Introduction to Mobile Robotics

SLAM: Simultaneous Localization and Mapping

Wolfram Burgard

What is SLAM?

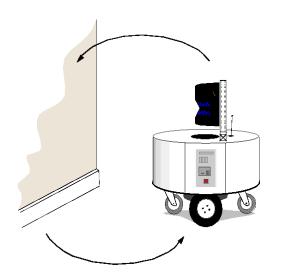
- Estimate the pose of a robot and the map of the environment at the same time
- SLAM is hard, because
 - a map is needed for localization and
 - a good pose estimate is needed for mapping
- Localization: inferring location given a map
- Mapping: inferring a map given locations
- SLAM: learning a map and locating the robot simultaneously

The SLAM Problem

 SLAM has long been regarded as a chicken-or-egg problem:

 \rightarrow a map is needed for localization and

 \rightarrow a pose estimate is needed for mapping



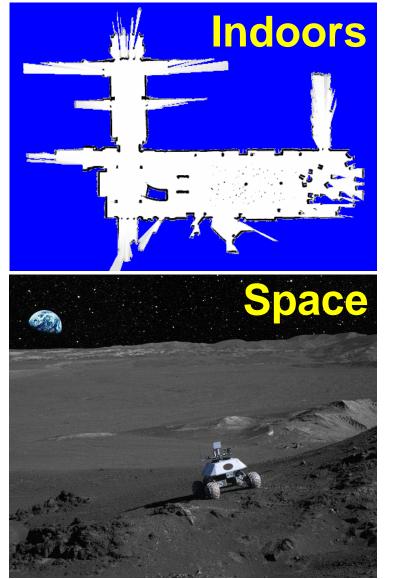
SLAM Applications

 SLAM is central to a range of indoor, outdoor, in-air and underwater applications for both manned and autonomous vehicles.

Examples:

- At home: vacuum cleaner, lawn mower
- Air: surveillance with unmanned air vehicles
- Underwater: reef monitoring
- Underground: exploration of mines
- Space: terrain mapping for localization
- Every application that requires a map

SLAM Applications



Underground

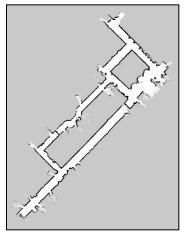
Map Representations

Examples: Subway map, city map, landmark-based map

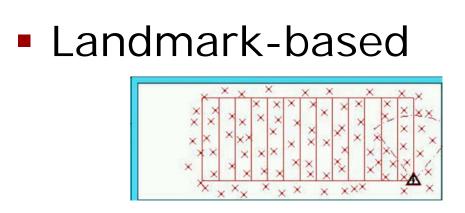
Maps are **topological** and/or **metric models** of the environment

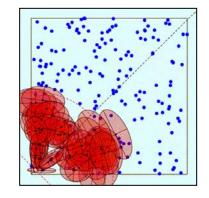
Map Representations in Robotics

Grid maps or scans, 2d, 3d



[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01; Grisetti et al., 05; ...]





[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...

The SLAM Problem

- SLAM is considered a fundamental problem for robots to become truly autonomous
- Large variety of different SLAM approaches have been developed
- The majority uses probabilistic concepts
- History of SLAM dates back to the mid-eighties

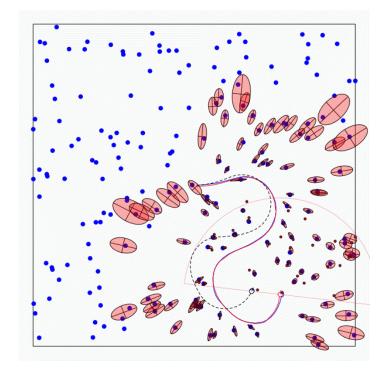
Feature-Based SLAM

Given:

- The robot's controls $oldsymbol{U}_{1:k} = \{oldsymbol{u}_1, oldsymbol{u}_2, \dots, oldsymbol{u}_k\}$
- Relative observations $Z_{1:k} = \{z_1, z_2, \dots, z_k\}$

Wanted:

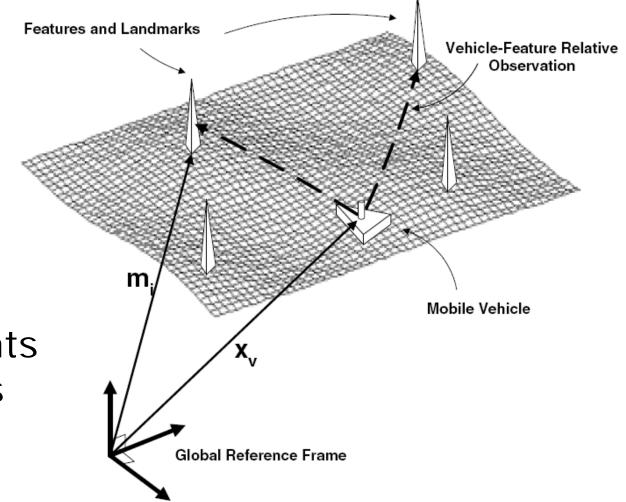
- Map of features $oldsymbol{m} = \{oldsymbol{m}_1, oldsymbol{m}_2, \dots, oldsymbol{m}_n\}$
- Path of the robot $oldsymbol{X}_{1:k} = \{oldsymbol{x}_1, oldsymbol{x}_2, \dots, oldsymbol{x}_k\}$



