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What 1s SLAM?

= Estimate the pose of a robot and the map of
the environment at the same time

= SLAM iIs hard, because

= a map Is needed for localization and
= a good pose estimate is needed for mapping

= Localization: inferring location given a
map

= Mapping: inferring a map given locations

= SLAM: learning a map and locating the
robot simultaneously



The SLAM Problem

= SLAM has long been regarded as a
chicken-or-egg problem:
— a map Is needed for localization and
— a pose estimate is needed for mapping




SLAM Applications

= SLAM is central to a range of indoor,
outdoor, in-air and underwater applications
for both manned and autonomous vehicles.

Examples:

= At home: vacuum cleaner, lawn mower

= Air: surveillance with unmanned air vehicles
= Underwater: reef monitoring

= Underground: exploration of mines

= Space: terrain mapping for localization

= Every application that requires a map



SLAM Applications

Undersea




Map Representations

Examples: Subway map, city map,
landmark-based map
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Maps are topological and/or metric
models of the environment



Map Representations in Robotics

= Grid maps or scans, 2d, 3d N

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99;
Haehnel, 01; Grisetti et al., 05; ...]
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The SLAM Problem

= SLAM Is considered a fundamental

problem for robots to become truly
autonomous

= Large variety of different SLAM
approaches have been developed

= The majority uses probabilistic
concepts

= History of SLAM dates back to the
mid-eighties



Feature-Based SLAM

Given:
= The robot’ s controls
Ul:k — {ul,’U,g,...,uk} "
= Relative observations
Zl:k — {21,22,-..,21;:} '-...
Wanted: .
= Map of features .
m = {my,mo,..., My}

= Path of the robot
Xl:k = {33‘1,332, C ,.’Ek}



Feature-Based SLAM

= Absolute
Features and Landmarks _—— il
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Why iI1s SLAM a Hard Problem?

1. Robot path and map are both unknown

2. Errors in map and pose estimates correlated
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Why iI1s SLAM a Hard Problem?

* The mapping between observations and
landmarks Is unknown

= Picking wrong data associations can have
catastrophic consequences (divergence)
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SLAM: Simultaneous
Localization And Mapping

= Full SLAM:
p(XO:t’m | Z1:t’u1:t)

Estimates entire path and map!

= Online SLAM:
p(Xt’ m | z1:t 1 u1:t) — J-_[ . I p(Xl:t J m | Z1:t 1 ul:t)dxldXZ"'dXt—l

Estimates most recent pose and map!

* Integrations (marginalization) typically

done recursively, one at a time 13



Graphical Model of Full SLAM

p(xl:t+1’ m ‘ Zl:t+1’ u1:t+1)




Graphical Model of Online SLAM

Pt M Zy1s Uggr) = [ [ | POt M Zyg,, Uy 1 )X, X, X,
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Motion and Observation Model

LTt = f(ajt—laut)

"Motion model"

"Observation model"
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Remember the KF Algorithm

Algorithm Kalman_filter(p,.;, ¢4, Ui, Zy):

Prediction:
He = Apy, + BY,
% =A% A +R

Correction:
K, =ZC/ (C,ZC] +Q)™
My = Byt Kt(Z,_— Ceuy)
= -K.C)Zt

N F

© O NG

Return p,, X,
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EKF SLAM: State representation

= Localization

2 2 2
o o o
3x1 pose vector Tk g Ty Tgb
33 i X = | Yk k= | Oyz Oy Oyp
2 2 2
X3 cov. matrix 0, 03, 03, O
= SLAM
Landmarks simply extend the state.
Growing state vector and covariance matrix!
. XR | [ Yr  YrM, XRM, °* XRM, |
m; YMiR XM, XM, M, XM M,
x, = | M2 S, = | ZM:R  XEM,M, XM,  c XMyM,

my, 2XM,R XM, M, 2M,M, ‘°° XM,



EKF SLAM: State representation

= Map with n landmarks: (3+2n)-dimensional

Gaussian

= Can handle hundreds of dimensions
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EKF SLAM: Filter Cycle

1. State prediction (odometry)

. Measurement prediction

. Measurement

. Data association

. Update

. Integration of new landmarks

O OO K~ W DN



EKF SLAM: Filter Cycle

1. State prediction (odometry)
. Measurement prediction

. Measurement

. Data association

. Update

. Integration of new landmarks
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EKF SLAM: State Prediction

Odometry:
* }A(R — f(XR7 11)
YSp=F,YrF! + F,UF!

