Introduction to Mobile Robotics Bayes Filter – Extended Kalman Filter

Wolfram Burgard

Bayes Filter Reminder

$$bel(x_t) = \eta \, p(z_t \,|\, x_t) \int p(x_t \,|\, u_t, x_{t-1}) \, bel(x_{t-1}) \, dx_{t-1}$$

- Prediction $\overline{bel}(x_t) = \int p(x_t | u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$
- Correction

$$bel(\mathbf{x}_t) = \eta \, p(\mathbf{z}_t \,|\, \mathbf{x}_t) \, \overline{bel}(\mathbf{x}_t)$$

Discrete Kalman Filter

Estimates the state *x* of a discrete-time controlled process

$$\mathbf{X}_{t} = \mathbf{A}_{t}\mathbf{X}_{t-1} + \mathbf{B}_{t}\mathbf{U}_{t} + \mathbf{\varepsilon}_{t}$$

with a measurement

$$\mathbf{Z}_t = \mathbf{C}_t \mathbf{X}_t + \boldsymbol{\delta}_t$$

Components of a Kalman Filter

A_t	
-------	--

Matrix (nxn) that describes how the state evolves from *t*-1 to *t* without controls or noise.

Matrix (nxl) that describes how the control u_t changes the state from t-1 to t.

C_t

Matrix (kxn) that describes how to map the state x_t to an observation z_t .

 δ

Random variables representing the process and measurement noise that are assumed to be independent and normally distributed with covariance Q_t and R_t respectively.

Kalman Filter Update Example

Kalman Filter Update Example

Kalman Filter Algorithm

- 1. Algorithm Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
- 2. Prediction:
- $\mathbf{3.} \quad \underline{\mu}_t = \mathbf{A}_t \mu_{t-1} + \mathbf{B}_t \mathbf{u}_t$
- $\mathbf{4}. \quad \overline{\Sigma}_t = \mathbf{A}_t \Sigma_{t-1} \mathbf{A}_t^T + \mathbf{Q}_1$
- 5. Correction:
- **6**. $K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + R_t)^{-1}$
- 7. $\mu_t = \overline{\mu}_t + K_t (\mathbf{z}_t C_t \overline{\mu}_t)$
- $\mathbf{8.} \quad \Sigma_t = (\mathbf{I} \mathbf{K}_t \mathbf{C}_t) \Sigma_t$
- 9. Return μ_t , Σ_t

Nonlinear Dynamic Systems

 Most realistic robotic problems involve nonlinear functions

Linearity Assumption Revisited

Non-Linear Function

Non-Gaussian Distributions

- The non-linear functions lead to non-Gaussian distributions
- Kalman filter is not applicable anymore!

What can be done to resolve this?

Non-Gaussian Distributions

- The non-linear functions lead to non-Gaussian distributions
- Kalman filter is not applicable anymore!

What can be done to resolve this?

Local linearization!

EKF Linearization: First Order Taylor Expansion

Prediction:

 $g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$

 $g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t(x_{t-1} - \mu_{t-1})$

• Correction: $h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$ Jacobian matrices $h(x_t) \approx h(\overline{\mu}_t) + H_t(x_t - \overline{\mu}_t)$

Reminder: Jacobian Matrix

- It is a **non-square matrix** $n \times m$ in general
- Given a vector-valued function

$$f(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{bmatrix}$$

The Jacobian matrix is defined as

$$\mathbf{F}_{\mathbf{X}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Reminder: Jacobian Matrix

It is the orientation of the tangent plane to the vector-valued function at a given point

 Generalizes the gradient of a scalar valued function

EKF Linearization: First Order Taylor Expansion

Prediction:

 $g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$

 $g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t(x_{t-1} - \mu_{t-1})$

• Correction: $h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$ Linear function! $h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$

Linearity Assumption Revisited

Non-Linear Function

EKF Linearization (1)

EKF Linearization (2)

EKF Linearization (3)

EKF Algorithm

- **1.** Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
- 2. Prediction:
- **3**. $\overline{\mu}_t = \mathbf{g}(\mathbf{u}_t, \mu_{t-1})$ \leftarrow $\overline{\mu}_t = \mathbf{A}_t \mu_{t-1} + \mathbf{B}_t \mathbf{u}_t$ **4**. $\overline{\Sigma}_t = \mathbf{G}_t \Sigma_{t-1} \mathbf{G}_t^T + \mathbf{Q}_t$ \leftarrow $\overline{\Sigma}_t = \mathbf{A}_t \Sigma_{t-1} \mathbf{A}_t^T + \mathbf{Q}_t$
- 5. Correction:

$$6. \quad K_t = \overline{\Sigma}_t H_t^T (H_t \overline{\Sigma}_t H_t^T + R_t)^{-1} \qquad \longleftarrow \qquad K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + R_t)^{-1} \\ 7. \quad \mu_t = \overline{\mu}_t + K_t (Z_t - h(\overline{\mu}_t)) \qquad \longleftarrow \qquad \mu_t = \overline{\mu}_t + K_t (Z_t - C_t \overline{\mu}_t) \\ 8. \quad \Sigma_t = (I - K_t H_t) \overline{\Sigma}_t \qquad \longleftarrow \qquad \Sigma_t = (I - K_t C_t) \overline{\Sigma}_t$$