Feature-Based SLAM

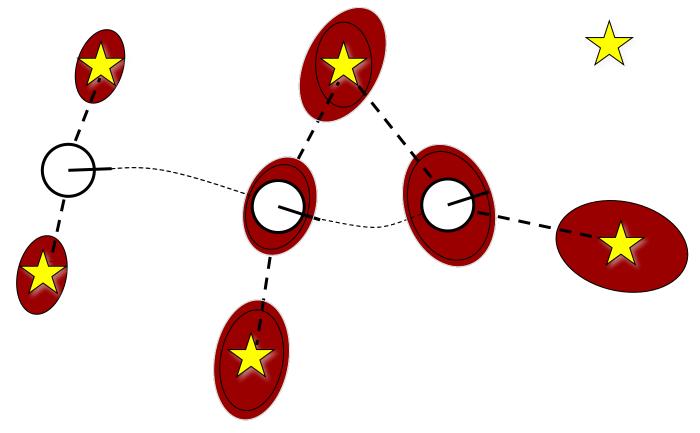
 Absolute robot poses

- Absolute
 landmark
 positions
- But only relative measurements of landmarks



Why is SLAM a Hard Problem?

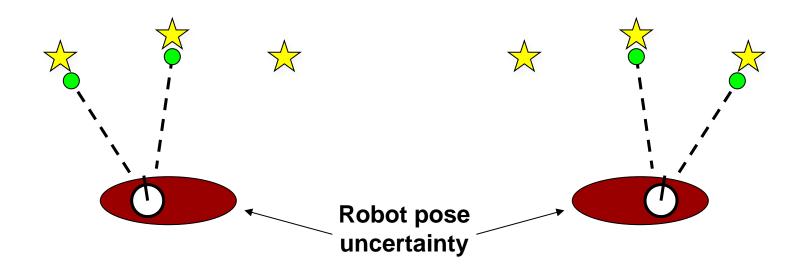
1. Robot path and map are both unknown



2. Errors in map and pose estimates correlated

Why is SLAM a Hard Problem?

- The mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences (divergence)



SLAM: Simultaneous Localization And Mapping

• Full SLAM:

 $p(x_{0:t}, m \mid z_{1:t}, u_{1:t})$

Estimates entire path and map!

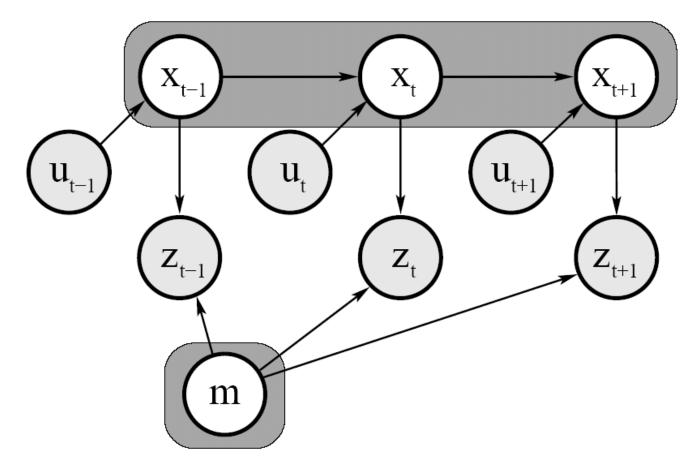
• Online SLAM:

$$p(x_t, m \mid z_{1:t}, u_{1:t}) = \int \int \dots \int p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) dx_1 dx_2 \dots dx_{t-1}$$

Estimates most recent pose and map!

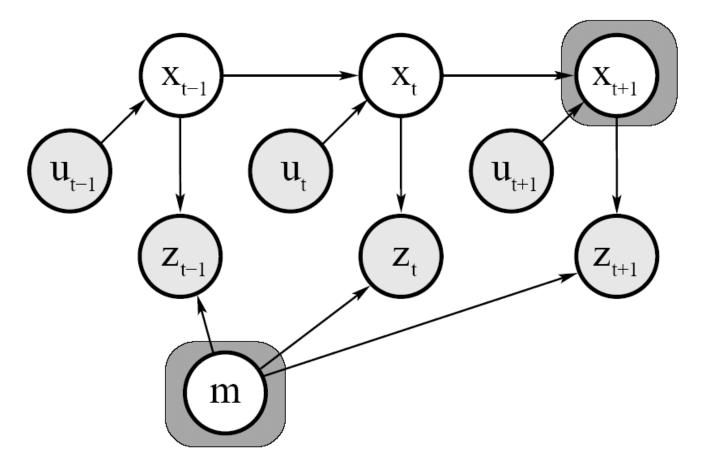
 Integrations (marginalization) typically done recursively, one at a time

