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Motivation

In many cases, our knowledge of the world is incomplete (not enough
information) or uncertain (sensors are unreliable).

Often, rules about the domain are incomplete or even incorrect - in the
qualification problem, for example, what are the preconditions for an
action?

We have to act in spite of this!

Drawing conclusions under uncertainty
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Example

Goal: Be in Freiburg at 9:15 to give a lecture.

There are several plans that achieve the goal:

P1: Get up at 7:00, take the bus at 8:15, the train at 8:30, arrive at 9:00 . . .
P2: Get up at 6:00, take the bus at 7:15, the train at 7:30, arrive at 8:00 . . .
. . .

All these plans are correct, but

→ They imply different costs and different probabilities of actually
achieving the goal.

→ P2 eventually is the plan of choice, since giving a lecture is very
important, and the success rate of P1 is only 90-95%.
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Uncertainty in Logical Rules (1)

Example: Expert dental diagnosis system.

∀p[Symptom(p, toothache)⇒ Disease(p, cavity)]

→ This rule is incorrect! Better:

∀p[Symptom(p, toothache)⇒
Disease(p, cavity) ∨Disease(p, gum disease) ∨ . . .]

. . . however, we do not know all the causes.

Perhaps a causal rule is better?

∀p[Disease(p, cavity)⇒ Symptom(p, toothache)]

→ Does not allow to reason from symptoms to causes & is still wrong!
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Uncertainty in Logical Rules (2)

We cannot enumerate all possible causes, and even if we could . . .

We do not know how correct the rules are (in medicine)

. . . and even if we did, there will always be uncertainty about the patient
(the coincidence of having a toothache and a cavity that are unrelated,
or the fact that not all tests have been run)

Without perfect knowledge, logical rules do not help much!
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Uncertainty in Facts

Let us suppose we wanted to support the localization of a robot with
(constant) landmarks. With the availability of landmarks, we can narrow
down on the area.

Problem: Sensors can be imprecise.

→ From the fact that a landmark was perceived, we cannot conclude with
certainty that the robot is at that location.

→ The same is true when no landmark is perceived.

→ Only the probability increases or decreases.
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Degree of Belief and Probability Theory

We (and other agents) are convinced by facts and rules only up to a
certain degree.

One possibility for expressing the degree of belief is to use probabilities.

The agent is 90% (or 0.9) convinced by its sensor information = in 9
out of 10 cases, the information is correct (the agent believes).

Probabilities sum up the “uncertainty” that stems from lack of
knowledge.

Probabilities are not to be confused with vagueness. The predicate tall
is vague; the statement, “A man is 1.75–1.80m tall ” is uncertain.
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Uncertainty and Rational Decisions

We have a choice of actions (or plans).

These can lead to different solutions with different probabilities.

The actions have different (subjective) costs.

The results have different (subjective) utilities.

It would be rational to choose the action with the maximum expected
total utility!

Decision Theory = Utility Theory + Probability Theory
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Decision-Theoretic Agent

13 QUANTIFYING
UNCERTAINTY

function DT-AGENT(percept ) returns anaction
persistent: belief state , probabilistic beliefs about the current state of the world

action , the agent’s action

updatebelief state based onaction andpercept
calculate outcome probabilities for actions,

given action descriptions and currentbelief state
selectaction with highest expected utility

given probabilities of outcomes and utility information
return action

Figure 13.1 A decision-theoretic agent that selects rational actions.

32

Decision theory: An agent is rational exactly when it chooses the action
with the maximum expected utility taken over all results of actions.
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Axiomatic Probability Theory

A function P of formulae from propositional logic in the set [0, 1] is a
probability measure if for all propositions φ, ψ (whereby propositions are
the equivalance classes fromed by logically equivalent formulae):

1 0 ≤ P (φ) ≤ 1

2 P (true) = 1

3 P (false) = 0

4 P (φ ∨ ψ) = P (φ) + P (ψ)− P (φ ∧ ψ)

All other properties can be derived from these axioms, for example:

P (¬φ) = 1− P (φ)

since 1
(2)
= P (φ ∨ ¬φ)

(4)
= P (φ) + P (¬φ)− P (φ ∧ ¬φ)

(3)
= P (φ) + P (¬φ).
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Why are the Axioms Reasonable?

