Introduction to Mobile Robotics Path and Motion Planning

Wolfram Burgard

Motion Planning

Latombe (1991):

"... eminently necessary since, by definition, a robot accomplishes tasks by moving in the real world."

Goals:

- Collision-free trajectories.
- Robot should reach the goal location as quickly as possible.

... in Dynamic Environments

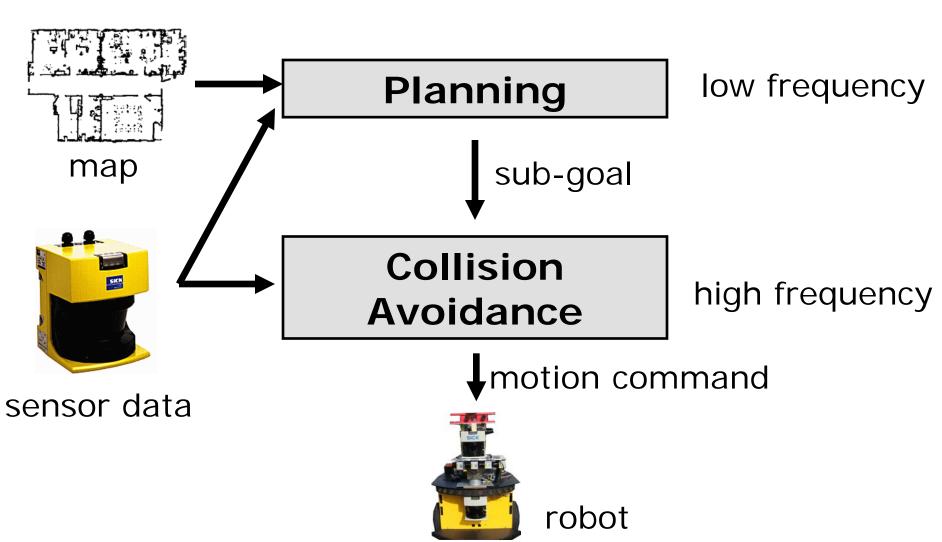
- How to react to unforeseen obstacles?
 - efficiency
 - reliability
- Dynamic Window Approaches
 [Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]
- Grid-map-based planning [Konolige, 00]
- Nearness-Diagram-Navigation
 [Minguez at al., 2001, 2002]
- Vector-Field-Histogram +
 [Ulrich & Borenstein, 98]
- A*, D*, D* Lite, ARA*, ...

Two Challenges

 Calculate the optimal path taking potential uncertainties in the actions into account

 Quickly generate actions in the case of unforeseen objects

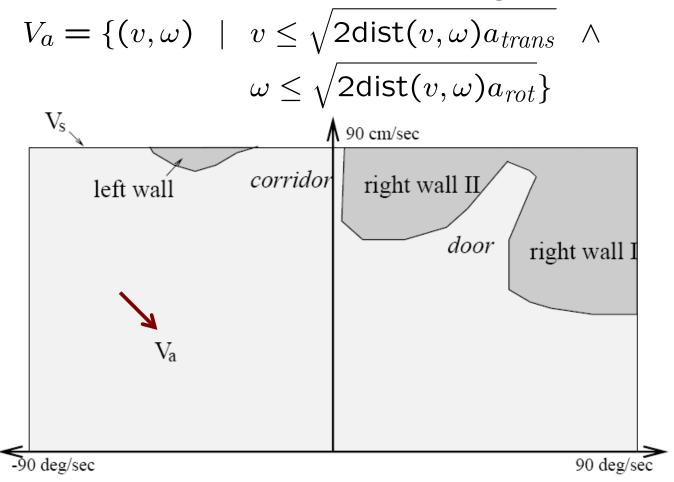
Classic Two-layered Architecture



- Collision avoidance: Determine collisionfree trajectories using geometric operations
- Here: Robot moves on circular arcs
- Motion commands (v,ω)
- Which (v,ω) are admissible and reachable?

Admissible Velocities

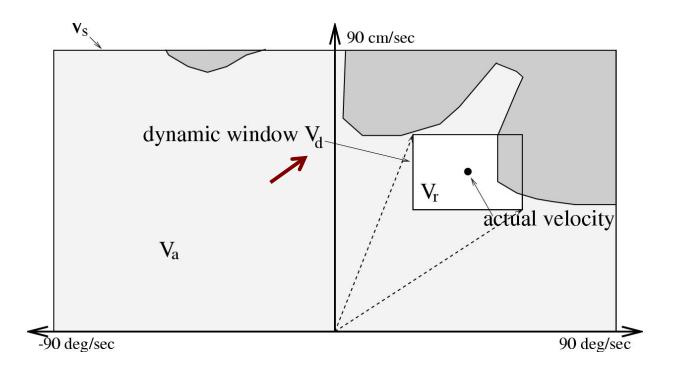
 Speeds are admissible if the robot would be able to stop before reaching the obstacle



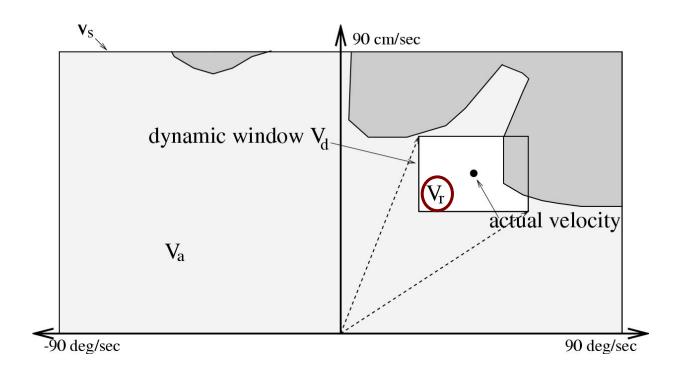
Reachable Velocities

Speeds that are reachable by acceleration

$$V_d = \{(v, \omega) \mid v \in [v - a_{trans}t, v + a_{trans}t] \land \omega \in [\omega - a_{rot}t, \omega + a_{rot}t]\}$$



DWA Search Space



- V_s = all possible speeds of the robot.
- V_a = obstacle free area.
- V_d = speeds reachable within a certain time frame based on possible accelerations.

$$V_r = V_s \cap V_a \cap V_d$$

- How to choose $< v, \omega > ?$
- Steering commands are chosen by a heuristic navigation function.
- This function tries to minimize the traveltime by "driving fast into the right direction."

- Heuristic navigation function.
- Planning restricted to <x,y>-space.
- No planning in the velocity space.

Navigation Function: [Brock & Khatib, 99]

$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \cdot \Delta nf + \delta \cdot goal$$

- Heuristic navigation function.
- Planning restricted to <x,y>-space.
- No planning in the velocity space.

Navigation Function: [Brock & Khatib, 99]

$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \cdot \Delta nf + \delta \cdot goal$$

Maximizes velocity.

