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Probabilistic Motion Models 

Introduction to 
Mobile Robotics 

Wolfram Burgard 
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Robot Motion 

 Robot motion is inherently uncertain. 
 How can we model this uncertainty? 
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Dynamic Bayesian Network for 
Controls, States, and Sensations 
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Probabilistic Motion Models 
 To implement the Bayes Filter, we need the 

transition model                       . 

 The term                        specifies a posterior 
probability, that action ut carries the robot 
from xt-1 to xt. 

 In this section we will discuss, how  
                 can be modeled based on the 
motion equations and the uncertain 
outcome of the movements.  
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Coordinate Systems 
 The configuration of a typical wheeled robot in 3D 

can be described by six parameters. 

 This are the three-dimensional Cartesian 
coordinates plus the three Euler angles for roll, 
pitch, and yaw. 

 For simplicity, throughout this section we consider 
robots operating on a planar surface. 

 The state space of such 
systems is three-
dimensional (x,y,θ). 
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Typical Motion Models 

 In practice, one often finds two types of 
motion models: 
 Odometry-based 
 Velocity-based (dead reckoning) 

 Odometry-based models are used when 
systems are equipped with wheel encoders. 

 Velocity-based models have to be applied 
when no wheel encoders are given.  

 They calculate the new pose based on the 
velocities and the time elapsed. 
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Example Wheel Encoders 
These modules  provide 
+5V output when they 
"see" white, and a 0V 
output when they "see" 
black.  

These disks are 
manufactured out of high 
quality laminated color 
plastic to offer a very crisp 
black to white transition. 
This enables a wheel 
encoder sensor to easily 
see the transitions.  

Source: http://www.active-robots.com/ 



8 

Dead Reckoning 

 Derived from “deduced reckoning.” 
 Mathematical procedure for determining the 

present location of a vehicle. 
 Achieved by calculating the current pose of 

the vehicle based on its velocities and the 
time elapsed. 

 Historically used to log the position of ships. 

[Image source:  
Wikipedia, LoKiLeCh] 
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Reasons for Motion Errors of 
Wheeled Robots 

bump 

ideal case different wheel 
diameters 

carpet 
and many more … 



Odometry Model 

22 )'()'( yyxxtrans −+−=δ

θδ −−−= )','(atan21 xxyyrot

12 ' rotrot δθθδ −−=

• Robot moves from           to            .  
• Odometry information                           .  

θ,, yx ',',' θyx

transrotrotu δδδ ,, 21=

transδ
1rotδ

2rotδ

θ,, yx

',',' θyx



11 

The atan2 Function 
 Extends the inverse tangent and correctly 

copes with the signs of x and y. 



Noise Model for Odometry 
 The measured motion is given by the true 

motion corrupted with noise. 
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Typical Distributions for 
Probabilistic Motion Models 
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Calculating the Probability 
Density (zero-centered) 

 For a normal distribution 
 
 
 
 

 For a triangular distribution 

1. Algorithm prob_normal_distribution(a,b): 
  

2. return   

1. Algorithm prob_triangular_distribution(a,b): 
  

2. return   

query point 

std. deviation 



1. Algorithm motion_model_odometry(x, x’,u) 
2.   
3.   
4.   
5.   
6.   
7.   
8.   
9.   
10.   

11. return  p1 · p2 · p3 
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Calculating the Posterior  
Given x, x’, and Odometry 
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 odometry params (u) 

   values of interest (x,x’) 

odometry  hypotheses  



Application 
 Repeated application of the motion model 

for short movements. 
 Typical banana-shaped distributions 

obtained for the 2d-projection of the 3d 
posterior. 
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u 

u 

x 



Sample-Based Density Representation  
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Sample-Based Density Representation  
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How to Sample from a Normal  
Distribution? 
 Sampling from a normal distribution 

 
 
 

 

1. Algorithm sample_normal_distribution(b): 
  

2. return   
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Normally Distributed Samples 

106 samples 
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How to Sample from Normal or 
Triangular Distributions? 
 Sampling from a normal distribution 

 
 
 
 

 Sampling from a triangular distribution 

1. Algorithm sample_normal_distribution(b): 
  

2. return   

1. Algorithm sample_triangular_distribution(b): 
  

2. return   
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For Triangular Distribution 

103 samples 104 samples 

106 samples 105 samples 



How to Obtain Samples from 
Arbitrary Functions? 

23 



Rejection Sampling 
 Sampling from arbitrary distributions 
 Sample x from a uniform distribution from [-b,b] 
 Sample c from [0, max f] 
 if f(x) > c   keep the sample 

otherwise  reject the sample  
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Rejection Sampling 

 Sampling from arbitrary distributions 

1. Algorithm sample_distribution(f,b):  
2. repeat 
3.    
4.   
5. until  (                ) 
6. return 
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Example 
 Sampling from  



Sample Odometry Motion Model 
1. Algorithm sample_motion_model(u, x): 
         
1.   
2.   
3.   

 
4.   
5.   
6.   

  
7. Return   
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Examples (Odometry-Based) 



Sampling from Our Motion 
Model 

Start 
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Velocity-Based Model 

θ-90 



Noise Model for the Velocity-
Based Model 
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 The measured motion is given by the true 
motion corrupted with noise. 
 
 
 
 
 
 
 Discussion: What is the disadvantage of this 

noise model? 

|||| 21
ˆ ωααε ++= vvv

|||| 43
ˆ ωααεωω ++= v



Noise Model for the Velocity-
Based Model 
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 The       -circle constrains the final 
orientation (2D manifold in a 3D space) 
 Better approach: 

|||| 21
ˆ ωααε ++= vvv

|||| 65
ˆ ωααεγ += v

|||| 43
ˆ ωααεωω ++= v

Term to account for the final rotation 

)ˆ,ˆ( ωv



Motion Including 3rd Parameter 
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Term to account for the final rotation 
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Equation for the Velocity Model 

Center of circle: 

some constant (distance to ICC) 
(center of circle is orthogonal  
to the initial heading) 
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Equation for the Velocity Model 

Center of circle: 

some constant 

some constant (the center of the circle lies 
on a ray half way between x and x’ and is 
orthogonal to the line between x and x’) 
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Equation for the Velocity Model 

Center of circle: 

some constant 

Allows us to solve the equations to: 
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Equation for the Velocity Model 

and 



Equation for the Velocity Model 
 The parameters of the circle: 

 
 
 

 allow for computing the velocities as 
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Posterior Probability for 
Velocity Model 
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Sampling from Velocity Model 



Examples (Velocity-Based) 



Map-Consistent Motion Model 

),|'( xuxp ),,|'( mxuxp≠ 

),|'()|'(),,|'( xuxpmxpmxuxp η=Approximation: 



43 

Summary 
 We discussed motion models for odometry-based 

and velocity-based systems 
 We discussed ways to calculate the posterior 

probability p(x’| x, u). 
 We also described how to sample from p(x’| x, u). 
 Typically the calculations are done in fixed time 

intervals ∆t. 
 In practice, the parameters of the models have to 

be learned. 
 We also discussed how to improve this motion 

model to take the map into account.  
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