Graphical Model of Full SLAM



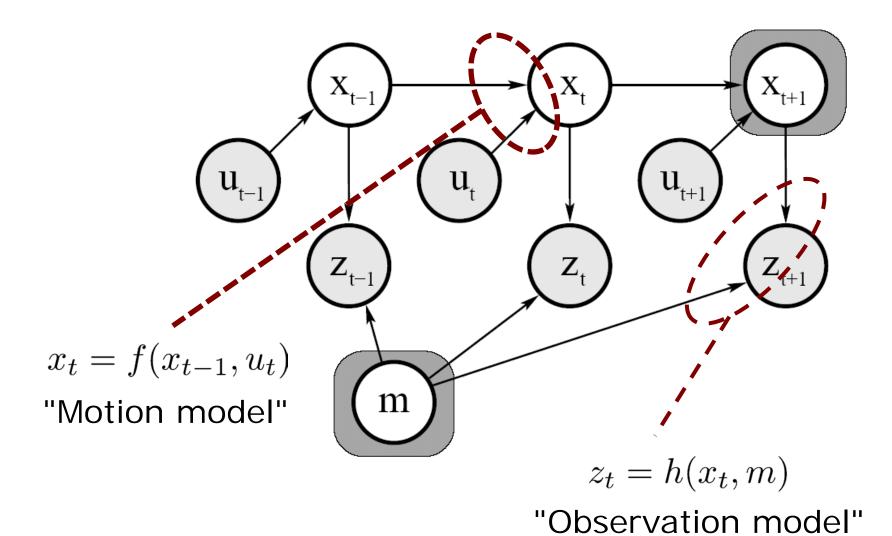
$p(x_{1:t+1}, m \mid z_{1:t+1}, u_{1:t+1})$

Graphical Model of Online SLAM



$$p(x_{t+1}, m \mid z_{1:t+1}, u_{1:t+1}) = \int \int \dots \int p(x_{1:t+1}, m \mid z_{1:t+1}, u_{1:t+1}) dx_1 dx_2 \dots dx_t$$

Motion and Observation Model



16

Remember the KF Algorithm

- 1. Algorithm **Kalman_filter**($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
- 2. Prediction:
- 3. $\overline{\mu}_t = A_t \mu_{t-1} + B_t u_t$
- **4**. $\overline{\Sigma}_t = \mathbf{A}_t \Sigma_{t-1} \mathbf{A}_t^T + \mathbf{R}_t$
- 5. Correction:
- **6**. $K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$

7.
$$\mu_t = \mu_t + K_t (z_t - C_t \mu_t)$$

- $\mathbf{8}. \qquad \Sigma_t = (\mathbf{I} \mathbf{K}_t \mathbf{C}_t) \overline{\Sigma}_t$
- 9. Return μ_t , Σ_t

EKF SLAM: State representation

Localization

3x1 pose vector $\mathbf{x}_k = \begin{bmatrix} x_k \\ y_k \\ \theta_k \end{bmatrix}$ $\Sigma_k = \begin{bmatrix} \sigma_x^2 & \sigma_{xy}^2 & \sigma_{x\theta}^2 \\ \sigma_{yx}^2 & \sigma_y^2 & \sigma_{y\theta}^2 \\ \sigma_{\theta x}^2 & \sigma_{\theta y}^2 & \sigma_{\theta}^2 \end{bmatrix}$

SLAM

Landmarks simply extend the state.

Growing state vector and covariance matrix!

$$\mathbf{x}_{k} = \begin{bmatrix} \mathbf{x}_{R} \\ \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \vdots \\ \mathbf{m}_{n} \end{bmatrix} \qquad \Sigma_{k} = \begin{bmatrix} \Sigma_{R} & \Sigma_{RM_{1}} & \Sigma_{RM_{2}} & \cdots & \Sigma_{RM_{n}} \\ \Sigma_{M_{1}R} & \Sigma_{M_{1}} & \Sigma_{M_{1}M_{2}} & \cdots & \Sigma_{M_{1}M_{n}} \\ \Sigma_{M_{2}R} & \Sigma_{M_{2}M_{1}} & \Sigma_{M_{2}} & \cdots & \Sigma_{M_{2}M_{n}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \Sigma_{M_{n}R} & \Sigma_{M_{n}M_{1}} & \Sigma_{M_{n}M_{2}} & \cdots & \Sigma_{M_{n}} \end{bmatrix}$$

EKF SLAM: State representation

Map with *n* landmarks: (3+2*n*)-dimensional Gaussian

$\begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$	$\sigma_{xx} \ \sigma_{yx} \ \sigma_{ heta x}$	$\sigma_{xy} \ \sigma_{yy} \ \sigma_{ heta y}$	$\sigma_{x heta} \ \sigma_{y heta} \ \sigma_{ heta heta}$	$\sigma_{xm_{1,x}} \ \sigma_{ym_{1,x}} \ \sigma_{ heta m_{1,x}}$	$\sigma_{xm_{1,y}} \ \sigma_{ym_{1,y}} \ \sigma_{ heta m_{1,y}}$	•••	$\sigma_{xm_{n,x}} \ \sigma_{m_{n,x}} \ \sigma_{ heta m_{n,x}}$	$\sigma_{xm_{n,y}} \ \sigma_{m_{n,y}} \ \sigma_{ heta m_{n,y}}$
$egin{array}{c} m_{1,x} \ m_{1,y} \ dots \end{array}$	$\sigma_{m_{1,x}x} \sigma_{m_{1,y}x}$:	$\sigma_{m_{1,x}y} \ \sigma_{m_{1,y}y}$:	$\sigma_{ heta} \ \sigma_{ heta}$:	$\sigma_{m_{1,x}m_{1,x}} \ \sigma_{m_{1,y}m_{1,x}}$:	$\sigma_{m_{1,x}m_{1,y}} \ \sigma_{m_{1,y}m_{1,y}}$:	•••	$\sigma_{m_{1,x}m_{n,x}} \ \sigma_{m_{1,y}m_{n,x}}$:	$\sigma_{m_{1,x}m_{n,y}} \ \sigma_{m_{1,y}m_{n,y}}$:
$\left[\begin{array}{c} \cdot \\ m_{n,x} \\ m_{n,y} \end{array}\right]$		$\sigma_{m_{n,x}y} \ \sigma_{m_{n,y}y}$			$\sigma_{m_{n,x}m_{1,y}} \ \sigma_{m_{n,y}m_{1,y}}$		$\sigma_{m_{n,x}m_{n,x}} \ \sigma_{m_{n,y}m_{n,x}}$	$egin{array}{c} & & & \cdot & & \\ & \sigma_{m_{n,y}m_{n,y}} & & & \\ & \sigma_{m_{n,y}m_{n,y}} & & & & \end{array}$
μ					Σ			