- Heuristic navigation function.
- Planning restricted to <x,y>-space.
- No planning in the velocity space.

Navigation Function: [Brock & Khatib, 99]

$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \cdot \Delta nf + \delta \cdot goal$$

Maximizes velocity.

Considers cost to reach the goal.

- Heuristic navigation function.
- Planning restricted to <x,y>-space.
- No planning in the velocity space.

Navigation Function: [Brock & Khatib, 99]

$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \cdot \Delta nf + \delta \cdot goal$$

Maximizes velocity.

Considers cost to reach the goal.

Follows grid based path computed by A*.

- Heuristic navigation function.
- Planning restricted to <x,y>-space.
- No planning in the velocity space.

Navigation Function:

Goal nearness

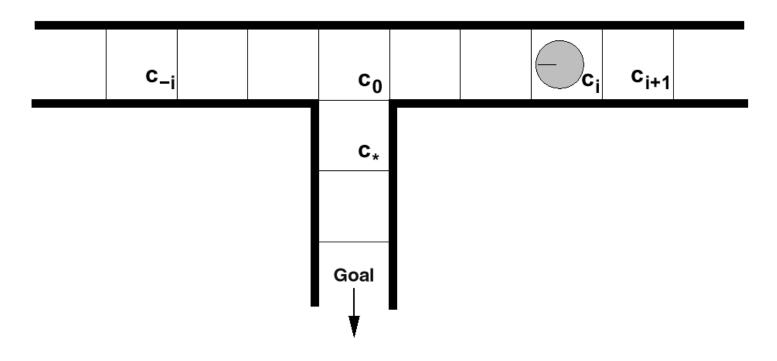
$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \cdot \Delta nf + \delta \cdot goal$$

Maximizes velocity

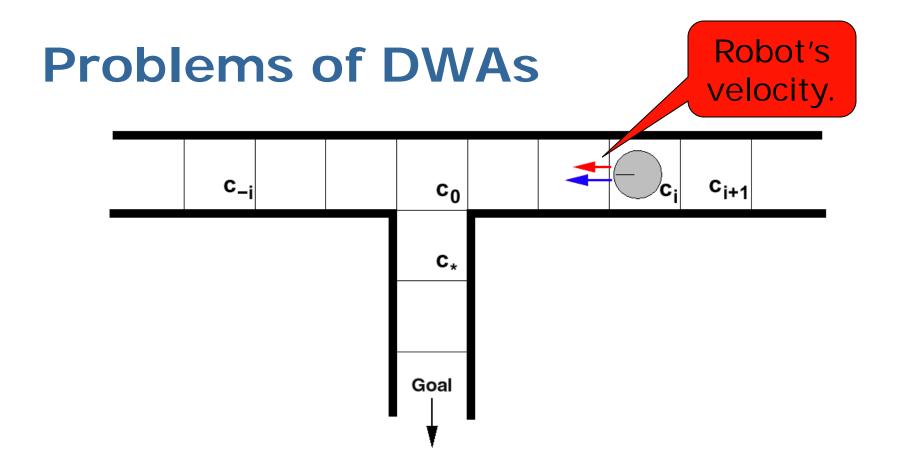
Considers cost to reach the goal

Follows grid based path computed by A*

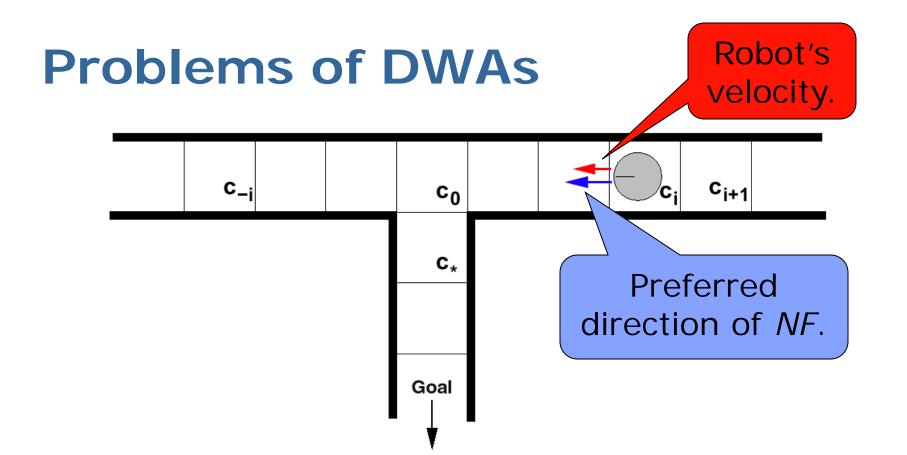
- Reacts quickly.
- Low computational requirements.
- Guides a robot along a collision-free path.
- Successfully used in a lot of real-world scenarios.
- Resulting trajectories sometimes suboptimal.
- Local minima might prevent the robot from reaching the goal location.



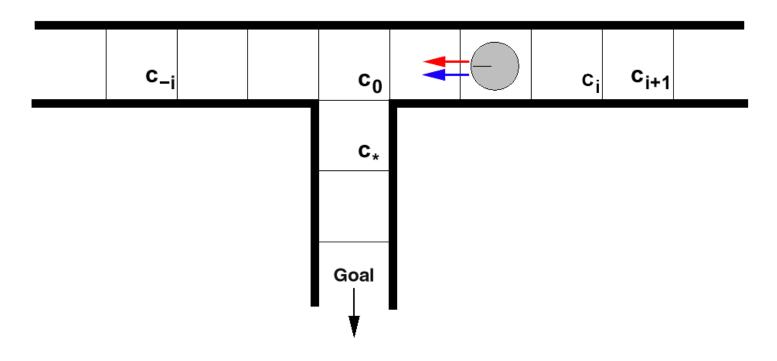
$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \cdot \Delta nf + \delta \cdot goal$$



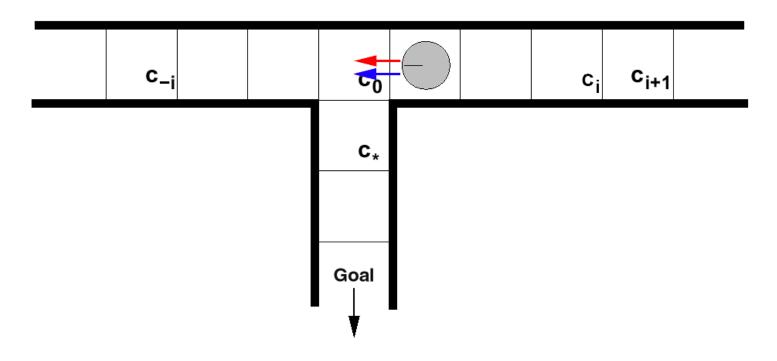
$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \cdot \Delta nf + \delta \cdot goal$$



