect to S,
but leaves P , Q, R open (although they cannot take on arbitrary values).

Models of the KB:

P Q R S

F T F T

F T T T

T F T T

T T T T

In all models of the KB, Q ∨R is true, i.e., Q ∨R follows logically from
KB.
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Logical Implication: Formal

The formula ϕ follows logically from a KB if ϕ is true in all models of the
KB (symbolically KB |= ϕ):

KB |= ϕ iff I |= ϕ for all models I of KB

Note: The |= symbol is a meta-symbol

Question: Can we determine KB |= ϕ without considering all
interpretations (the truth table method)?

Some properties of logical implication relationships:

Deduction theorem: KB ∪ {ϕ} |= ψ iff KB |= ϕ⇒ ψ

Contraposition theorem: KB ∪ {ϕ} |= ¬ψ iff KB ∪ {ψ} |= ¬ϕ
Contradiction theorem: KB ∪ {ϕ} is unsatisfiable iff KB |= ¬ϕ
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Proof of the Deduction Theorem

“⇒” Assumption: KB ∪ {ϕ} |= ψ, i.e., every model of KB ∪ {ϕ}
is also a model of ψ.

Let I be any model of KB. If I is also a model of ϕ, then it
follows that I is also a model of ψ.

This means that I is also a model of ϕ ⇒ ψ, i.e., KB |=
ϕ⇒ ψ.

“⇐” Assumption: KB |= ϕ⇒ ψ. Let I be any model of KB that
is also a model of ϕ, i.e., I |= KB ∪ {ϕ}.

From the assumption, I is also a model of ϕ⇒ ψ and thereby
also of ψ , i.e., KB ∪ {ϕ} |= ψ.
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Proof of the Contraposition Theorem

KB ∪ {ϕ} |= ¬ψ

iff KB |= ϕ⇒ ¬ψ (1)

iff KB |= (¬ϕ ∨ ¬ψ)

iff KB |= (¬ψ ∨ ¬ϕ)

iff KB |= ψ ⇒ ¬ϕ

iff KB ∪ {ψ} |= ¬ϕ (2)

Note:
(1) and (2) are applications of the deduction theorem.
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Inference Rules, Calculi, and Proofs

We can often derive new formulae from formulae in the KB. These new
formulae should follow logically from the syntactical structure of the KB
formulae.

Example: If KB = {. . . , (ϕ⇒ ψ), . . . , ϕ, . . .} then ψ is a logical
consequence of KB.

→ Inference rules, e.g.,
ϕ,ϕ⇒ ψ

ψ
.

Calculus: Set of inference rules (potentially including so-called logical
axioms).

Proof step: Application of an inference rule on a set of formulae.

Proof: Sequence of proof steps where every newly-derived formula is
added, and in the last step, the goal formula is produced.
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Soundness and Completeness

In the case where in the calculus C there is a proof for a formula ϕ, we
write

KB `C ϕ
(optionally without subscript C).

A calculus C is sound (or correct) if all formulae that are derivable from a
KB actually follow logically.

KB `C ϕ implies KB |= ϕ

This normally follows from the soundness of the inference rules and the
logical axioms.

A calculus is complete if every formula that follows logically from the KB
is also derivable with C from the KB:

KB |= ϕ implies KB `C ϕ
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Resolution: Idea

We want a way to derive new formulae that does not depend on testing
every interpretation.

Idea: To prove that KB |= ϕ, we can prove that KB ∪ {¬ϕ} is
unsatisfiable (contradiction theorem). Therefore, in the following we
attempt to show that a set of formulae is unsatisfiable.

Condition: All formulae must be in CNF.

However: In most cases, the formulae are close to CNF (and there exists a
fast satisfiability-preserving transformation - Theoretical Computer Science
course).

Nevertheless: In the worst case, this derivation process requires an
exponential amount of time (this is, however, probably unavoidable).
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Resolution: Representation

Assumption: All formulae in the KB are in CNF.

Equivalently, we can assume that the KB is a set of clauses. E.g.: Replace
{(P ∨Q) ∧ (R ∨ ¬P ) ∧ S} by {{P,Q}, {R,¬P}, {S}}

Due to commutativity, associativity, and idempotence of ∨, clauses can
also be understood as sets of literals. The empty set of literals is denoted
by �.

Set of clauses: ∆

Set of literals: C, D

Literal: l

Negation of a literal: l

An interpretation I satisfies C iff there exists l ∈ C such that I |= l. I
satisfies ∆ if for all C ∈ ∆ : I |= C, i.e., I 6|= �, I 6|= {�}, for all I.
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The Resolution Rule

C1∪̇{l}, C2∪̇{l}
C1 ∪ C2

C1 ∪ C2 are called resolvents of the parent clauses C1∪̇{l} and C2∪̇{l}. l
and l are the resolution literals.

Example: {a, b,¬c} resolves with {a, d, c} to {a, b, d}.

Note: The resolvent is not equivalent to the parent clauses, but it follows
from them!

Notation: R(∆) = ∆ ∪ {C | C is a resolvent of two clauses from ∆}
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Derivations

We say D can be derived from ∆ using resolution, i.e.,

∆ ` D,

if there exist C1, C2, C3, . . . , Cn = D such that

Ci ∈ R(∆ ∪ {C1, . . . , Ci−1}), for 1 ≤ i ≤ n.