If P represents an objectively observable probability, the axioms clearly
make sense.

But why should an agent respect these axioms when it models its own
degree of belief?

→ Objective vs. subjective probabilities

The axioms limit the set of beliefs that an agent can maintain.

One of the most convincing arguments for why subjective beliefs should
respect the axioms was put forward by de Finetti in 1931. It is based on
the connection between actions and degree of belief.

→ If the beliefs are contradictory, then there exists a betting strategy (the
dutch book) against the agent, where he will definitely loose!
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Notation

We use random variable such as Weather (capitalized word), which has a
domain of ordered values. In our case that could be sunny , rain, cloudy ,
snow (lower case words).

A proposition might then be: Weather = cloudy .

If the random variable is Boolean, e.g., Headache, we may write either
Headache = true or equivalently headhache (lowercase!). Similarly, we
may write Headache = false or equivalently ¬headache.

Further, we can of course use Boolean connectors, e.g.,
¬headhache ∧Weather = cloudy .
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Unconditional Probabilities (1)

P (a) denotes the unconditional probability that it will turn out that
A = true in the absence of any other information, for example:

P (cavity) = 0.1

In case of non-Boolean random variables:

P (Weather = sunny) = 0.7

P (Weather = rain) = 0.2

P (Weather = cloudy) = 0.08

P (Weather = snow) = 0.02
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Unconditional Probabilities (2)

P(X) is the vector of probabilities for the (ordered) domain of the random
variable X:

P(Headache) = 〈0.1, 0.9〉
P(Weather) = 〈0.7, 0.2, 0.08, 0.02〉

define the probability distribution for the random variables Headache and
Weather.

P(Headache,Weather) is a 4× 2 table of probabilities of all combinations
of the values of a set of random variables.

Headache = true Headache = false

Weather = sunny P (W = sunny ∧ headache) P (W = sunny ∧ ¬headache)
Weather = rain

Weather = cloudy

Weather = snow
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Conditional Probabilities (1)

New information can change the probability.

Example: The probability of a cavity increases if we know the patient has
a toothache.

If additional information is available, we can no longer use the prior
probabilities!

P (a | b) is the conditional or posterior probability of a given that all we
know is b:

P (cavity | toothache) = 0.8

P(X | Y ) is the table of all conditional probabilities over all values of X
and Y .
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Conditional Probabilities (2)

P(Weather | Headache) is a 4× 2 table of conditional probabilities of all
combinations of the values of a set of random variables.

Headache = true Headache = false

Weather = sunny P (W = sunny | headache) P (W = sunny | ¬headache)
Weather = rain

Weather = cloudy

Weather = snow

Conditional probabilities result from unconditional probabilities (if
P (b) > 0) (by definition):

P (a | b) =
P (a ∧ b)
P (b)
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Conditional Probabilities (3)

P(X,Y ) = P(X | Y )P(Y ) corresponds to a system of equations:

P (W = sunny ∧ headache) = P (W = sunny | headache)P (headache)

P (W = rain ∧ headache) = P (W = rain | headache)P (headache)

. . . = . . .

P (W = snow ∧ ¬headache) = P (W = snow | ¬headache)P (¬headache)
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Conditional Probabilities (4)

P (a | b) = P (a ∧ b)

P (b)

Product rule: P (a ∧ b) = P (a | b)P (b)

Similarly: P (a ∧ b) = P (b | a)P (a)

a and b are independent if P (a | b) = P (a)
(equiv. P (b | a) = P (b)).
Then (and only then) it holds that P (a ∧ b) = P (a)P (b).
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Joint Probability

The agent assigns probabilities to every proposition in the domain.

An atomic event is an assignment of values to all random variables
X1, . . . , Xn (= complete specification of a state).

Example: Let X and Y be Boolean variables. Then we have the following
4 atomic events: x ∧ y, x ∧ ¬y, ¬x ∧ y, ¬x ∧ ¬y.