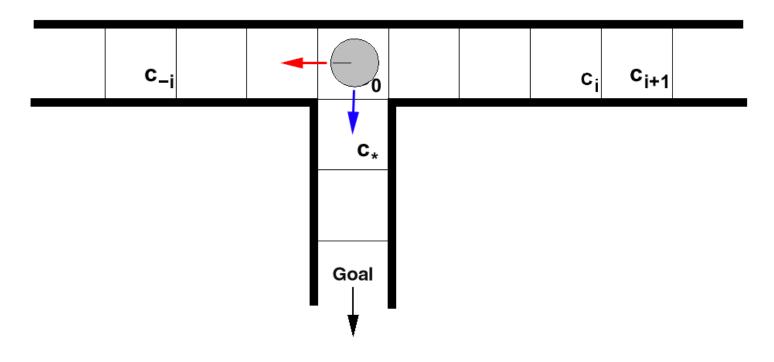
$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \cdot \Delta nf + \delta \cdot goal$$



$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \cdot \Delta nf + \delta \cdot goal$$

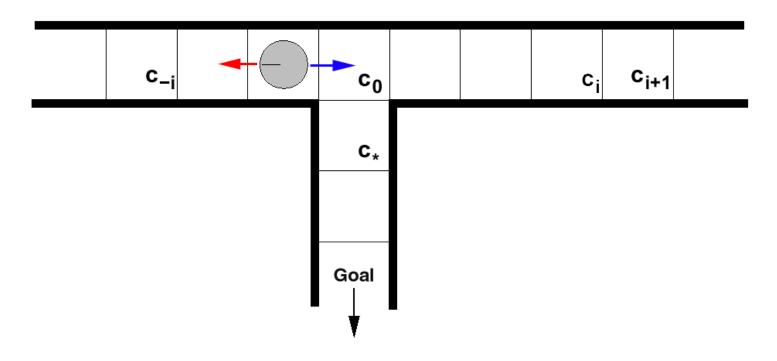


$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \cdot \Delta nf + \delta \cdot goal$$

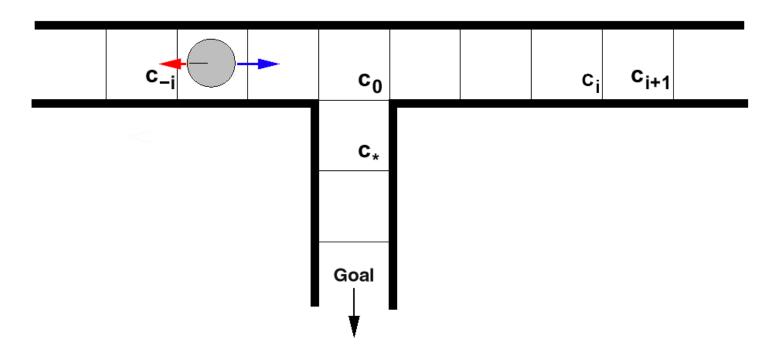


$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \cdot \Delta nf + \delta \cdot goal$$

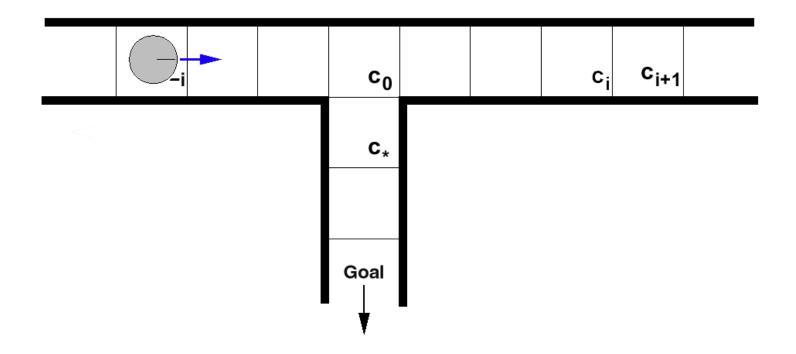
The robot drives too fast at c_0 to enter corridor facing south.



$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \cdot \Delta nf + \delta \cdot goal$$



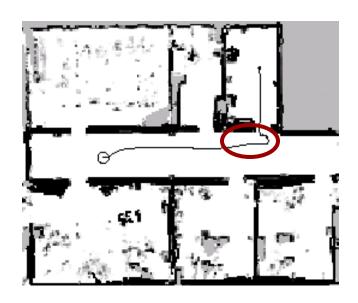
$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \cdot \Delta nf + \delta \cdot goal$$



Same situation as in the beginning.

→ DWAs have problems to reach the goal.

Typical problem in a real world situation:



 Robot does not slow down early enough to enter the doorway.

Motion Planning Formulation

- The problem of motion planning can be stated as follows. Given:
 - A start pose of the robot
 - A desired goal pose
 - A geometric description of the robot
 - A geometric representation of the environment
- Find a path that moves the robot gradually from start to goal while never touching any obstacle

Configuration Space

- Although the motion planning problem is defined in the regular world, it lives in another space: the configuration space
- A robot configuration q is a specification of the positions of all robot points relative to a fixed coordinate system

 Usually a configuration is expressed as a vector of positions and orientations

Configuration Space

- Free space and obstacle region
- With $W = \mathbb{R}^m$ being the work space, $\mathcal{O} \in W$ the set of obstacles, $\mathcal{A}(q)$ the robot in configuration $q \in \mathcal{C}$

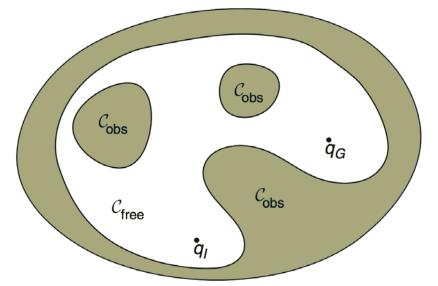
$$C_{free} = \{q \in C \mid A(q) \cap \mathcal{O} = \emptyset\}$$

$$C_{obs} = C/C_{free}$$

We further define

 q_I : start configuration

 q_G : goal configuration



Configuration Space

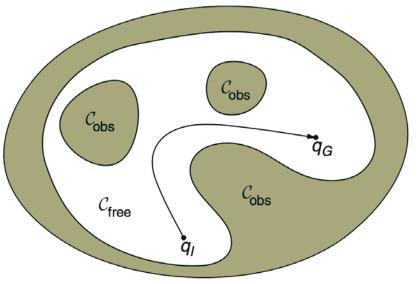
Then, motion planning amounts to

Finding a continuous path

$$\tau:[0,1]\to\mathcal{C}_{free}$$

with
$$\tau(0) = q_I, \, \tau(1) = q_G$$

 Given this setting, we can do planning with the robot being a point in C-space!