Can handle hundreds of dimensions

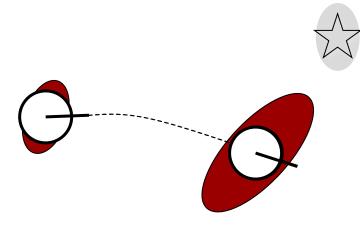
EKF SLAM: Filter Cycle

- 1. State prediction (odometry)
- 2. Measurement prediction
- 3. Measurement
- 4. Data association
- 5. Update
- 6. Integration of new landmarks

EKF SLAM: Filter Cycle

- 1. State prediction (odometry)
- 2. Measurement prediction
- 3. Measurement
- 4. Data association
- 5. Update
- 6. Integration of new landmarks

EKF SLAM: State Prediction

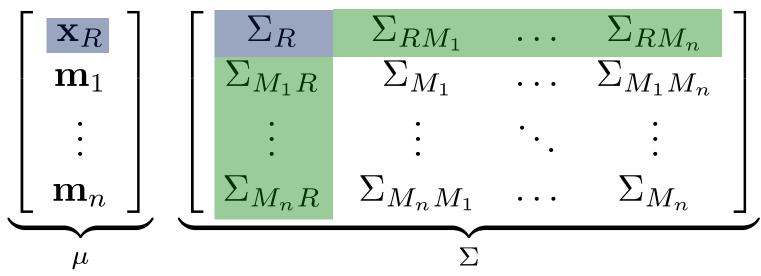


Odometry:

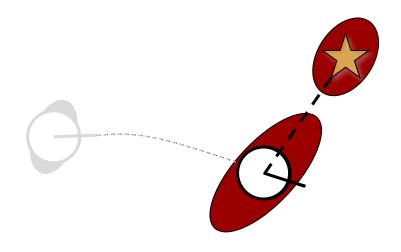
$$\hat{\mathbf{x}}_R = f(\mathbf{x}_R, \mathbf{u})$$
$$\hat{\Sigma}_R = F_x \Sigma_R F_x^T + F_u U F_u^T$$

Robot-landmark crosscovariance prediction:

$$\hat{\Sigma}_{RM_i} = F_x \Sigma_{RM_i}$$

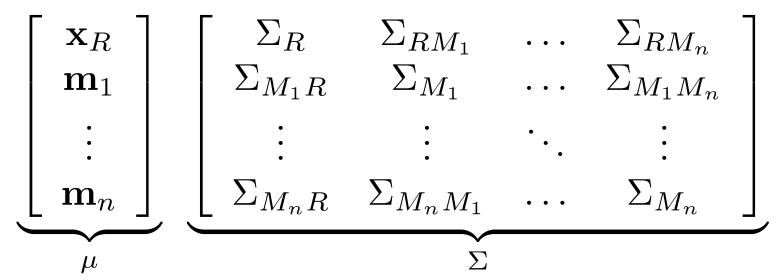


EKF SLAM: Measurement Prediction

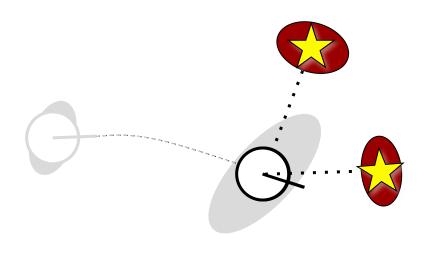


Global-to-local frame transform *h*

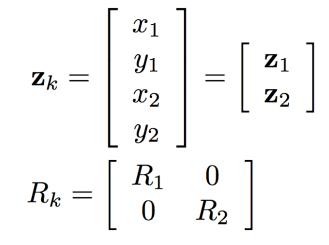
$$\mathbf{\hat{z}}_k = h(\mathbf{\hat{x}}_k)$$