The joint probability distribution P(X1, . . . , Xn) assigns a probability to
every atomic event.

toothache ¬toothache
cavity 0.04 0.06

¬cavity 0.01 0.89

Since all atomic events are disjoint, the sum of all fields is 1 (disjunction of
events). The conjunction of two atomic events is necessarily false.
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Working with Joint Probability

All relevant probabilities can be computed using the joint probability by
expressing them as a disjunction of atomic events.

Examples:

P (cavity ∨ toothache) = P (cavity ∧ toothache)

+ P (¬cavity ∧ toothache)

+ P (cavity ∧ ¬toothache)

We obtain unconditional probabilities by adding across a row or column:

P (cavity) = P (cavity ∧ toothache) + P (cavity ∧ ¬toothache)

P (cavity | toothache) =
P (cavity ∧ toothache)

P (toothache)
=

0.04

0.04 + 0.01
= 0.80
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Problems with Joint Probabilities

We can easily obtain all probabilities from the joint probability.

The joint probability, however, involves kn values, if there are n random
variables with k values.

→ Difficult to represent

→ Difficult to assess

Questions:

→ Is there a more compact way of representing joint probabilities?

→ Is there an efficient method to work with this representation?

Not in general, but it can work in many cases. Modern systems work
directly with conditional probabilities and make assumptions on the
independence of variables in order to simplify calculations.
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Representing Joint Probabilites

Using the product rule P (a ∧ b) = P (a | b)P (b), joint probabilites can be
expressed as products of conditional probabilities.
P (x1, . . . , xn) = P (xn, . . . , x1)

= P (xn | xn−1 . . . , x1)P (xn−1, . . . , x1)
= P (xn | xn−1 . . . , x1)P (xn−1 | xn−2 . . . , x1)P (xn−2, . . . , x1)
= P (xn | xn−1 . . . , x1)P (xn−1 | xn−2 . . . , x1)P (xn−2 | xn−3 . . . , x1)
P (xn−3, . . . , X1)
= . . .
= P (xn | xn−1 . . . , x1)P (xn−1 | xn−2 . . . , x1) . . . P (x2 | x1)P (x1)
= Πn

i=1P (xi | xi−1 . . . x1)
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Bayes’ Rule

We know (product rule):

P (a ∧ b) = P (a | b)P (b) and P (a ∧ b) = P (b | a)P (a)

By equating the right-hand sides, we get

P (a | b)P (b) = P (b | a)P (a)

⇒ P (a | b) =
P (b | a)P (a)

P (b)

For multi-valued variables we get a set of equalities:

P(Y | X) =
P(X | Y )P(Y )

P(X)

Generalization (conditioning on background evidence e):

P(Y | X, e) =
P(X | Y, e)P(Y | e)

P(X | e)
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Applying Bayes’ Rule

P (toothache | cavity) = 0.4

P (cavity) = 0.1

P (toothache) = 0.05

P (cavity | toothache) =
0.4× 0.1

0.05
= 0.8

Why do we not try to assess P (cavity | toothache) directly?

P (toothache | cavity) (causal) is more robust than P (cavity | toothache)
(diagnostic):

P (toothache | cavity) is independent from the prior probabilities
P (toothache) and P (cavity).

If there is a cavity epidemic and P (cavity) increases,
P (toothache | cavity) does not change, but P (toothache) and
P (cavity | toothache) will change proportionally.

(University of Freiburg) Foundations of AI 25 / 67



Relative Probability

Assumption: We would also like to consider the probability that the
patient has gum disease.

P (toothache | gumdisease) = 0.7

P (gumdisease) = 0.02

Which diagnosis is more probable?