C-Space Discretizations

- Continuous terrain needs to be discretized for path planning
- There are two general approaches to discretize C-spaces:
 - Combinatorial planning

Characterizes C_{free} explicitly by capturing the connectivity of C_{free} into a graph and finds solutions using search

Sampling-based planning

Uses collision-detection to probe and incrementally search the C-space for a solution

Search

The problem of **search**: finding a sequence of actions (a *path*) that leads to desirable states (a *goal*)

- Uninformed search: besides the problem definition, no further information about the domain ("blind search")
- The only thing one can do is to expand nodes differently
- Example algorithms: breadth-first, uniform-cost, depth-first, bidirectional, etc.

Search

The problem of **search**: finding a sequence of actions (a *path*) that leads to desirable states (a *goal*)

- Informed search: further information about the domain through heuristics
- Capability to say that a node is "more promising" than another node
- Example algorithms: greedy best-first search, A*, many variants of A*, D*, etc.

Search

The performance of a search algorithm is measured in four different ways:

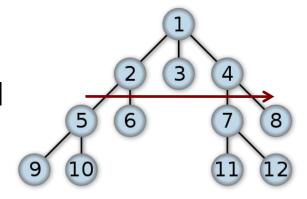
- Completeness: does the algorithm find a solution when there is one?
- Optimality: is the solution the best one of all possible solutions in terms of path cost?
- Time complexity: how long does it take to find a solution?
- Space complexity: how much memory is needed to perform the search?

Discretized Configuration Space

Uninformed Search

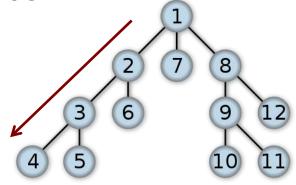
Breadth-first

- Complete
- Optimal if action costs equal
- Time and space: $O(b^d)$



Depth-first

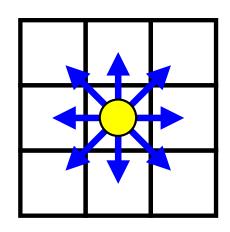
- Not complete in infinite spaces
- Not optimal
- Time: $O(b^m)$
- Space: O(bm) (can forget explored subtrees)



(b: branching factor, d: goal depth, m: max. tree depth)

Informed Search: A*

- What about using A* to plan the path of a robot?
- Finds the shortest path
- Requires a graph structure
- Limited number of edges
- In robotics: planning on a 2d occupancy grid map



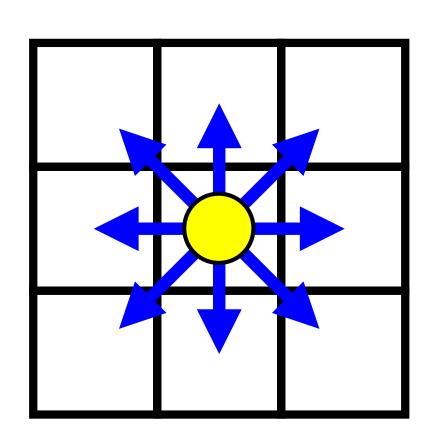
A*: Minimize the Estimated Path Costs

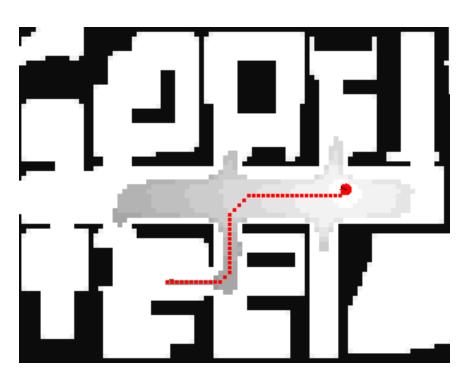
- g(n) = actual cost from the initial state to n.
- h(n) = estimated cost from n to the next goal.
- f(n) = g(n) + h(n), the estimated cost of the cheapest solution through n.
- Let h*(n) be the actual cost of the optimal path from n to the next goal.
- h is admissible if the following holds for all n:

$$h(n) \leq h^*(n)$$

 We require that for A*, h is admissible (the straight-line distance is admissible in the Euclidean Space).

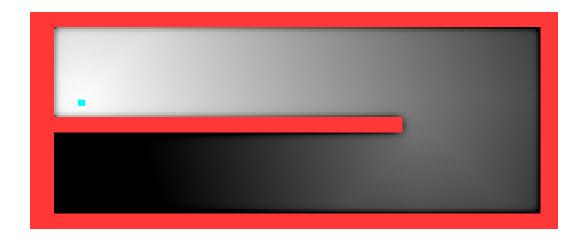
Example: PathPlanning for Robots in a Grid-World





Deterministic Value Iteration

- To compute the shortest path from every state to one goal state, use (deterministic) value iteration.
- Very similar to Dijkstra's Algorithm.
- Such a cost distribution is the optimal heuristic for A*.



Typical Assumption in Robotics for A* Path Planning

- 1. The robot is assumed to be localized.
- 2. The robot computes its path based on an occupancy grid.
- 3. The correct motion commands are executed.

Are 1. and 3. always true?

Problems

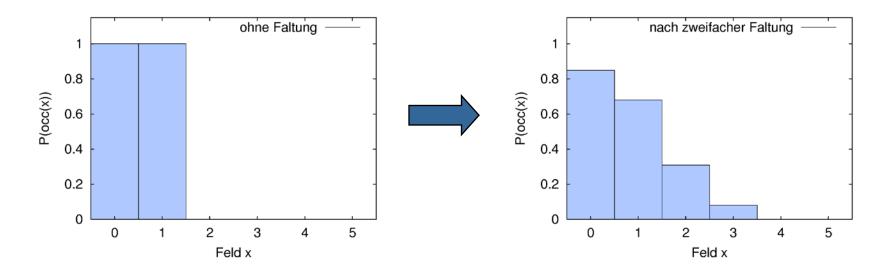
- What if the robot is (slightly) delocalized?
- Moving on the shortest path often guides the robot along a trajectory close to obstacles.
- Trajectory aligned to the grid structure.

Convolution of the Grid Map

- Convolution blurs the map.
- Obstacles are assumed to be bigger than in reality.
- Perform an A* search in such a convolved map (using occupancy as traversal cost).
- Robot increases distance to obstacles and moves on a short path!

Example: Map Convolution

one-dimensional environment, cells



Cells before and after 2 convolution runs.