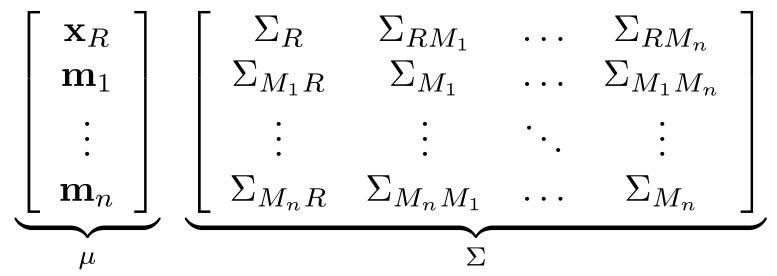


EKF SLAM: Obtained Measurement

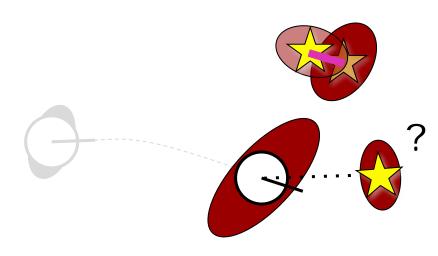


(x,y)-point landmarks



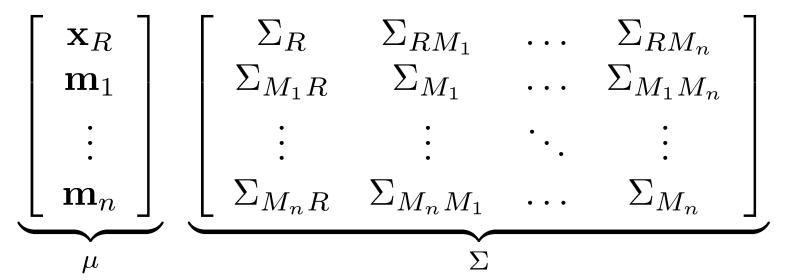


EKF SLAM: Data Association

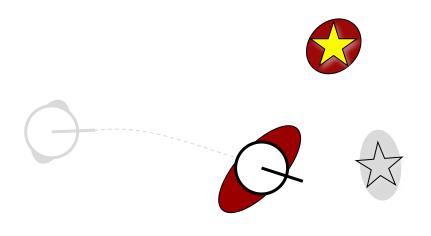


Associates predicted measurements $\hat{\mathbf{z}}_k^i$ with observation \mathbf{z}_k^j

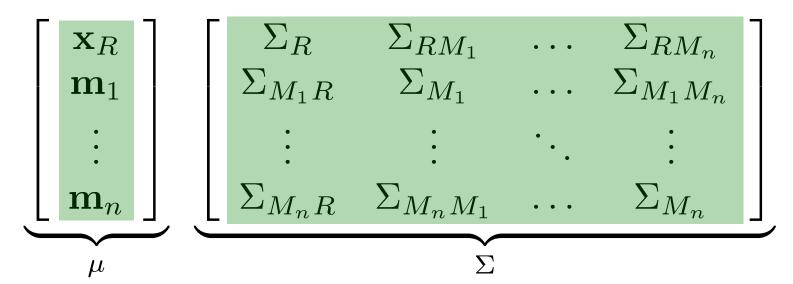
$$\begin{array}{rcl} \boldsymbol{\nu}_k^{ij} &=& \mathbf{z}_k^j - \hat{\mathbf{z}}_k^i \\ S_k^{ij} &=& R_k^j + H^i \, \hat{\boldsymbol{\Sigma}}_k \, H^{i \, T} \end{array}$$



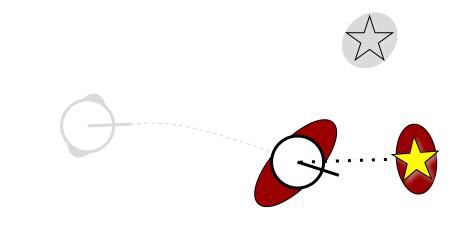
EKF SLAM: Update Step



The usual Kalman filter expressions $K_k = \hat{\Sigma}_k H^T S_k^{-1}$ $\mathbf{x}_k = \mathbf{\hat{x}}_k + K_k \nu_k$ $C_k = (I - K_k H) \hat{\Sigma}_k$