Lemma (soundness) If ∆ ` D, then ∆ |= D.

Proof idea: Since all D ∈ R(∆) follow logically from ∆, the lemma results
through induction over the length of the derivation.
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Completeness?

Is resolution also complete, i.e., is

∆ |= ϕ implies ∆ ` ϕ

valid? Not in general. For example, consider:

{{a, b}, {¬b, c}} |= {a, b, c} 6` {a, b, c}

However, it can be shown that resolution is refutation-complete: ∆ is
unsatisfiable implies ∆ ` �

Theorem: ∆ is unsatisfiable iff ∆ ` �

With the help of the contradiction theorem, we can show that KB |= ϕ.
Idea: KB ∪ {¬ϕ} is unsatisfiable iff KB |= ϕ
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Resolution: Overview

Resolution is a refutation-complete proof process. There are others
(Davis-Putnam Procedure, Tableaux Procedure, . . . ).

In order to implement the process, a strategy must be developed to
determine which resolution steps will be executed and when.

In the worst case, a resolution proof can take exponential time. This,
however, very probably holds for all other proof procedures.

For CNF formulae in propositional logic, the Davis-Putnam Procedure
(backtracking over all truth values) is probably (in practice) the fastest
complete process that can also be taken as a type of resolution process.
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Where is the Wumpus? The Situation
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Where is the Wumpus? Knowledge of the Situation

B = Breeze, S = Stench, Bi,j = there is a breeze in (i, j)
¬S1,1 ¬B1,1

¬S2,1 B2,1

S1,2 ¬B1,2

Knowledge about the wumpus and smell:
R1 : ¬S1,1 ⇒ ¬W1,1 ∧ ¬W1,2 ∧ ¬W2,1

R2 : ¬S2,1 ⇒ ¬W1,1 ∧ ¬W2,1 ∧ ¬W2,2 ∧ ¬W3,1

R3 : ¬S1,2 ⇒ ¬W1,1 ∧ ¬W1,2 ∧ ¬W2,2 ∧ ¬W1,3

R4 : S1,2 ⇒W1,3 ∨W1,2 ∨W2,2 ∨W1,1

To show: KB |= W1,3
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Clausal Representation of the Wumpus World

Situational knowledge:
¬S1,1, ¬S2,1, S1,2

Knowledge of rules:
Knowledge about the wumpus and smell:
R1 : S1,1 ∨ ¬W1,1, S1,1 ∨ ¬W1,2, S1,1 ∨ ¬W2,1

R2 : . . . , S2,1 ∨ ¬W2,2, . . .
R3 : . . .
R4 : ¬S1,2 ∨W1,3 ∨W1,2 ∨W2,2 ∨W1,1

. . .

Negated goal formula: ¬W1,3
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Resolution Proof for the Wumpus World

Resolution:

¬W1,3, ¬S1,2 ∨W1,3 ∨W1,2 ∨W2,2 ∨W1,1

→ ¬S1,2 ∨W1,2 ∨W2,2 ∨W1,1

S1,2, ¬S1,2 ∨W1,2 ∨W2,2 ∨W1,1

→ W1,2 ∨W2,2 ∨W1,1

¬S1,1, S1,1 ∨ ¬W1,1

→ ¬W1,1

¬W1,1, W1,2 ∨W2,2 ∨W1,1

→ W1,2 ∨W2,2

. . .

¬W2,2, W2,2

→ �
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From Knowledge to Action

We can now infer new facts, but how do we translate knowledge into
action?

Negative selection: Excludes any provably dangerous actions.

A1,1 ∧ EastA ∧W2,1 ⇒ ¬Forward

Positive selection: Only suggests actions that are provably safe.

A1,1 ∧ EastA ∧ ¬W2,1 ⇒ Forward

Differences?

From the suggestions, we must still select an action.
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Problems with Propositional Logic

Although propositional logic suffices to represent the wumpus world, it is
rather involved.

Rules must be set up for each square.
R1 : ¬S1,1 ⇒ ¬W1,1 ∧ ¬W1,2 ∧ ¬W2,1

R2 : ¬S2,1 ⇒ ¬W1,1 ∧ ¬W2,1 ∧ ¬W2,2 ∧ ¬W3,1

R3 : ¬S1,2 ⇒ ¬W1,1 ∧ ¬W1,2 ∧ ¬W2,2 ∧ ¬W1,3

. . .

We need a time index for each proposition to represent the validity of the
proposition over time → further expansion of the rules.

→ More powerful logics exist, in which we can use object variables.
→ First-Order Predicate Logic
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Summary

Rational agents require knowledge of their world in order to make
rational decisions.

With the help of a declarative (knowledge-representation) language, this
knowledge is represented and stored in a knowledge base.

We use propositional logic for this (for the time being).

Formulae of propositional logic can be valid, satisfiable, or unsatisfiable.

The concept of logical implication is important.

Logical implication can be mechanized by using an inference calculus
→ resolution.

Propositional logic quickly becomes impractical when the world becomes
too large (or infinite).
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