Convolution

Consider an occupancy map. Than the convolution is defined as:

$$P(occ_{x_{i},y}) = \frac{1}{4} \cdot P(occ_{x_{i-1},y}) + \frac{1}{2} \cdot P(occ_{x_{i},y}) + \frac{1}{4} \cdot P(occ_{x_{i+1},y})$$

$$P(occ_{x_{0},y}) = \frac{2}{3} \cdot P(occ_{x_{0},y}) + \frac{1}{3} \cdot P(occ_{x_{1},y})$$

$$P(occ_{x_{n-1},y}) = \frac{1}{3} \cdot P(occ_{x_{n-2},y}) + \frac{2}{3} \cdot P(occ_{x_{n-1},y})$$

- This is done for each row and each column of the map.
- "Gaussian blur"

A* in Convolved Maps

 The costs are a product of path length and occupancy probability of the cells.

- Cells with higher probability (e.g., caused by convolution) are avoided by the robot.
- Thus, it keeps distance to obstacles.

This technique is fast and quite reliable.

5D-Planning – an Alternative to the Two-layered Architecture

- Plans in the full $\langle x,y,\theta,v,\omega \rangle$ -configuration space using A^* .
 - Considers the robot's kinematic constraints.
- Generates a sequence of steering commands to reach the goal location.
- Maximizes trade-off between driving time and distance to obstacles.

The Search Space (1)

What is a state in this space?
 <x,y,θ,v,ω> = current position and speed of the robot

- How does a state transition look like? $< x1,y1,\theta1,v1,\omega1> \longrightarrow < x2,y2,\theta2,v2,\omega2>$
 - with motion command ($v2,\omega2$) and |v1-v2| < av, $|\omega1-\omega2| < a\omega$.
 - The new pose of the Robot $< x2,y2,\theta2 > is$ a result of the motion equations.

The Search Space (2)

Idea: search in the discretized $\langle x,y,\theta,v,\omega \rangle$ -space.

Problem: the search space is too huge to be explored within the time constraints (5+ Hz for online motion planning).

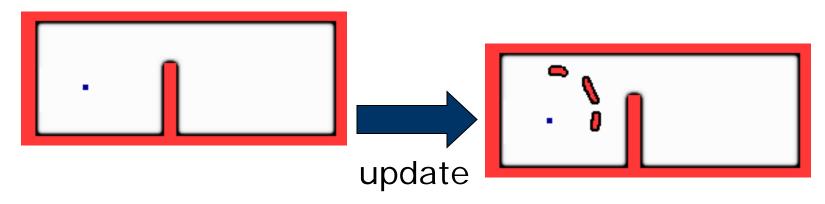
Solution: restrict the full search space.

The Main Steps of the Algorithm

- Update (static) grid map based on sensory input.
- 2. Use A* to find a trajectory in the <x,y>- space using the updated grid map.
- 3. Determine a restricted 5d-configuration space based on step 2.
- 4. Find a trajectory by planning in the restricted $\langle x,y,\theta,v,\omega \rangle$ -space.

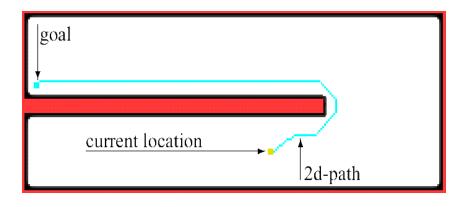
Updating the Grid Map

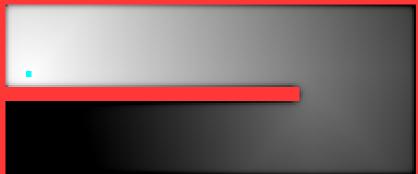
- The environment is represented as a 2doccupency grid map.
- Convolution of the map increases security distance.
- Detected obstacles are added.
- Cells discovered free are cleared.



Find a Path in the 2d-Space

- Use A* to search for the optimal path in the 2d-grid map.
- Use heuristic based on a deterministic value iteration within the static map.





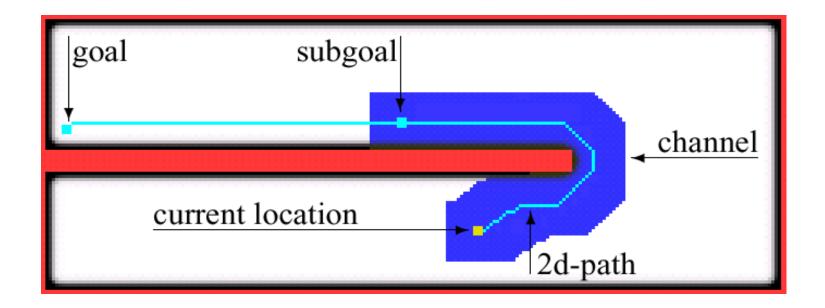
Restricting the Search Space

Assumption: the projection of the 5d-path onto the <x,y>-space lies close to the optimal 2d-path.

Therefore: construct a restricted search space (channel) based on the 2d-path.

Space Restriction

- Resulting search space =
 <x, y, θ, v, ω> with (x,y) ε channel.
- Choose a sub-goal lying on the 2d-path within the channel.

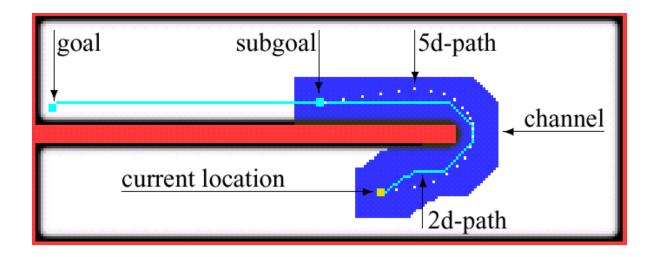


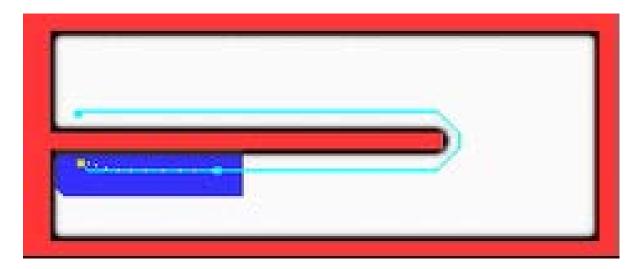
Find a Path in the 5d-Space

 Use A* in the restricted 5d-space to find a sequence of steering commands to reach the sub-goal.

 To estimate cell costs: perform a deterministic 2d-value iteration within the channel.

Examples





Timeouts

 Steering a robot online requires to set new steering commands frequently.
 E.g., every 0.2 secs.

Abort search after 0.2 secs.

