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Probabilistic Robotics

Key Idea:

Explicit representation of uncertainty
(using the calculus of probability theory)

= Perception = state estimation
= Action = utility optimization



Axioms of Probability Theory

P(A) denotes probability that proposition A is true.

" 0<P(A)L]
= P(True)=1 P(False)=0

. P(AvB)=P(A)+P(B)-P(AAB)



A Closer Look at Axiom 3

P(Av B)=P(A)+P(B)-P(AAB)

True
A AAB B




Using the AXioms

P(Av—-A) = P(A)+P-A)-P(Ar—-A)
P(True) = P(A)+P(-A)—P(False)
1 = P(A)+P(-A)-0

P—A) = 1-P(A)



Discrete Random Variables

= X denotes a random variable

= X can take on a countable number of values
IN {Xy, Xy, ..., X}

= P(X=Xx;) or P(x;) Is the probability that the
random variable X takes on value x;

= P(-) Is called probability mass function

= E.g. P(Room):<0.7, 0.2, 0.08,0.02>



Continuous Random Variables

= X takes on values in the continuum.
= p(X=x) or p(x) Is a probability density
function

P(x € [a,b])= j p(x) dx

a

= E.Q. 00 |
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“Probability Sums up to One”

Discrete case Continuous case

Y P(x)=1 | p(x) dx=1



Joint and Conditiona

= P(X=xand Y=y) = P(x,y)

| Probability

= |[f X and Y are independent then

P(x,y) = P(x) P(y)
= P(x|y)Is the probability
P(x]y) =PXxy)/

of x given y

2(y)

P(x,y) =P(x]|y)P(y)

= |[f X and Y are independent then

P(x]y) =P(X)



Law of Total Probability

Discrete case Continuous case

P)= Y PX|YPY)  p(x)=| p(x| Y)p(y) dy
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Marginalization

Discrete case

P(x)=) P(x,y)

Continuous case

p(x)= | p(x ) dy

11



Bayes Formula

R(x y)=P(x| y)P(y) = P(y| x)P(x)

—

P(y| x) P(x) likelihood - prior

P(x| y)=

P(y) evidence
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Normalization

P(y| x) P(X) _
Py ! P(y| x) P(x)

_ -1 __ 1
=P = S B 0P

P(x| y)=

Algorithm:

Vx:aux,, = P(y| X) P(X)

1
" 2_auX,,

Vx:P(x|y)=naux,,
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Bayes Rule
with Background Knowledge

Pix|y.2)= VI g(i)‘l;’)(x\z)
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Conditional Independence
P(x,y|2)=P(x|2)P(y|2)
= Equivalent to P(x|z)=P(x]|z,y)
and P(y|z)=P(y|z,x)

= But this does not necessarily mean
P(x,y)=P(x)P(y)

(independence/marginal independence)
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Simple Example of State Estimation

= Suppose a robot obtains measurement z
= What is P(open | z)?

-
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Causal vs. Diagnhostic Reasoning

= P(open|z) Is diagnostic
= P(z|open) is causal

* |n some situattans, causal knowledge

IS easier to obtain count frequencies!

= Bayes rule allows us to us€ causal
knowledge:

P(z | open)P(open)

P(open|z) = P (2)
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Example

= P(z|open) = 0.6 P(z]—open) = 0.3
= P(open) = P(—open) = 0.5

P(z | open)P(open)
P(z |open) p(open) + P(z | —open) p(—open)
0.6-0.5 03
0.6-05+0.3-:05 0.3+0.15

P(open|z) =

=0.67

P(open|z) =

= 7 raises the probability that the door is open
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Combining Evidence

= Suppose our robot obtains another
observation z,

= How can we integrate this new information?

= More generally, how can we estimate
P(x |z, ..., 2,)?

19



Recursive Bayesian Updating

P(z| X2 ,z:-1) P(x|z,] ,Z0-1)

P(x| 2l ,z)=

P(z|z)] ,z-1)

Markov assumption:

z, IS Independent of z,,...,z, , If we know X

P(z:| x) P(x| z,1 ,2z:1-1)

P(x|z,d ,z)=

P(z:|z,0 ,zZ1-1)

=7 P(zq| X) P(x| zu

=n..| 1] Pz x)

_i=1...n

:|Z11)

A(x)
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Example: Second Measurement

= P(z,|open) = 0.25 P(z,|—-open) = 0.3
= P(open|z,)=2/3

i P(z, | open) P(open| z)
P(Openl Zzs-zl) P(Zl |open) P(opanl Zl)+ P(z2 |—.opa'7) P(—lopml ;)

12 11
3 -6 _
3

6 - _
T T R S

4
1 2
e
3

43103 6 10 15

* z, lowers the probability that the door is open
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Actions

= Often the world is dynamic since
= actions carried out by the robot,
= actions carried out by other agents,
= Or just the time passing by
change the world

= How can we incorporate such actions?
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Typical Actions

= The robot turns its wheels to move

= The robot uses its manipulator to grasp
an object

= Plants grow over time ...