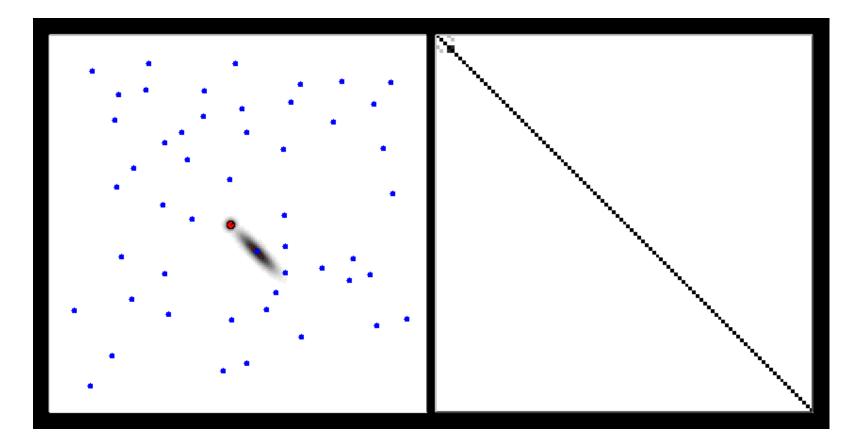
EKF SLAM: New Landmarks



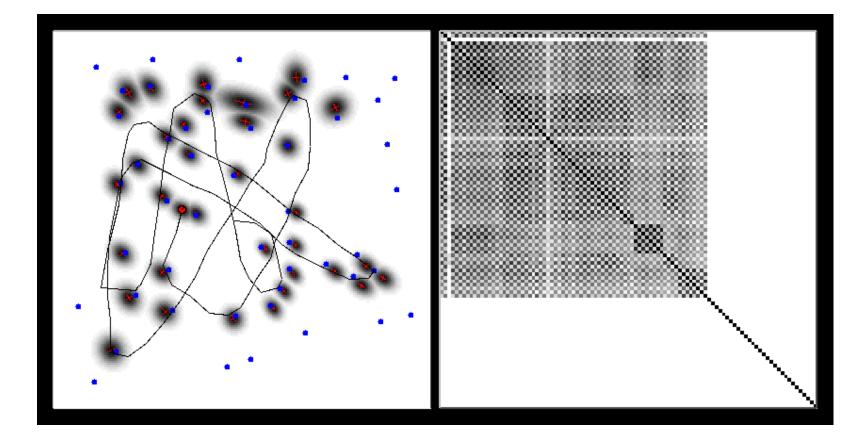
Г

State augmented by $\mathbf{m}_{n+1} = g(\mathbf{x}_R, \mathbf{z}_j)$ $\Sigma_{M_{n+1}} = G_R \Sigma_R G_R^T + G_z R_j G_z^T$ Cross-covariances: $\Sigma_{M_{n+1}M_i} = G_R \Sigma_{RM_i}$ $\Sigma_{M_{n+1}R} = G_R \Sigma_R$ $\dots \qquad \sum_{RM_n} \qquad \sum_{M_1M_n} \sum_{M_1M_n+1} \sum_{M_1M_1M_1+1} \sum_{M_1M_1M_1+1} \sum_{M_1M_1M_1+1} \sum_{M_1M_1M_1+1} \sum_{M_1M_1M_1+1} \sum_{M_1M_1M_1+1} \sum_{M_1M_1+1} \sum_{M_1M_1+1}$

$$\begin{bmatrix} \mathbf{X}_{R} \\ \mathbf{m}_{1} \\ \vdots \\ \mathbf{m}_{n} \\ \mathbf{m}_{n+1} \end{bmatrix} \begin{pmatrix} \Sigma_{R} & \Sigma_{RM_{1}} & \dots & \Sigma_{RM_{n}} & \Sigma_{RM_{n+1}} \\ \Sigma_{M_{1}R} & \Sigma_{M_{1}} & \dots & \Sigma_{M_{1}M_{n}} & \Sigma_{M_{1}M_{n+1}} \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma_{M_{n}R} & \Sigma_{M_{n}M_{1}} & \dots & \Sigma_{M_{n}} & \Sigma_{M_{n}M_{n+1}} \\ \Sigma_{M_{n+1}R} & \Sigma_{M_{n+1}M_{1}} & \dots & \Sigma_{M_{n+1}M_{n}} & \Sigma_{M_{n+1}} \end{bmatrix}$$

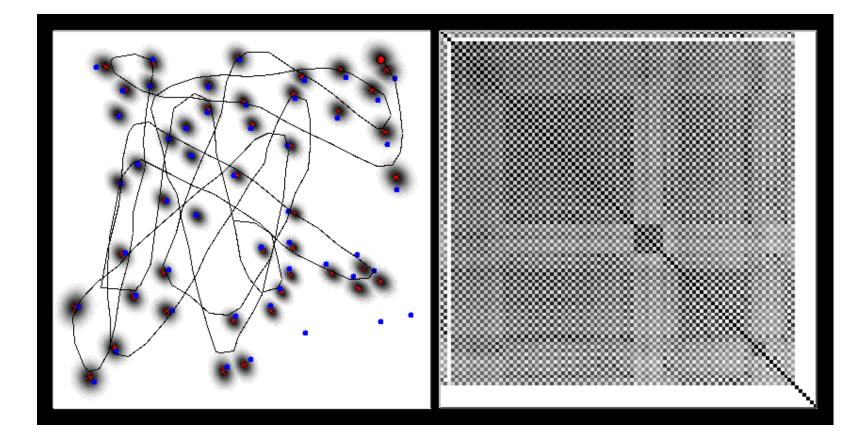


Map Correlation matrix



Мар

Correlation matrix



Мар

Correlation matrix

EKF SLAM: Correlations Matter

What if we neglected cross-correlations?

$$\Sigma_{k} = \begin{bmatrix} \Sigma_{R} & 0 & \cdots & 0 \\ 0 & \Sigma_{M_{1}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Sigma_{M_{n}} \end{bmatrix} \qquad \Sigma_{RM_{i}} = \mathbf{0}_{3 \times 2}$$

EKF SLAM: Correlations Matter

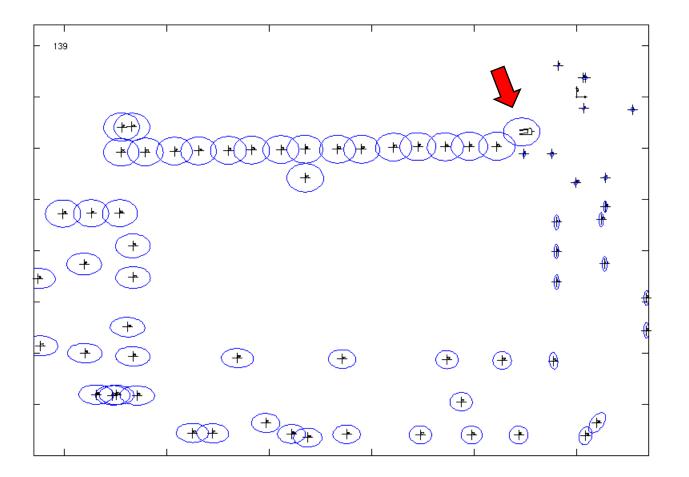
What if we neglected cross-correlations?

$$\Sigma_{k} = \begin{bmatrix} \Sigma_{R} & 0 & \cdots & 0 \\ 0 & \Sigma_{M_{1}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Sigma_{M_{n}} \end{bmatrix} \qquad \Sigma_{RM_{i}} = \mathbf{0}_{3 \times 2}$$