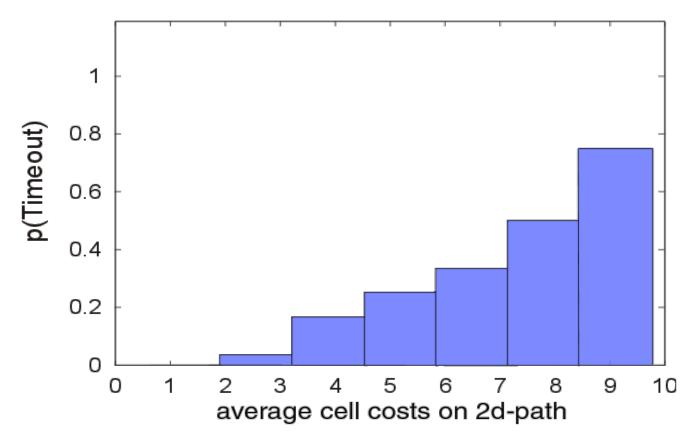
How to find an admissible steering command?

Alternative Steering Command

- Previous trajectory still admissible?
 - **→** OK

 If not, drive on the 2d-path or use DWA to find new command.

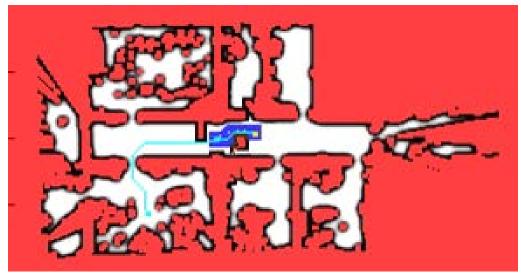
Timeout Avoidance



Reduce the size of the channel if the 2dpath has high cost.

Example

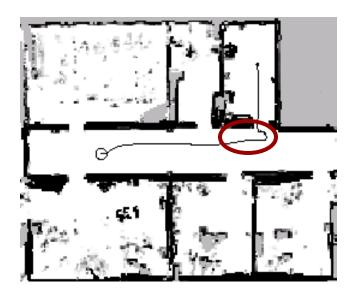
Robot Albert



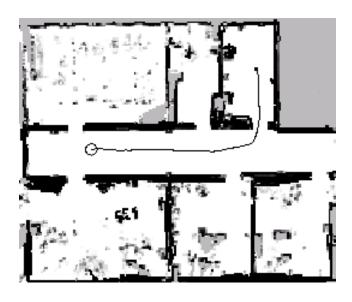
Planning state

Comparison to the DWA (1)

DWAs often have problems entering narrow passages.

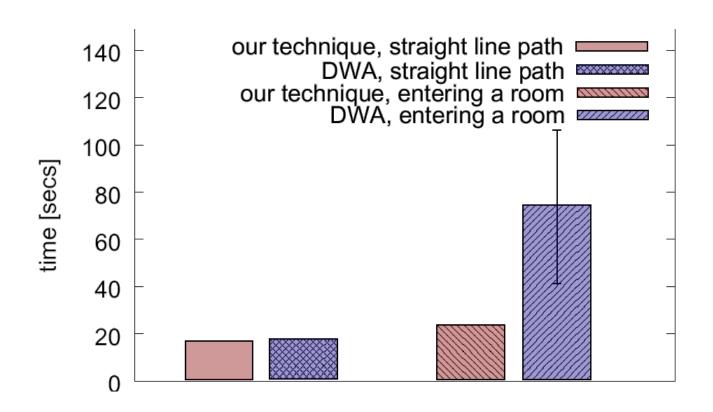


DWA planned path.



5D approach.

Comparison to the DWA (2)



The 5D approach results in significantly faster motion when driving through narrow passages!

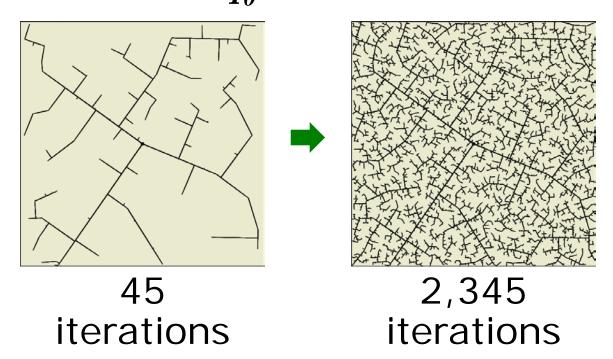
Comparison to the Optimum



Channel: with length=5m, width=1.1m Resulting actions are close to the optimal solution.

Rapidly Exploring Random Trees

- Idea: aggressively probe and explore the C-space by expanding incrementally from an initial configuration q_0
- The explored territory is marked by a tree rooted at q_0



The algorithm: Given C and q_0

Algorithm 1: RRT

```
1 G.init(q_0)
2 repeat
3 q_{rand} \rightarrow RANDOM\_CONFIG(C)
4 q_{near} \leftarrow NEAREST(G, q_{rand})
5 G.add\_edge(q_{near}, q_{rand})
6 until condition
```

centered around q_0 E.g. an axis-aligned relative random

Sample from a

bounded region

relative random translation or random rotation

The algorithm

Algorithm 1: RRT

- $G.init(q_0)$
- 2 repeat

```
\mathbf{a} \mid q_{rand} \to \mathrm{RANDOM\_CONFIG}(\mathcal{C})
```

- $q_{near} \leftarrow \text{NEAREST}(G, q_{rand})$
- $G.add_edge(q_{near}, q_{rand})$
- 6 until condition

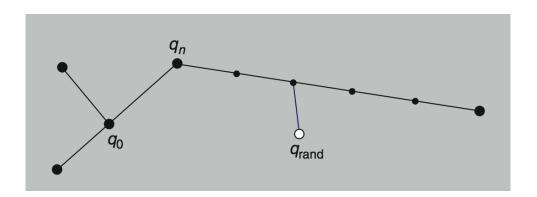
$$\rho : \mathcal{C} \times \mathcal{C} \to [0, \infty)$$

formally a *metric* defined on *C*

The algorithm

Algorithm 1: RRT

```
1 G.init(q_0)
2 repeat
3 q_{rand} \rightarrow RANDOM\_CONFIG(C)
4 q_{near} \leftarrow NEAREST(G, q_{rand})
5 G.add\_edge(q_{near}, q_{rand})
6 until condition
```



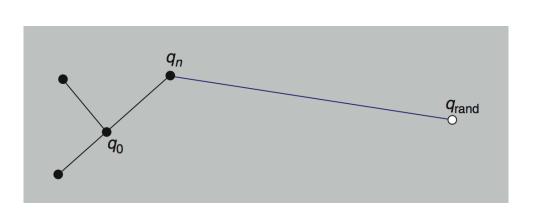
Several stategies to find q_{near} given the closest vertex on G:

- Take closest vertex
- Check intermediate points at regular intervals and split edge at q_{near}

The algorithm

Algorithm 1: RRT

```
1 G.init(q_0)
2 repeat
3 q_{rand} \rightarrow RANDOM\_CONFIG(C)
4 q_{near} \leftarrow NEAREST(G, q_{rand})
5 G.add\_edge(q_{near}, q_{rand})
6 until condition
```



Connect nearest point with random point using a **local planner** that travels from q_{near} to q_{rand}

