Introduction to Mobile Robotics
Bayes Filter – Extended Kalman Filter

Wolfram Burgard
Bayes Filter Reminder

\[\text{bel}(x_t) = \eta \ p(z_t \mid x_t) \int p(x_t \mid u_t, x_{t-1}) \text{bel}(x_{t-1}) \ dx_{t-1} \]

- Prediction
 \[\overline{\text{bel}}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \text{bel}(x_{t-1}) \ dx_{t-1} \]

- Correction
 \[\text{bel}(x_t) = \eta \ p(z_t \mid x_t) \overline{\text{bel}}(x_t) \]
Discrete Kalman Filter

Estimates the state x of a discrete-time controlled process

\[x_t = A_t x_{t-1} + B_t u_t + \epsilon_t \]

with a measurement

\[z_t = C_t x_t + \delta_t \]
Components of a Kalman Filter

\[A_t \] Matrix (nxn) that describes how the state evolves from \(t-1 \) to \(t \) without controls or noise.

\[B_t \] Matrix (nxl) that describes how the control \(u_t \) changes the state from \(t-1 \) to \(t \).

\[C_t \] Matrix (kxn) that describes how to map the state \(x_t \) to an observation \(z_t \).

\[\varepsilon_t \] Random variables representing the process and measurement noise that are assumed to be independent and normally distributed with covariance \(Q_t \) and \(R_t \) respectively.
Kalman Filter Update Example

- prediction
- measurement
- correction

It's a weighted mean!
Kalman Filter Update Example

prediction

measurement

correction
Kalman Filter Algorithm

1. Algorithm **Kalman_filter**($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

2. Prediction:

3. $\mu_t = A_t \mu_{t-1} + B_t u_t$

4. $\Sigma_t = A_t \Sigma_{t-1} A_t^T + Q_t$

5. Correction:

6. $K_t = \Sigma_t C_t^T (C_t \Sigma_t C_t^T + R_t)^{-1}$

7. $\mu_t = \mu_t + K_t (z_t - C_t \mu_t)$

8. $\Sigma_t = (I - K_t C_t) \Sigma_t$

9. Return μ_t, Σ_t
Nonlinear Dynamic Systems

- Most realistic robotic problems involve nonlinear functions

\[
x_t = A_{t-1} x_{t-1} + B_t u_t + \varepsilon_t
\]

\[
z_t = C_t x_t + \delta_t
\]

\[
x_t = g(u_t, x_{t-1})
\]

\[
z_t = h(x_t)
\]
Linearity Assumption Revisited
Non-Linear Function

Non-Gaussian!
Non-Gaussian Distributions

- The non-linear functions lead to non-Gaussian distributions
- Kalman filter is not applicable anymore!

What can be done to resolve this?
Non-Gaussian Distributions

- The non-linear functions lead to non-Gaussian distributions
- Kalman filter is not applicable anymore!

What can be done to resolve this?

Local linearization!
EKF Linearization: First Order Taylor Expansion

- **Prediction:**
 \[
g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})
 \]
 \[
g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1})
 \]

- **Correction:**
 \[
h(x_t) \approx h(\mu_t) + \frac{\partial h(\mu_t)}{\partial x_t} (x_t - \mu_t)
 \]
 \[
h(x_t) \approx h(\mu_t) + H_t (x_t - \mu_t)
 \]

Jacobian matrices
Reminder: Jacobian Matrix

- It is a **non-square matrix** \(n \times m \) in general

- Given a vector-valued function

\[
f(x) = \begin{bmatrix}
f_1(x) \\
f_2(x) \\
\vdots \\
f_m(x)
\end{bmatrix}
\]

- The **Jacobian matrix** is defined as

\[
F_x = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n}
\end{bmatrix}
\]
Reminder: Jacobian Matrix

- It is the orientation of the tangent plane to the vector-valued function at a given point

- Generalizes the gradient of a scalar valued function
EKF Linearization: First Order Taylor Expansion

- **Prediction:**
 \[g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1}) \]
 \[g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1}) \]

- **Correction:**
 \[h(x_t) \approx h(\bar{\mu}_t) + \frac{\partial h(\bar{\mu}_t)}{\partial x_t} (x_t - \bar{\mu}_t) \]
 \[h(x_t) \approx h(\bar{\mu}_t) + H_t (x_t - \bar{\mu}_t) \]
Linearity Assumption Revisited
Non-Linear Function

[Diagram showing a non-linear function and its components]
EKF Linearization (1)
EKF Algorithm