9. Return μ_t , Σ_t

$$H_{t} = \frac{\partial h(\overline{\mu}_{t})}{\partial x_{t}} \qquad G_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}}$$

Example: EKF Localization

EKF localization with landmarks (point features)

1. EKF_localization ($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, m$):

Prediction:
3.
$$G_t = \frac{\partial g(u_t, \mu_{t,1})}{\partial \mu_{t,1}} = \begin{pmatrix} \frac{\partial x'}{\partial \mu_{t-1,x}} & \frac{\partial x'}{\partial \mu_{t-1,y}} & \frac{\partial x'}{\partial \mu_{t-1,y}} \\ \frac{\partial y'}{\partial \mu_{t,1,x}} & \frac{\partial y'}{\partial \mu_{t,1,y}} & \frac{\partial y'}{\partial \mu_{t,1,y}} \\ \frac{\partial \theta'}{\partial \mu_{t,1,x}} & \frac{\partial \theta'}{\partial \mu_{t,1,y}} & \frac{\partial \theta'}{\partial \mu_{t,1,y}} \end{pmatrix}$$
Jacobian of g w.r.t location
5. $V_t = \frac{\partial g(u_t, \mu_{t,1})}{\partial u_t} = \begin{pmatrix} \frac{\partial x'}{\partial u_t} & \frac{\partial \theta'}{\partial \mu_{t,1,y}} & \frac{\partial \theta'}{\partial \mu_{t,1,y}} \\ \frac{\partial y'}{\partial v_t} & \frac{\partial y'}{\partial \omega_t} \\ \frac{\partial \theta'}{\partial v_t} & \frac{\partial \theta'}{\partial \omega_t} \end{pmatrix}$
Jacobian of g w.r.t control
1. $Q_t = \begin{pmatrix} (\alpha_1 | v_t | + \alpha_2 | \omega_t) \rangle^2 & 0 \\ 0 & (\alpha_3 | v_t | + \alpha_4 | \omega_t) \rangle^2 \end{pmatrix}$
Motion noise
2. $\overline{\mu}_t = g(u_t, \mu_{t-1})$
Jacobian of g w.r.t control of g w.r.t cont

1. EKF_localization $(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, m)$:

Correction:

3.
$$\hat{z}_{t} = \begin{pmatrix} \sqrt{(m_{x} - \bar{\mu}_{t,x})^{2} + (m_{y} - \bar{\mu}_{t,y})^{2}} \\ \tan 2(m_{y} - \bar{\mu}_{t,y}, m_{x} - \bar{\mu}_{t,x}) - \bar{\mu}_{t,\theta} \end{pmatrix}$$

Predicted measurement mean (depends on observation type)

5. $H_{t} = \frac{\partial h(\overline{\mu}_{t}, m)}{\partial x_{t}} = \begin{cases} \frac{\partial r_{t}}{\partial \overline{\mu}_{t,x}} & \frac{\partial r_{t}}{\partial \overline{\mu}_{t,y}} & \frac{\partial r_{t}}{\partial \overline{\mu}_{t,o}} \\ \frac{\partial \phi_{t}}{\partial \overline{\mu}_{t,x}} & \frac{\partial \phi_{t}}{\partial \overline{\mu}_{t,y}} & \frac{\partial \phi_{t}}{\partial \overline{\mu}_{t,o}} \end{cases}$ Jacobian of *h* w.r.t location 6. $R_{t} = \begin{pmatrix} \sigma_{r}^{2} & 0 \\ 0 & \sigma_{r}^{2} \end{pmatrix}$ 7. $S_{t} = H_{t} \overline{\Sigma}_{t} H_{t}^{T} + R_{t}$ Innovation covariance 8. $K_t = \overline{\Sigma}_t H_t^T \mathbf{S}^{-1}$ **9**. $\mu_t = \bar{\mu}_t + K_t(z_t - \hat{z}_t)$ **10**. $\Sigma_t = (I - K_t H_t) \overline{\Sigma}_t$

Kalman gain Updated mean Updated covariance

EKF Prediction Step Examples

EKF Observation Prediction Step

R

R, r,

EKF Correction Step

Ŗ

Estimation Sequence (1)

Estimation Sequence (2)

Extended Kalman Filter Summary

- Ad-hoc solution to deal with non-linearities
- Performs local linearization in each step
- Works well in practice for moderate nonlinearities
- Example: landmark localization
- There exist better ways for dealing with non-linearities such as the unscented Kalman filter called UKF