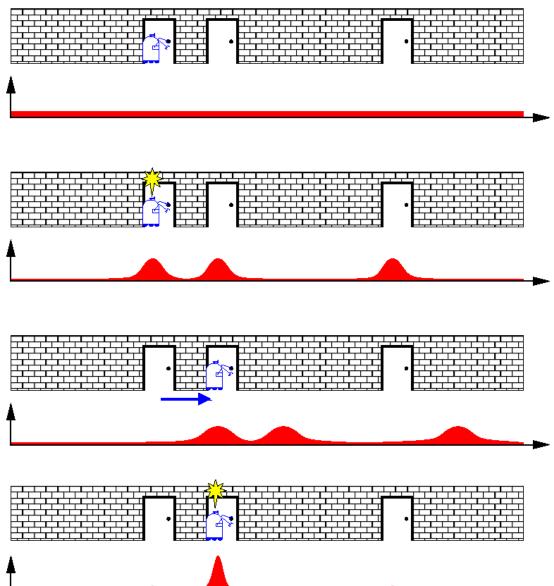
Introduction to Mobile Robotics

Bayes Filter – Discrete Filters

Wolfram Burgard

 $Bel(x \mid z, u) = \alpha p(z \mid x) \int_{x'} p(x \mid u, x') Bel(x') dx'$



Piecewise Constant

▲ Bel(s)		s
P(o s)		
		s •
Bel(s)		
	 cfb	s
[≜] Bel(s)		
00(3)		
	 	s 🕨
		3 >
P(ols)		S
P(a s)		s s s
P(a s)		s
P(a s)		s

Discrete Bayes Filter Algorithm

- 1. Algorithm **Discrete_Bayes_filter**(*Bel(x),d*):
- *2.* η=0
- 3. If *d* is a perceptual data item *z* then
- 4. For all *x* do
- 5. $Bel'(x) = P(z \mid x)Bel(x)$

$$\theta. \qquad \eta = \eta + Bel'(x)$$

7. For all x do

8.
$$Bel'(x) = \eta^{-1}Bel'(x)$$

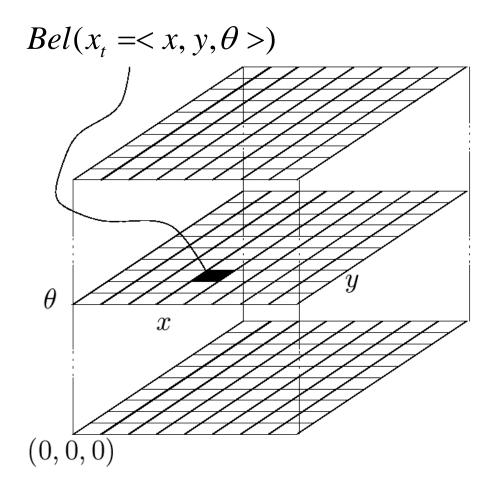
9. Else if *d* is an action data item *u* then

11.
$$Bel'(x) = \sum P(x | u, x') Bel(x')$$

x'

12. Return Bel'(x)

Piecewise Constant Representation

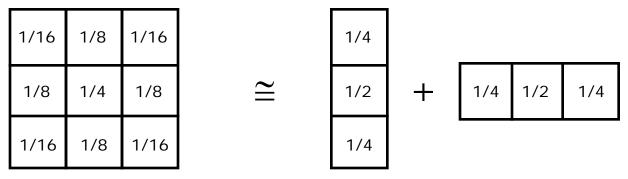


Implementation (1)

- To update the belief upon sensory input and to carry out the normalization one has to iterate over all cells of the grid.
- Especially when the belief is peaked (which is generally the case during position tracking), one wants to avoid updating irrelevant aspects of the state space.
- One approach is not to update entire sub-spaces of the state space.
- This, however, requires to monitor whether the robot is de-localized or not.
- To achieve this, one can consider the likelihood of the observations given the active components of the state space.

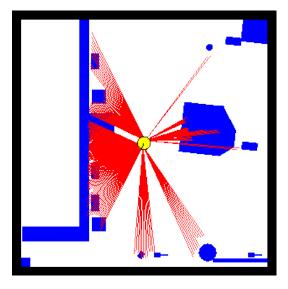
Implementation (2)

- To efficiently update the belief upon robot motions, one typically assumes a bounded Gaussian model for the motion uncertainty.
- This reduces the update cost from O(n²) to O(n), where n is the number of states.
- The update can also be realized by shifting the data in the grid according to the measured motion.
- In a second step, the grid is then convolved using a separable Gaussian Kernel.
- Two-dimensional example:

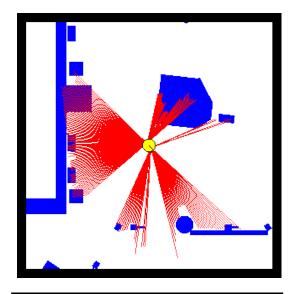


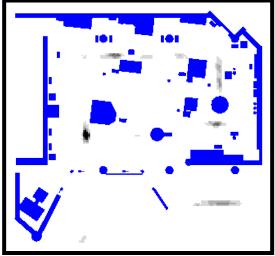
- Fewer arithmetic operations
- Easier to implement

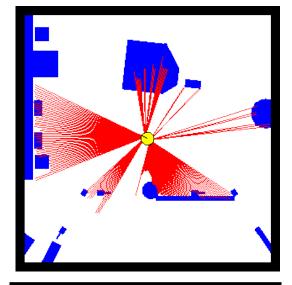
Grid-based Localization

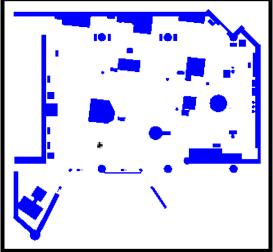




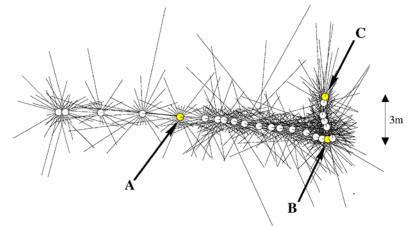


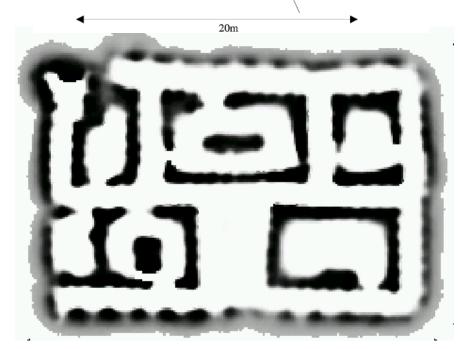


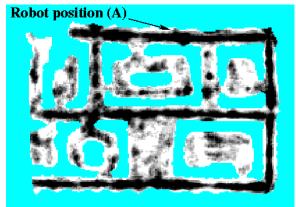


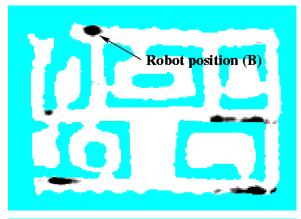


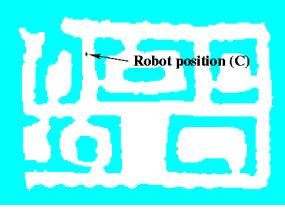
Sonars and Occupancy Grid Map





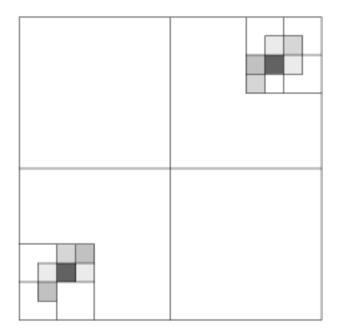






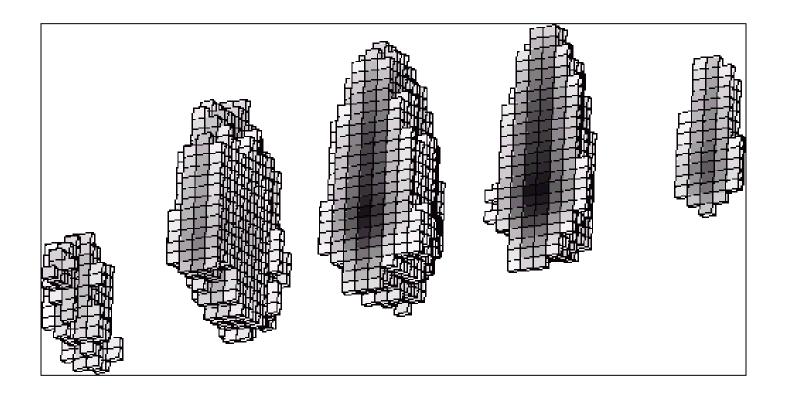
Tree-based Representation

Idea: Represent density using a variant of octrees



Tree-based Representations

- Efficient in space and time
- Multi-resolution



Summary

- Discrete filters are an alternative way for implementing Bayes Filters
- They are based on histograms for representing the density.
- They have huge memory and processing requirements
- Can easily recover from localization errors
- Their accuracy depends on the resolution of the grid.
- Special approximations need to be made to make this approach having dynamic memory and computational requirements.