Introduction to Mobile Robotics

SLAM – Landmark-based FastSLAM

Wolfram Burgard

Partial slide courtesy of Mike Montemerlo
The SLAM Problem

- SLAM stands for simultaneous localization and mapping
- The task of building a map while estimating the pose of the robot relative to this map

Why is SLAM hard?
Chicken-or-egg problem:
- A map is needed to localize the robot
- A pose estimate is needed to build a map
The SLAM Problem

A robot moving through an unknown, static environment

Given:
- The robot’s controls
- Observations of nearby features

Estimate:
- Map of features
- Path of the robot
Map Representations

Typical models are:

- Feature maps
- Grid maps (occupancy or reflection probability maps)

today
Why is SLAM a Hard Problem?

SLAM: robot path and map are both *unknown*!

Robot path error correlates errors in the map.
Why is SLAM a Hard Problem?

- In the real world, the mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences
- Pose error correlates data associations
A data association is an assignment of observations to landmarks
In general there are more than $\binom{n}{m}$ (n observations, m landmarks) possible associations
Also called “assignment problem”
Particle Filters

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes

- Sampling Importance Resampling (SIR) principle
 - Draw the new generation of particles
 - Assign an importance weight to each particle
 - Resample

- Typical application scenarios are tracking, localization, ...
Localization vs. SLAM

- A particle filter can be used to solve both problems
- Localization: state space \(<x, y, \theta> \)
- SLAM: state space \(<x, y, \theta, map> \)
 - for landmark maps = \(<l_1, l_2, ..., l_m> \)
 - for grid maps = \(<c_{11}, c_{12}, ..., c_{1n}, c_{21}, ..., c_{nm}> \)

- **Problem:** The number of particles needed to represent a posterior grows exponentially with the dimension of the state space!
Dependencies

- Is there a dependency between certain dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?
Dependencies

- Is there a dependency between certain dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?

- In the SLAM context
 - The map depends on the poses of the robot.
 - We know how to build a map given the position of the sensor is known.
Factored Posterior (Landmarks)

Factorization first introduced by Murphy in 1999

\[
p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) = \\
p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t})
\]
Factored Posterior (Landmarks)

\[
p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) = p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t})
\]

poses \hspace{1cm} \text{map} \hspace{1cm} \text{observations & movements}

SLAM posterior

Robot path posterior

Does this help to solve the problem?

Factorization first introduced by Murphy in 1999
Rao-Blackwellization

- Factorization to exploit dependencies between variables:

\[p(a, b) = p(a) \cdot p(b \mid a) \]

- If \(p(b \mid a) \) can be computed in closed form, represent only \(p(a) \) with samples and compute \(p(b \mid a) \) for every sample

- It comes from the Rao-Blackwell theorem
Revisit the Graphical Model

Courtesy: Thrun, Burgard, Fox
Revisit the Graphical Model

known

Courtesy: Thrun, Burgard, Fox
Landmarks are Conditionally Independent Given the Poses

Landmark variables are all disconnected (i.e. independent) given the robot’s path
Factored Posterior

\[p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) \]

\[= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t}) \]

\[= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t}) \]

Robot path posterior (localization problem)

Conditionally independent landmark positions
Rao-Blackwellization for SLAM

\[p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) = \]

\[p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t}) \]

- Given that the second term can be computed efficiently, particle filtering becomes possible!
FastSLAM

- Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]
- Each landmark is represented by a 2x2 Extended Kalman Filter (EKF)
- Each particle therefore has to maintain M EKFs
FastSLAM – Action Update

Particle #1

Particle #2

Particle #3

Landmark #1 Filter

Landmark #2 Filter
FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark #1

Landmark #2
FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1
FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Update map of particle #1

Update map of particle #2

Update map of particle #3
FastSLAM - Video
FastSLAM Complexity – Naive

- Update robot particles based on the control $O(N)$
- Incorporate an observation into the Kalman filters (given the data association) $O(N)$
- Resample particle set $O(NM)$

$N = \text{Number of particles}$
$M = \text{Number of map features}$
A Better Data Structure for FastSLAM

![Decision Tree Diagram]

- $j \leq 4 ?$
 - $j \leq 2 ?$
 - $j \leq 1 ?$
 - T: $[\mu_1, \Sigma_1]$ (node 1)
 - F: $[\mu_2, \Sigma_2]$ (node 2)
 - F: $[\mu_3, \Sigma_3]$ (node 3)
 - F: $[\mu_4, \Sigma_4]$ (node 4)
 - T: $[\mu_5, \Sigma_5]$ (node 5)
 - F: $[\mu_6, \Sigma_6]$ (node 6)
 - F: $[\mu_7, \Sigma_7]$ (node 7)
 - T: $[\mu_8, \Sigma_8]$ (node 8)
 - F: $[\mu_9, \Sigma_9]$ (node 9)

Courtesy: M. Montemerlo
A Better Data Structure for FastSLAM
FastSLAM Complexity

- Update robot particles based on the control: $\mathcal{O}(N)$
- Incorporate an observation into the Kalman filters (given the data association): $\mathcal{O}(N \log M)$
- Resample particle set: $\mathcal{O}(N \log M)$

$N = \text{Number of particles}$
$M = \text{Number of map features}$

$\mathcal{O}(N \log M)$
Data Association Problem

- Which observation belongs to which landmark?

- A robust SLAM solution must consider possible data associations
- Potential data associations depend also on the pose of the robot
Multi-Hypothesis Data Association

- Data association is done on a per-particle basis
- Robot pose error is factored out of data association decisions
Per-Particle Data Association

Was the observation generated by the red or the brown landmark?

\[P(\text{observation}|\text{red}) = 0.3 \quad P(\text{observation}|\text{brown}) = 0.7 \]

- Two options for per-particle data association
 - Pick the most probable match
 - Pick a random association weighted by the observation likelihoods
- If the probability is too low, generate a new landmark
Results – Victoria Park

- 4 km traverse
- < 5 m RMS position error
- 100 particles

Blue = GPS
Yellow = FastSLAM

Dataset courtesy of University of Sydney
Results – Victoria Park (Video)

Dataset courtesy of University of Sydney
Results – Data Association

Comparison of FastSLAM and EKF Given Motion Ambiguity

- FastSLAM
- EKF

Error Added to Rotational Velocity (std.)

Robot RMS Position Error (m)
FastSLAM Summary

- FastSLAM factors the SLAM posterior into low-dimensional estimation problems
 - Scales to problems with over 1 million features
- FastSLAM factors robot pose uncertainty out of the data association problem
 - Robust to significant ambiguity in data association
 - Allows data association decisions to be delayed until unambiguous evidence is collected
- Advantages compared to the classical EKF approach (especially with non-linearities)
 - Complexity of $O(N \log M)$