P (c | t) =
P (t | c)P (c)

P (t)
or P (g | t) =

P (t | g)P (g)

P (t)

If we are only interested in the relative probability, we need not assess
P (t):

P (c | t)
P (g | t)

=
P (t | c)P (c)

P (t)
× P (t)

P (t | g)P (g)
=
P (t | c)P (c)

P (t | g)P (g)

=
0.4× 0.1

0.7× 0.02
= 2.857

→ Important for excluding possible diagnoses.
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Normalization (1)

If we wish to determine the absolute probability of P (c | t) and we do not
know P (t), we can also carry out a complete case analysis (e.g., for c and
¬c) and use the fact that P (c | t) + P (¬c | t) = 1 (here Boolean
variables):

P (c | t) =
P (t | c)P (c)

P (t)

P (¬c | t) =
P (t | ¬c)P (¬c)

P (t)

P (c | t) + P (¬c | t) =
P (t | c)P (c)

P (t)
+
P (t | ¬c)P (¬c)

P (t)

P (t) = P (t | c)P (c) + P (t | ¬c)P (¬c)
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Normalization (2)

By substituting into the first equation:

P (c | t) =
P (t | c)P (c)

P (t | c)P (c) + P (t | ¬c)P (¬c)

For random variables with multiple values:

P(Y | X) = αP(X | Y )P(Y )

where α is the normalization constant needed to make the entries in
P(Y | X) sum to 1 for each value of X.

Example: α(.1, .1, .3) = (.2, .2, .6).
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Example

Your doctor tells you that you have tested positive for a serious but rare
(1/10000) disease. This test (t) is correct to 99% (1% false positive & 1%
false negative results).

What does this mean for you?

P (d | t) =
P (t | d)P (d)

P (t)
=

P (t | d)P (d)

P (t | d)P (d) + P (t | ¬d)P (¬d)

P (d) = 0.0001 P (t | d) = 0.99 P (t | ¬d) = 0.01

P (d | t) =
0.99×0.0001

0.99×0.0001+0.01×0.9999
=

0.000099

0.000099+0.009999

=
0.000099

0.010088
≈ 0.01

Moral: If the test imprecision is much greater than the rate of occurrence
of the disease, then a positive result is not as threatening as you might
think.
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Multiple Evidence (1)

A probe by the dentist catches (Catch = true) in the aching tooth
(Toothache = true) of a patient. We already know that
P (cavity | toothache) = 0.8. Furthermore, using Bayes’ rule, we can
calculate:

P (cavity | catch) = 0.95

But how does the combined evidence (tooth ∧ catch) help?

Using Bayes’ rule, the dentist could establish:

P (cav | tooth ∧ catch) =
P (tooth ∧ catch | cav)× P (cav)

P (tooth ∧ catch)

P (cav | tooth ∧ catch) = αP (tooth ∧ catch | cav)× P (cav)
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Multiple Evidence (2)

Problem: The dentist needs P (tooth ∧ catch | cav), i.e., diagnostic
knowledge of all combinations of symptoms in the general case.

It would be nice if tooth and catch were independent but they are not:
P (tooth | catch) 6= P (tooth) - if a probe catches in the tooth, it probably
has cavity which probably causes toothache.

They are independent given we know whether the tooth has cavity:

P (tooth | catch, cav) = P (tooth | cav)

If one already knows, that there is a cavity, then the additional knowledge
of the probe catches does not change the probabilty.

P (tooth ∧ catch | cav) =

P (tooth | catch, cav)P (catch | cav) = P (tooth | cav)P (catch | cav)

(University of Freiburg) Foundations of AI 31 / 67



Multiple Evidence (2)

Problem: The dentist needs P (tooth ∧ catch | cav), i.e., diagnostic
knowledge of all combinations of symptoms in the general case.

It would be nice if tooth and catch were independent but they are not:
P (tooth | catch) 6= P (tooth) - if a probe catches in the tooth, it probably
has cavity which probably causes toothache.

They are independent given we know whether the tooth has cavity:

P (tooth | catch, cav) = P (tooth | cav)

If one already knows, that there is a cavity, then the additional knowledge
of the probe catches does not change the probabilty.