1. **Extended_Kalman_filter**($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

2. Prediction:

3. $\bar{\mu}_t = g(u_t, \mu_{t-1})$

4. $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + Q_t$

5. Correction:

6. $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + R_t)^{-1}$

7. $\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$

8. $\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$

9. Return μ_t, Σ_t

$$H_t = \frac{\partial h(\bar{\mu}_t)}{\partial x_t} \quad G_t = \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}}$$
Example: EKF Localization

- EKF localization with landmarks (point features)
1. **EKF_localization** \((\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, m)\):

Prediction:

3. \(G_t = \frac{\partial g(u_t, \mu_{t-1})}{\partial \mu_{t-1}} = \begin{pmatrix}
\frac{\partial x'}{\partial \mu_{t-1,x}} & \frac{\partial x'}{\partial \mu_{t-1,y}} & \frac{\partial x'}{\partial \mu_{t-1,\theta}} \\
\frac{\partial y'}{\partial \mu_{t-1,x}} & \frac{\partial y'}{\partial \mu_{t-1,y}} & \frac{\partial y'}{\partial \mu_{t-1,\theta}} \\
\frac{\partial \theta'}{\partial \mu_{t-1,x}} & \frac{\partial \theta'}{\partial \mu_{t-1,y}} & \frac{\partial \theta'}{\partial \mu_{t-1,\theta}}
\end{pmatrix}\) Jacobian of \(g\) w.r.t location

5. \(V_t = \frac{\partial g(u_t, \mu_{t-1})}{\partial u_t} = \begin{pmatrix}
\frac{\partial x'}{\partial v_t} & \frac{\partial x'}{\partial \omega_t} \\
\frac{\partial y'}{\partial v_t} & \frac{\partial y'}{\partial \omega_t} \\
\frac{\partial \theta'}{\partial v_t} & \frac{\partial \theta'}{\partial \omega_t}
\end{pmatrix}\) Jacobian of \(g\) w.r.t control

1. \(Q_t = \begin{pmatrix}
(\alpha_1 |v_t| + \alpha_2 |\omega_t|)^2 & 0 \\
0 & (\alpha_3 |v_t| + \alpha_4 |\omega_t|)^2
\end{pmatrix}\) Motion noise

2. \(\mu_t = g(u_t, \mu_{t-1})\) Predicted mean

3. \(\Sigma_t = G_t \Sigma_{t-1} G_t^T + V_t Q_t V_t^T\) Predicted covariance \((V\) maps \(Q\) into state space)
1. **EKF.localization** \((\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, m) \):

Correction:

3. \[\hat{z}_t = \begin{cases} \sqrt{(m_x - \mu_{t,x})^2 + (m_y - \mu_{t,y})^2} \\ \arctan2(m_y - \mu_{t,y}, m_x - \mu_{t,x}) - \mu_{t,\theta} \end{cases} \]

Predicted measurement mean (depends on observation type)

5. \[H_t = \frac{\partial h(\mu_t, m)}{\partial x_t} = \begin{bmatrix} \frac{\partial r_t}{\partial \mu_{t,x}} & \frac{\partial r_t}{\partial \mu_{t,y}} & \frac{\partial r_t}{\partial \mu_{t,\theta}} \\ \frac{\partial \phi_t}{\partial \mu_{t,x}} & \frac{\partial \phi_t}{\partial \mu_{t,y}} & \frac{\partial \phi_t}{\partial \mu_{t,\theta}} \end{bmatrix} \]

Jacobian of \(h \) w.r.t location

6. \[R_t = \begin{bmatrix} \sigma^2_r & 0 \\ 0 & \sigma^2_r \end{bmatrix} \]

7. \[S_t = H_t \Sigma_t H_t^T + R_t \]

Innovation covariance

8. \[K_t = \Sigma_t H_t^T S_t^{-1} \]

Kalman gain

9. \[\mu_t = \mu_t + K_t (z_t - \hat{z}_t) \]

Updated mean

10. \[\Sigma_t = (I - K_t H_t) \Sigma_t \]

Updated covariance
EKF Prediction Step Examples
EKF Observation Prediction Step
EKF Correction Step
Estimation Sequence (1)
Estimation Sequence (2)
Extended Kalman Filter Summary

- Ad-hoc solution to deal with non-linearities
- Performs local linearization in each step
- Works well in practice for moderate non-linearities
- Example: landmark localization
- There exist better ways for dealing with non-linearities such as the unscented Kalman filter called UKF