= Actions are never carried out with
absolute certainty

= |n contrast to measurements, actions
generally increase the uncertainty
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Modeling Actions

* To Incorporate the outcome of an
action u into the current “belief”, we
use the conditional pdf

P(x | u, X’)

= This term specifies the pdf that
executing u changes the state
from X’ to x.
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Example: Closing the door

-
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State Transitions

P(x | u, x’) for u = “close door”:

0.9 ™
0.1 ( open m

0

If the door is open, the action “close door”
succeeds In 90% of all cases
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Integrating the Outcome of Actions

Continuous case:
P(x|u)= J- P(x|u x")P(x' &) dx’

Discrete case:

P(x|u)= ) P(x|u x"P(x' a8

We will make an independence assumption to

get rid of the U in the second factor In the
sum.
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Example: The Resulting Belief
P(closed | u)="Y_P(closed | u, x")P(x")
= P(closed | u, open)P(open)

+ P(closed | u, closed)P(closed)
9 5 1.3 15

10 8 1 8 16
P(open|u) =) ,P(open| u x')P(x’)
= P(open| u, open)P(open)
+ P(open | u, closed)P(closed)
1 5 0 3 |

“10 871 8 16
—1— P(closed | U)
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Bayes Filters: Framework

= Glven:
= Stream of observations z and action data u:

dt — {U], %9D 9utazt}

= Sensor model P(z | x)
= Action model P(x | u, x’)
* Prior probability of the system state P(x)

= Wanted:
= Estimate of the state X of a dynamical system

= The posterior of the state is also called Belief:

Bel(x)=P(x,|u,z,0 ,u,7)
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Markov Assumption

P(Zt | XO:t’ ;:t—D ul:t) — P(Zt | Xt)
P(Xt | Xl:t—l’ Zl:t—l’ ul:t) — P(Xt | Xt—l’ ut)

Underlying Assumptions

= Static world

* |Independent noise

= Perfect model, no approximation errors
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Zz = observation
u = action
X = state

Bayes Filters

Bel(x)=P(x, 14,20 ,u,2)
eoves =1 P(Z| %, U, 3,0 ,4) P0G |4,2,0 1)
varkov =11 P(Z | x,) P(X, |U,z,0 ,u)
oo =11 P71 %) | POGIU,2,0 .4, %)

P(x, | u, 2,0 ,u) dx,
wakor =1 P(z] %) | POG Uy X, ) POX, |4 2,00 1) 0,
wakor — =nP(z| %) | Pty X )P, 42,0 ,2,,) dX,,

=Pz, | %) | P(%, U, X,,) Bal(x,,) d,,
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Bel(x,) =nP(z, | xt)j P(x, [u,, %._;)Bel(x_;)dx,_,

Algorithm Bayes_ filter(Bel(x), d):
=0
If d is a perceptual data item z then
For all x do
Bel'(x) = P(z| x)Bel(x)
1= 1+ Bel'(x)
For all x do
Bel'(x)=1"Bel'(x)

Else if d Is an action data item u then

© @ NO O~ DNE

=
©

For all x do

Bd'(x)= | P(x|u x') Bel(x')
Return Bel '(x)

P
N




Bayes Filters are Familiar!

Bel(xt) = 77|:)(Zt | Xt)j P(Xt | U, Xt_l)Bel(Xt—l)dXt—l

= Kalman filters

= Particle filters

= Hidden Markov models

= Dynamic Bayesian networks

= Partially Observable Markov Decision
Processes (POMDPs)
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Probabilistic Localization




Probabilistic Localization

Bel(x | z,u) = ap(z|x) //p(az | u, ") Bel(z")dx'
X




Summary

= Bayes rule allows us to compute
probabilities that are hard to assess

otherwise.

= Under the Markov assumption,
recursive Bayesian updating can be
used to efficiently combine evidence.

= Bayes filters are a probabilistic tool
for estimating the state of dynamic
systems.
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