No collision: add edge

The algorithm

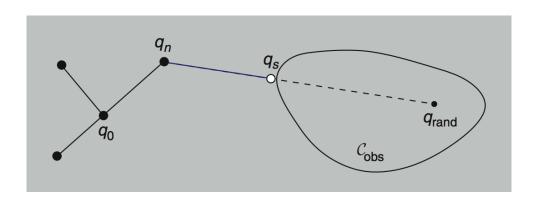
Algorithm 1: RRT

```
G.init(q_0)
```

```
2 repeat
```

```
3 q_{rand} \rightarrow \text{RANDOM\_CONFIG}(C)
4 q_{near} \leftarrow \text{NEAREST}(G, q_{rand})
5 G.\text{add\_edge}(q_{near}, q_{rand})
```

6 until condition

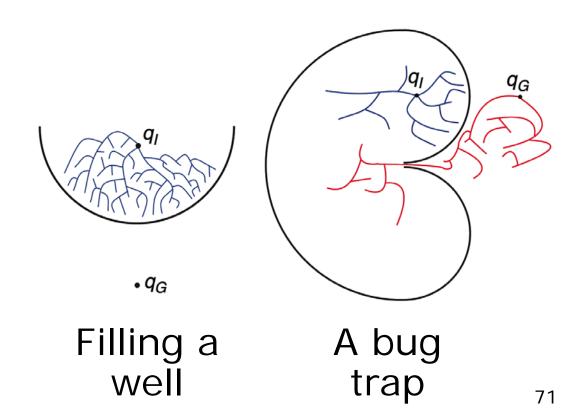


Connect nearest point with random point using a **local planner** that travels from q_{near} to q_{rand}

- No collision: add edge
- Collision: new vertex is q_s , as close as possible to C_{obs}

- How to perform path planning with RRTs?
 - 1. Start RRT at q_I
 - 2. At every, say, 100th iteration, force $q_{rand} = q_G$
 - 3. If q_G is reached, problem is solved
- Why not picking q_G every time?
- This will fail and waste much effort in running into C_{Obs} instead of exploring the space

- However, some problems require more effective methods: bidirectional search
- Grow **two** RRTs, one from q_I , one from q_G
- In every other step, try to extend each tree towards the newest vertex of the other tree



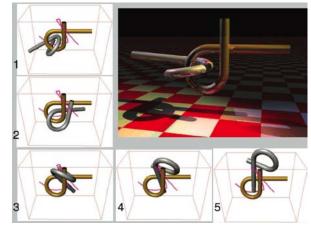
 RRTs are popular, many extensions exist: real-time RRTs, anytime RRTs, for dynamic environments etc.

Pros:

- Balance between greedy search and exploration
- Easy to implement

Cons:

- Metric sensivity
- Unknown rate of convergence



Alpha 1.0 puzzle. Solved with bidirectional RRT

Road Map Planning

- A road map is a graph in C_{free} in which each vertex is a configuration in C_{free} and each edge is a collision-free path through C_{free}
- Several planning techniques
 - Visibility graphs
 - Voronoi diagrams
 - Exact cell decomposition
 - Approximate cell decomposition
 - Randomized road maps

Road Map Planning

- A road map is a graph in C_{free} in which each vertex is a configuration in C_{free} and each edge is a collision-free path through C_{free}
- Several planning techniques
 - Visibility graphs
 - Voronoi diagrams
 - Exact cell decomposition
 - Approximate cell decomposition
 - Randomized road maps

Generalized Voronoi Diagram

• **Defined** to be the set of points q whose cardinality of the set of boundary points of C_{obs} with the same distance to q is greater than 1

Let us decipher this definition...

Informally:
 the place with the same maximal clearance from all nearest obstacles

Generalized Voronoi Diagram

Formally:

Let $\beta = \partial \mathcal{C}_{free}$ be the boundary of C_{free} , and d(p,q) the Euclidian distance between p and q. Then, for all q in C_{free} , let

$$clearance(q) = \min_{p \in \beta} d(p, q)$$

be the *clearance* of q, and

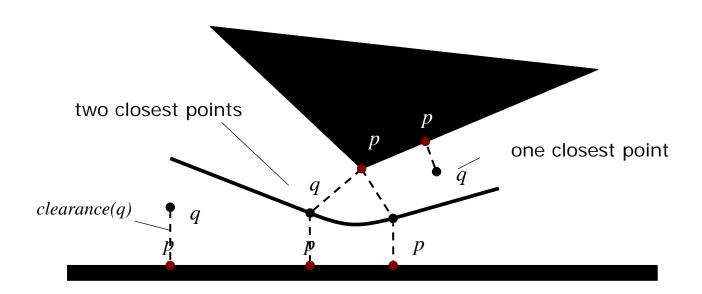
$$near(q) = \{ p \in \beta \mid d(p,q) = clearance(q) \}$$

the set of "base" points on β with the same clearance to q. The **Voronoi diagram** is then the set of q's with more than one base point p

$$V(\mathcal{C}_{free}) = \{ q \in \mathcal{C}_{free} \mid |near(q)| > 1 \}$$

Generalized Voronoi Diagram

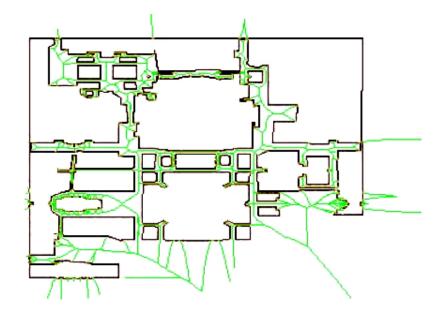
Geometrically:



- For a polygonal C_{obs} , the Voronoi diagram consists of (n) lines and parabolic segments
- Naive algorithm: $O(n^4)$, best: $O(n \log n)$

Voronoi Diagram

- Voronoi diagrams have been well studied for (reactive) mobile robot path planning
- Fast methods exist to compute and update the diagram in real-time for lowdim. C's
 - Pros: maximize clearance is a good idea for an uncertain robot
 - Cons: unnatural attraction to open space, suboptimal paths

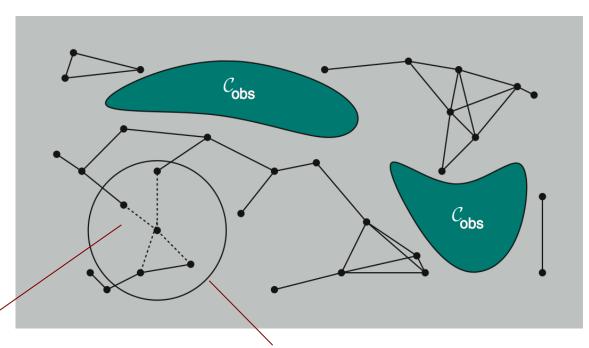


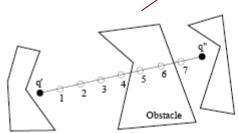
Needs extensions

Also called *Probabilistic Road Maps*

- Idea: Take random samples from C, declare them as vertices if in C_{free} , try to connect nearby vertices with local planner
- The local planner checks if line-of-sight is collision-free (powerful or simple methods)
- Options for nearby: k-nearest neighbors or all neighbors within specified radius
- Configurations and connections are added to graph until roadmap is dense enough