P (tooth ∧ catch | cav) =

P (tooth | catch, cav)P (catch | cav) = P (tooth | cav)P (catch | cav)

(University of Freiburg) Foundations of AI 31 / 67



Conditional Independence

Thus our diagnostic problem turns into:

P (cav | tooth ∧ catch) = αP (tooth ∧ catch | cav)P (cav)

= αP (tooth | catch, cav)P (catch | cav)P (cav)

= αP (tooth | cav)P (catch | cav)P (cav)

The general definition of conditional independence of two variables X and
Y given a third variable Z is:

P(X,Y | Z) = P(X | Z)P(Y | Z)

(University of Freiburg) Foundations of AI 32 / 67



Conditional Independence

Thus our diagnostic problem turns into:

P (cav | tooth ∧ catch) = αP (tooth ∧ catch | cav)P (cav)

= αP (tooth | catch, cav)P (catch | cav)P (cav)

= αP (tooth | cav)P (catch | cav)P (cav)

The general definition of conditional independence of two variables X and
Y given a third variable Z is:

P(X,Y | Z) = P(X | Z)P(Y | Z)

(University of Freiburg) Foundations of AI 32 / 67



Conditional Independence

Thus our diagnostic problem turns into:

P (cav | tooth ∧ catch) = αP (tooth ∧ catch | cav)P (cav)

= αP (tooth | catch, cav)P (catch | cav)P (cav)

= αP (tooth | cav)P (catch | cav)P (cav)

The general definition of conditional independence of two variables X and
Y given a third variable Z is:

P(X,Y | Z) = P(X | Z)P(Y | Z)

(University of Freiburg) Foundations of AI 32 / 67



Conditional Independence

Thus our diagnostic problem turns into:

P (cav | tooth ∧ catch) = αP (tooth ∧ catch | cav)P (cav)

= αP (tooth | catch, cav)P (catch | cav)P (cav)

= αP (tooth | cav)P (catch | cav)P (cav)

The general definition of conditional independence of two variables X and
Y given a third variable Z is:

P(X,Y | Z) = P(X | Z)P(Y | Z)

(University of Freiburg) Foundations of AI 32 / 67



Conditional Independence - Further Example

Eating icecream and observing sunshine is not independent

P (ice | sun) 6= P (ice)

The variables Ice and Sun are not independent.
But if the reason for eating icecream is simply that it is hot outside, then
the additional observation of sunshine does not make a difference:

P (ice | sun, hot) = P (ice | hot)

The variables Ice and Sun are conditionally independent given that
Hot = true is observed.
The knowledge about indpendence often comes from insight of the domain
and is part of the modelling of the problem. Conditional indpendence can
often be exploited to make things simpler (see later).
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Recursive Bayesian Updating

Multiple evidence can be reduced to prior probabilities and conditional
probabilities (assuming conditional independence).
The general combination rule, if Z1 and Z2 are independent given X is

P(X | Z1, Z2) = αP(X)P(Z1 | X)P(Z2 | X)

where α is the normalization constant.
Generalization: Recursive Bayesian Updating

P(X | Z1, . . . , Zn) = αP(X)

n∏
i=1

P(Zi | X)
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Types of Variables

Variables can be discrete or continuous:

Discrete variables

Weather : sunny , rain, cloudy , snow

Cavity : true, false (Boolean)

Continuous variables

Tomorrow’s maximum temperature in Berkeley

Domain can be the entire real line or any subset.

Distributions for continuous variables are typically given by probability
density functions.
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Marginalization

For any sets of variables Y and Z we have

P(Y) =
∑
z

P(Y, z) =
∑
z

P(Y | z)P(z)
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Summary

Uncertainty is unavoidable in complex, dynamic worlds in which agents
are ignorant.

Probabilities express the agent’s inability to reach a definite decision.
They summarize the agent’s beliefs.

Conditional and unconditional probabilities can be formulated over
propositions.

If an agent disrespects the theoretical probability axioms, it is likely to
demonstrate irrational behaviour.

Bayes’ rule allows us to calculate known probabilities from unknown
probabilities.

Multiple evidence (assuming independence) can be effectively
incorporated using recursive Bayesian updating.
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Bayesian Networks

Example domain: I am at work. My neighbour John calls me to tell me,
that my alarm is ringing. My neighbour Mary doesn’t call. Sometimes, the
alarm is started by a slight earthquake.