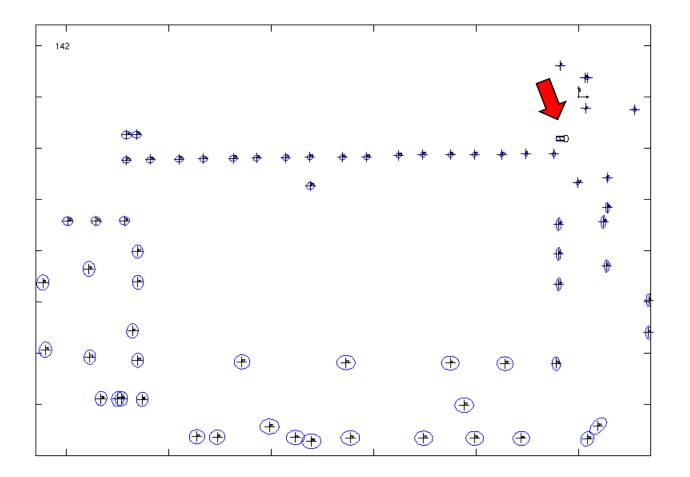
- Landmark and robot uncertainties would become overly optimistic
- Data association would fail
- Multiple map entries of the same landmark
- Inconsistent map

- Recognizing an already mapped area, typically after a long exploration path (the robot "closes a loop")
- Structurally identical to data association, but
 - high levels of ambiguity
 - possibly useless validation gates
 - environment symmetries
- Uncertainties collapse after a loop closure (whether the closure was correct or not)

Before loop closure



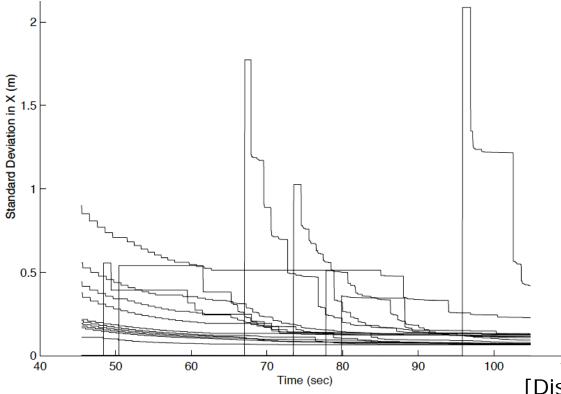
After loop closure



- By revisiting already mapped areas, uncertainties in robot and landmark estimates can be reduced
- This can be exploited when exploring an environment for the sake of better (e.g. more accurate) maps
- Exploration: the problem of where to acquire new information
- → See separate chapter on exploration

KF-SLAM Properties (Linear Case)

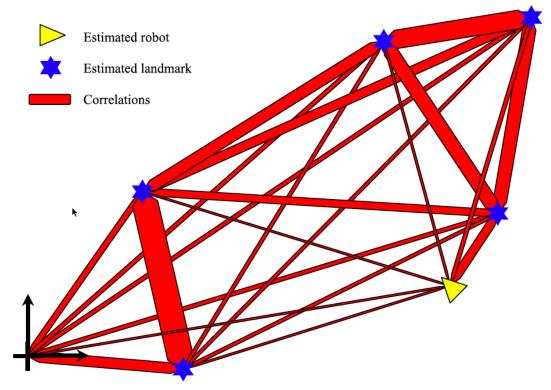
 The determinant of any sub-matrix of the map covariance matrix decreases monotonically as successive observations are made



- When a new landmark is initialized, its uncertainty is maximal
- Landmark uncertainty decreases monotonically with each new observation

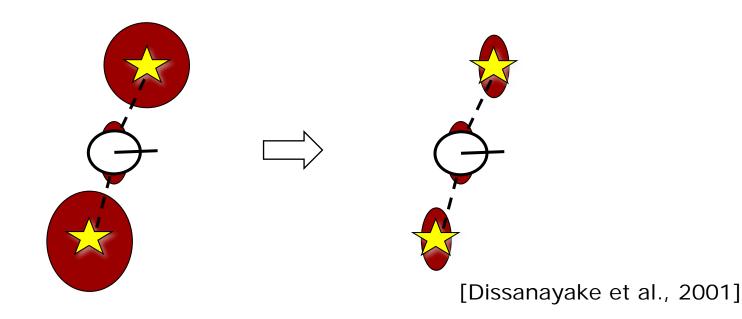
KF-SLAM Properties (Linear Case)

 In the limit, the landmark estimates become fully correlated



KF-SLAM Properties (Linear Case)

 In the limit, the covariance associated with any single landmark location estimate is determined only by the initial covariance in the vehicle location estimate.