Robot-landmark cross-
covariance prediction:

XA]RMi = Iy 2R,

XR ZR ERMl ZRMn

100 %] ZMlR ZMl ZMan
m, | | XM, R XM, M, XM,
SN——— ~~ o




EKF SLAM: Measurement

Prediction
a Global-to-local

frame transform h

7 = h(Xg)

XR 2 RM,,
m; 2N, M,
m, | | YMm,R XM, M, XM,
—_—— ~~ -~




EKF SLAM: Obtained
Measurement
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EKF SLAM: Data Association

Associates predicted
measurements z,

% with observation z

? ] J
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EKF SLAM: Update Step

The usual Kalman
filter expressions

K, =%, HTS?
X, = X + Kg v,

Co = —Ki,H)S,

2 RM,,
2N, M,




EKF SLAM: New Landmarks

State augmented by
my,+1 = g(Xr,Z;)

Su,., = GrERGE + G R;GE
Cross-covariances:

YiMn1M; = GRYRM,

XM, R = GRYR
XR YR 2RM, 2 RM,, 2 RM, i1
m; XM R XM, XM M,  2Mi My
m,, YM,R  2M, M, M, 2 M, M,y 11
My 41 N Z]\4n+1R ZMn—{—lMl ZMn+1Mn ZMn—I—l _
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EKF SLAM

Correlation matrix
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EKF SLAM

Correlation matrix
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EKF SLAM

Correlation matrix

Map



EKF SLAM: Correlations Matter

= What if we neglected cross-correlations?
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EKF SLAM: Correlations Matter

= What if we neglected cross-correlations?

Y, 0 -0
0 Xy, -+ O YirM; = O3x2
D = _
. : .. . EM;:,Mng = 0949
0 0 - Tu,

= Landmark and robot uncertainties would
pecome overly optimistic

= Data association would fall
= Multiple map entries of the same landmark
= [nconsistent map
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SLAM: Loop Closure

= Recognizing an already mapped area,
typically after a long exploration path (the
robot “closes a loop™)

= Structurally identical to data association,
but
= high levels of ambiguity
* possibly useless validation gates
= environment symmetries

= Uncertainties collapse after a loop closure
(whether the closure was correct or not)

37



SLAM: Loop Closure

= Before loop closure
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SLAM: Loop Closure

= After loop closure
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SLAM: Loop Closure

= By revisiting already mapped areas,
uncertainties in robot and landmark
estimates can be reduced

= This can be exploited when exploring an
environment for the sake of better (e.g.
more accurate) maps

= Exploration: the problem of where to
acquire new information

— See separate chapter on exploration
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KF-SLAM Properties
(Linear Case)

= The determinant of any sub-matrix of the map
covariance matrix decreases monotonically as
successive observations are made

Standard Deviation in X (m)

0.5

" When a new land-
mark is initialized,
Its uncertainty is
maximal

= Landmark
uncertainty

decreases
L monotonically
— with each new

. observation

Time (sec)

110

[Dissanayake et al., 2001] 41



KF-SLAM Properties
(Linear Case)

* In the limit, the landmark estimates
become fully correlated

[Dissanayake et al., 2001] 45



KF-SLAM Properties
(Linear Case)

= In the limit, the covariance associated with
any single landmark location estimate is
determined only by the initial covariance
INn the vehicle location estimate.

v
> = &
"

[Dissanayake et al., 2001] 43




EKF SLAM Example:
Victoria Park Dataset

44



Victoria Park: Data Acquisition

[courtesy by E. Nebot]



Victoria Park:
Trajectory
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[courtesy by E. Nebot]
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Victoria Park: Landmarks

[courtesy by E. Nebot]
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EKF SLAM Example: Tennis
Court

[courtesy by J. Leonard]



EKF SLAM Example: Tennis
Court

Odometry Profile of the Robot Locations B0 L e el
T T T T
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[courtesy by John Leonard] 49



EKF SLAM Example: Line
Features
= KTH Bakery Data Set [« | \
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EKF-SLAM: Complexity

= Cost per step: quadratic in n, the
number of landmarks: O(n?)

= Total cost to build a map with n
landmarks: O(n3)

= Memory consumption: O(n?)

* Problem: becomes computationally
Intractable for large maps!

= There exists variants to circumvent
these problems

o1



SLAM Technigues

= EKF SLAM
* FastSLAM
= Graph-based SLAM

= Topological SLAM
(mainly place recognition)

= Scan Matching / Visual Odometry
(only locally consistent maps)

= Approximations for SLAM: Local submaps,
Sparse extended information filters, Sparse
links, Thin junction tree filters, etc.
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EKF-SLAM: Summary

= The first SLAM solution

= Convergence proof for linear Gaussian
case

= Can diverge If nonlinearities are large
(and the real world is nonlinear ...)

= Can deal only with a single mode
= Successful In medium-scale scenes

= Approximations exists to reduce the
computational complexity
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