Question: Is there a burglary?

Variables: Burglary , Earthquake, Alarm, JohnCalls, MaryCalls.
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Bayesian Networks

Domain knowledge/ assumptions:

Events Burglary and Earthquake are independent. (of course, to be
discussed: a burglary does not cause an earthquake, but a burglar might
use an earthquake to do the burglary. Then the independence
assumption is not true. This is a design decision!)

Alarm might be activated by burglary or earthquake

John calls if and only if he heard the alarm. His call probability is not
influenced by the fact, that there is an earthquake at the same time.
Same for Mary.

How to model this domain efficiently? Goal: Answer questions.
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Bayesian Networks

(also belief networks, probabilistic networks, causal networks)

The random variables are the nodes.

Directed edges between nodes represent direct influence.

A table of conditional probabilities (CPT) is associated with every node,
in which the effect of the parent nodes is quantified.

The graph is acyclic (a DAG).

Remark: Burglary and
Earthquake are denoted as
the parents of Alarm

Alarm

Earthquake

MaryCallsJohnCalls

Burglary
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The Meaning of Bayesian Networks

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

Alarm depends on Burglary and Earthquake.
MaryCalls only depends on Alarm.
P (maryCalls | alarm, burglary) = P (maryCalls | alarm) or
P (maryCalls | alarm, burglary , johnCalls, earthquake) =
P (maryCalls | alarm)

→ Bayesian Networks can be considered as sets of (conditional)
independence assumptions.
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Bayesian Networks and the Joint Probability

Bayesian networks can be seen as a more compact representation of joint
probabilities.

Let all nodes X1, . . . , Xn be ordered topologically according to the arrows
in the network. Let x1, . . . , xn be the values of the variables. Then

P (x1, . . . , xn) = P (xn | xn−1, . . . , x1) · . . . · P (x2 | x1)P (x1)

=
∏n

i=1P (xi | xi−1, . . . , x1)

From the independence assumption, this is equivalent to

P (x1, . . . , xn) =
∏n

i=1P (xi | parents(xi))

We can calculate the joint probability from the network topology and the
CPTs!
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Example

B

T
T
F
F

E

T
F
T
F

P(A)

.95

.29

.001

.001

P(B)
.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

A P(J)

T
F

.90

.05

A P(M)

T
F

.70

.01

.94

Only prob. for pos. events are given, negative: P (¬x) = 1− P (x). Note:
the size of the table depends on the number of parents!

P (j,m, a,¬b,¬e) =

P (j | m, a,¬b,¬e)P (m | a,¬b,¬e)P (la | ¬b,¬e)P (¬b | ¬e)P (¬e)
= P (j | a)P (m | a)P (a | ¬b,¬e)P (¬b)P (¬e)
= 0.9× 0.7× 0.001× 0.999× 0.998 = 0.00062
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Compactness of Bayesian Networks

For the explicit representation of Bayesian networks, we need a table of
size 2n where n is the number of variables.

In the case that every node in a network has at most k parents, we only
need n tables of size 2k (assuming Boolean variables).

Example: n = 20 and k = 5

→ 220 = 1, 048, 576 and 20× 25 = 640 different explicitly-represented
probabilities!

→ In the worst case, a Bayesian network can become exponentially large,
for example if every variable is directly influenced by all the others.

→ The size depends on the application domain (local vs. global
interaction) and the skill of the designer.
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Naive Design of a Network

Order all variables

Take the first from those that remain

Assign all direct influences from nodes already in the network to the
new node (Edges + CPT).

If there are still variables in the list, repeat from step 2.
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Example 1

M,J,A,B,E
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Example 2

M,J,E,B,A
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Example

left = M,J,A,B,E, right = M,J,E,B,A

JohnCalls

MaryCalls

Alarm

Burglary

Earthquake

MaryCalls

Alarm

Earthquake

Burglary

JohnCalls

(a) (b)

→ Appears to be an attempt to build a diagnostic model of symptoms and
causes, which always leads to dependencies between causes that are
actually independent and symptoms that appear separately.
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Inference in Bayesian Networks

Instantiating evidence variables and sending queries to nodes.