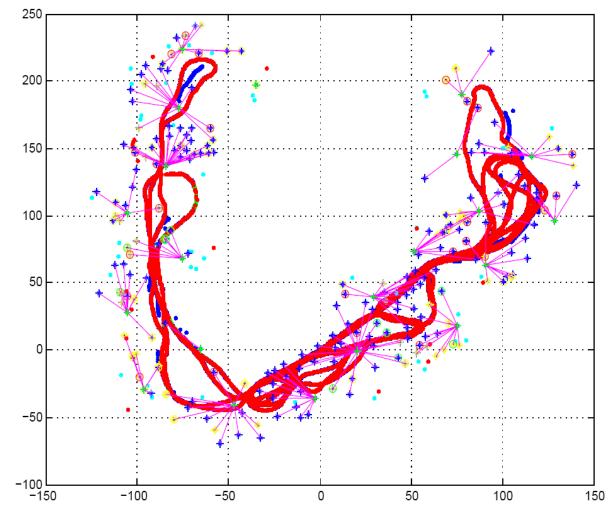


EKF SLAM Example: Victoria Park Dataset

Victoria Park: Data Acquisition

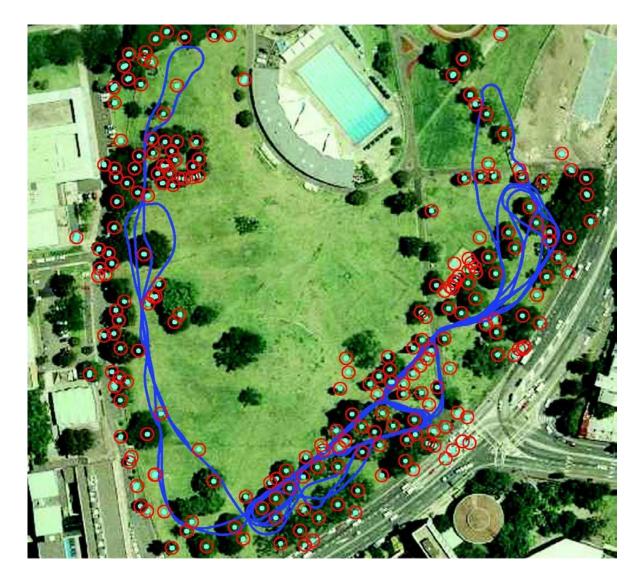
[courtesy by E. Nebot]

Victoria Park: Estimated Trajectory



[courtesy by E. Nebot]

Victoria Park: Landmarks



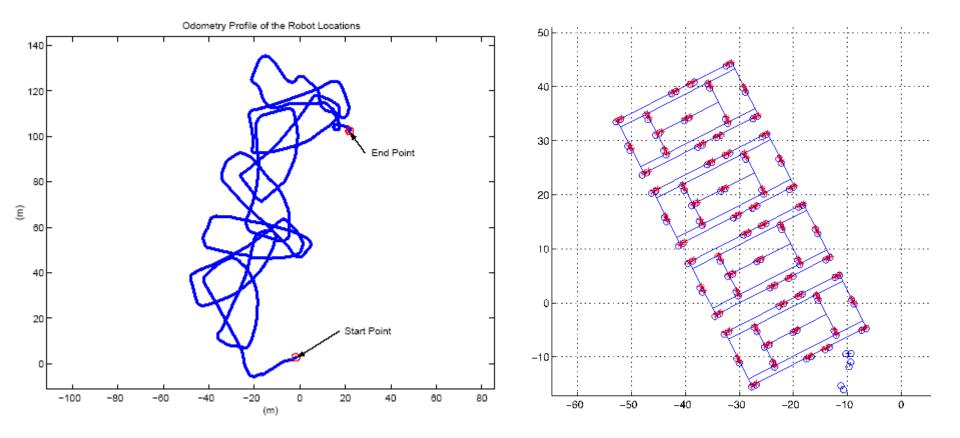
[courtesy by E. Nebot]

EKF SLAM Example: Tennis Court

[courtesy by J. Leonard] 48

EKF SLAM Example: Tennis Court

odometry

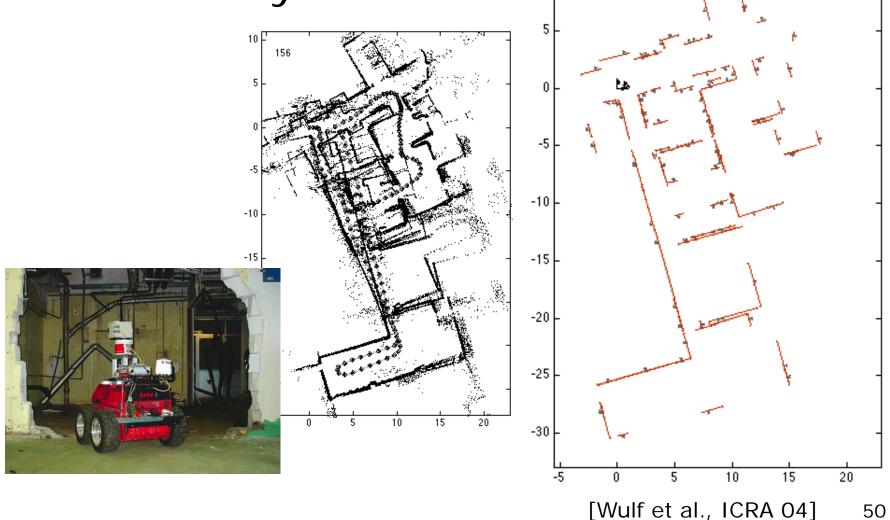


estimated trajectory

[courtesy by John Leonard] 49

EKF SLAM Example: Line Features

KTH Bakery Data Set



10

156

EKF-SLAM: Complexity

- Cost per step: quadratic in n, the number of landmarks: O(n²)
- Total cost to build a map with n landmarks: O(n³)
- Memory consumption: O(n²)
- Problem: becomes computationally intractable for large maps!
- There exists variants to circumvent these problems

SLAM Techniques

- EKF SLAM
- FastSLAM
- Graph-based SLAM
- Topological SLAM (mainly place recognition)
- Scan Matching / Visual Odometry (only locally consistent maps)
- Approximations for SLAM: Local submaps, Sparse extended information filters, Sparse links, Thin junction tree filters, etc.

EKF-SLAM: Summary

- The first SLAM solution
- Convergence proof for linear Gaussian case
- Can diverge if nonlinearities are large (and the real world is nonlinear ...)
- Can deal only with a single mode
- Successful in medium-scale scenes
- Approximations exists to reduce the computational complexity