B

T
T
F
F

E

T
F
T
F

P(A)

.95

.29

.001

.001

P(B)
.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

A P(J)

T
F

.90

.05

A P(M)

T
F

.70

.01

.94

What is
or

P (burglary | johncalls)
P (burglary | johnCalls,maryCalls)?
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Conditional Independence Relations
in Bayesian Networks (1)

A node is conditionally independent of its non-descendants given its
parents.

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j
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Example

JohnCalls is independent of Burglary and Earthquake given the value of
Alarm.

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

(University of Freiburg) Foundations of AI 51 / 67



Conditional Independence Relations
in Bayesian Networks (2)

A node is conditionally independent of all other nodes in the network given
the Markov blanket, i.e., its parents, children and children’s parents.

. . .

. . .U1 Um

Yn

Znj

Y1

Z1j
X
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Example

Burglary is independent of JohnCalls and MaryCalls, given the values of
Alarm and Earthquake, i.e.,

P (Burglary | JohnCalls,MaryCalls,Alarm,Earthquake)

= P (Burglary | Alarm,Earthquake)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary
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Exact Inference in Bayesian Networks

Compute the posterior probability distribution for a set of query variables
X given an observation, i.e., the values of a set of evidence variables E.

Complete set of variables is X ∪ E ∪ Y

Y are called the hidden variables

Typical query P (X | e) where e are the observed values of E.

In the remainder: X is a singleton

Example:
P(Burglary | JohnCalls = true,MaryCalls = true) = (0.284, 0.716)
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Inference by Enumeration

P (X | e) = αP (X, e) =
∑
y

αP (X, e, y)

The network gives a complete representation of the full joint
distribution.

A query can be answered using a Bayesian network by computing sums
of products of conditional probabilities from the network.

We sum over the hidden variables.

(University of Freiburg) Foundations of AI 55 / 67



Example

Consider P(Burglary | JohnCalls = true,
MaryCalls = true)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

The evidence variables are

JohnCalls and
MaryCalls.

The hidden variables are Earthquake and
Alarm.

We have: P(B | j,m) = αP(B, j,m)

= α
∑
e

∑
a

P(B, j,m, e, a)

If we consider the independence of variables, we obtain for B = true

P (b | j,m) = α
∑
e

∑
a

P (j | a)P (m | a)P (a | e, b)P (e)P (b)

Reorganization of the terms yields:

P (b | j,m) = αP (b)
∑
e

P (e)
∑
a

P (a | e, b)P (j | a)P (m | a)
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Recall Bayesian Network for Domain

B

T
T
F
F

E

T
F
T
F

P(A)

.95

.29

.001

.001

P(B)
.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

A P(J)

T
F

.90

.05

A P(M)

T
F

.70

.01

.94
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Evaluation of P (b | j,m)

P (b | j,m) = αP (b)
∑
e

P (e)
∑
a

P (a | e, b)P (j | a)P (m | a)

P(j|a)
.90

P(m|a)
.70 .01

P(m|¬a)

.05
P( j|¬a ) P( j|a)

.90

P(m|a)
.70 .01

P(m|¬a)

.05
P( j|¬a )

P(b)
.001

P(e)
.002

P(¬e)
.998

P(a|b,e)
.95 .06

P(¬a|b,¬e)
.05
P(¬a|b,e)

.94
P(a|b,¬e)

P(B | j,m) = α(0.0006, 0.0015) = (0.284, 0.716)
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Enumeration Algorithm for Answering Queries
on Bayesian Networks

14 PROBABILISTIC
REASONING

function ENUMERATION-ASK(X ,e,bn) returns a distribution overX
inputs: X , the query variable

e, observed values for variablesE
bn, a Bayes net with variables{X} ∪ E ∪ Y /* Y = hidden variables*/

Q(X )← a distribution overX , initially empty
for each valuexi of X do

Q(xi)← ENUMERATE-ALL(bn.VARS,exi )
whereexi is e extended withX = xi

return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars ,e) returns a real number
if EMPTY?(vars) then return 1.0
Y ← FIRST(vars)
if Y has valuey in e

then return P (y | parents(Y )) × ENUMERATE-ALL(REST(vars),e)
else return

P

y P (y | parents(Y )) × ENUMERATE-ALL(REST(vars),ey)
whereey is e extended withY = y

Figure 14.9 The enumeration algorithm for answering queries on Bayesian networks.

function ELIMINATION -ASK(X ,e,bn) returns a distribution overX
inputs: X , the query variable

e, observed values for variablesE
bn, a Bayesian network specifying joint distributionP(X1, . . . ,Xn)

factors← [ ]
for each var in ORDER(bn.VARS) do

factors← [MAKE-FACTOR(var , e)|factors ]
if var is a hidden variablethen factors←SUM-OUT(var , factors )

return NORMALIZE(POINTWISE-PRODUCT(factors ))

Figure 14.10 The variable elimination algorithm for inference in Bayesian networks.

33
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Properties of the Enumeration-Ask Algorithm

The Enumeration-Ask algorithm evaluates the trees in a depth-first
manner.

Space complexity is linear in the number of variables.

Time complexity for a network with n Boolean variables is O(2n), since
in the worst case, all terms must be evaluated for the two cases (“true”
and “false”)
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Variable Elimination

The enumeration algorithm can be improved significantly by eliminating
repeating or unnecessary calculations.

The key idea is to evaluate expressions from right to left (bottom-up)
and to save results for later use.

Additionally, unnecessary expressions can be removed.
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Example

Let us consider the query P (JohnCalls | Burglary = true).

The nested sum is

P (j, b) = αP (b)
∑
e

P (e)
∑
a

P (a | b, e)P (j, a)
∑
m

P (m | a)

Obviously, the rightmost sum equals 1 so that it can safely be dropped.

general observation: variables, that are not query or evidence variables
and not ancestor nodes of query or evidence variables can be removed.
Variable elimination repeatedly removes these variables and this way
speeds up computation.

within example: Alarm and Earthquake are ancestor nodes of query
variable JohnCalls and can not be removed. MaryCalls is neither a
query nor an evidence variable and no ancestor node. Therefore it can
be removed.
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Complexity of Exact Inference

If the network is singly connected or a polytree (at most one undirected
path between two nodes in the graph), the time and space complexity of
exact inference is linear in the size of the network.

The burglary example is a typical singly connected network.

For multiply connected networks inference in Bayesian Networks is
NP-hard.

There are approximate inference methods for multiply connected
networks such as sampling techniques or Markov chain Monte Carlo.
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Other Approaches (1)

Rule-based methods with “certainty factors”.

Logic-based systems with weights attached to rules, which are
combined using inference.

Had to be designed carefully to avoid undesirable interactions
between different rules.

Might deliver incorrect results through overcounting of evidence.

Their use is no longer recommended.
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Other Approaches (2)

Dempster-Shafer Theory

Allows the representation of ignorance as well as uncertainly.

Example: If a coin is fair, we assume P (Heads) = 0.5. But what if we
do not know if the coin is fair? → Bel(Heads) = 0, Bel(Tails) = 0.
If the coin is 90% fair, 0.5× 0.9, i.e. Bel(Heads) = 0.45.

→ Interval of probabilities is [0.45, 0.55] with the evidence, [0, 1] without.

→ The notion of utility is not yet well understood in Dempster-Shafer
Theory.
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Other Approaches (3)

Fuzzy logic and fuzzy sets

A means of representing and working with vagueness, not uncertainty.

Example: The car is fast.

Used especially in control and regulation systems.

In such systems, it can be interpreted as an interpolation technique.
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Summary

Bayesian Networks allow a compact representation of joint probability
distribution.

Bayesian Networks provide a concise way to represent conditional
independence in a domain.

Inference in Bayesian networks means computing the probability
distribution of a set of query variables, given a set of evidence variables.

Exact inference algorithms such as variable elimination are efficient for
poly-trees.

In complexity of belief network inference depends on the network
structure.

In general, Bayesian network inference is NP-hard.
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