Example





Example local planner

specified radius

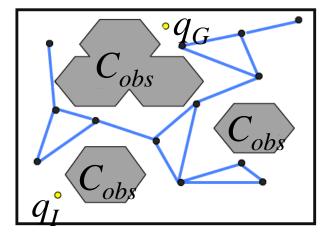
What does "nearby" mean on a manifold? Defining a good metric on C is crucial $_{80}$

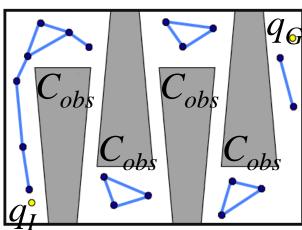
Pros:

- Probabilistically complete
- Do not construct C-space
- Apply easily to high dimensional C-spaces
- Randomized road maps have solved previously unsolved problems

Cons:

- Do not work well for some problems, narrow passages
- Not optimal, not complete





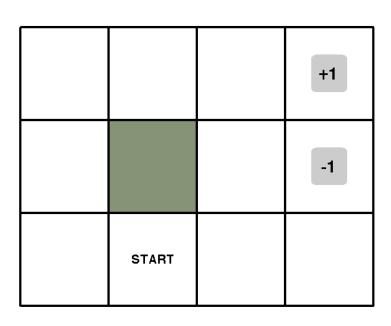
- How to uniformly sample C? This is not at all trivial given its topology
- For example over spaces of rotations: Sampling Euler angles gives more samples near poles, not uniform over SO(3). Use quaternions!
- However, Randomized Road Maps are powerful, popular and many extensions exist: advanced sampling strategies (e.g. near obstacles), PRMs for deformable objects, closed-chain systems, etc.

From Road Maps to Paths

- All methods discussed so far **construct a** road map (without considering the query pair q_I and q_G)
- Once the investment is made, the same road map can be reused for all queries (provided world and robot do not change)
 - **1. Find** the cell/vertex that contain/is close to q_I and q_G (not needed for visibility graphs)
 - **2.** Connect q_I and q_G to the road map
 - **3. Search** the road map for a path from q_I to q_G

Markov Decision Process

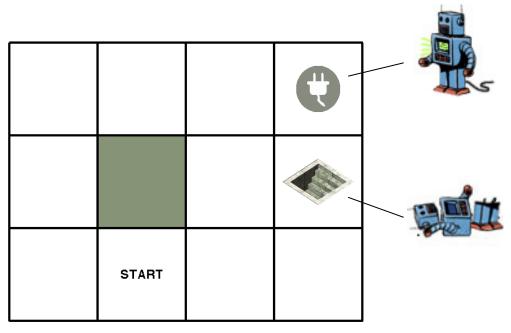
 Consider an agent acting in this environment



 Its mission is to reach the goal marked by +1 avoiding the cell labelled -1

Markov Decision Process

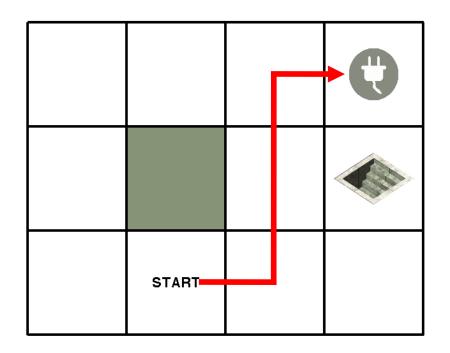
 Consider an agent acting in this environment



 Its mission is to reach the goal marked by +1 avoiding the cell labelled -1

Markov Decision Process

Easy! Use a search algorithm such as A*



 Best solution (shortest path) is the action sequence [Right, Up, Up, Right]

What is the problem?

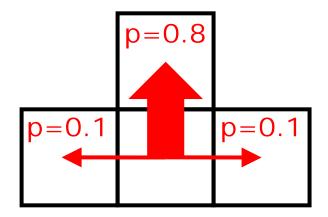
- Consider a non-perfect system in which actions are performed with a probability less than 1
- What are the best actions for an agent under this constraint?

- Example: a mobile robot does not exactly perform a desired motion
- Example: human navigation

Uncertainty about performing actions!

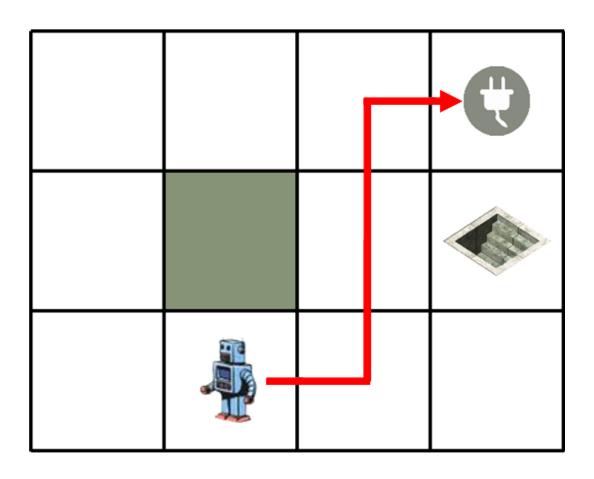
Consider the non-deterministic transition model (N / E / S / W):

desired action

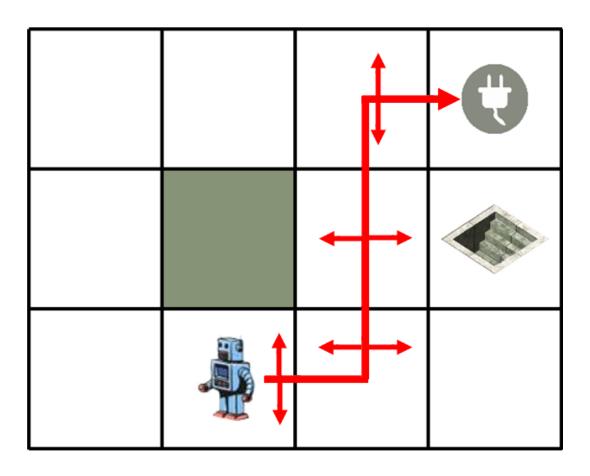


- Intended action is executed with p=0.8
- With p=0.1, the agent moves left or right
- Bumping into a wall "reflects" the robot

Executing the A* plan in this environment

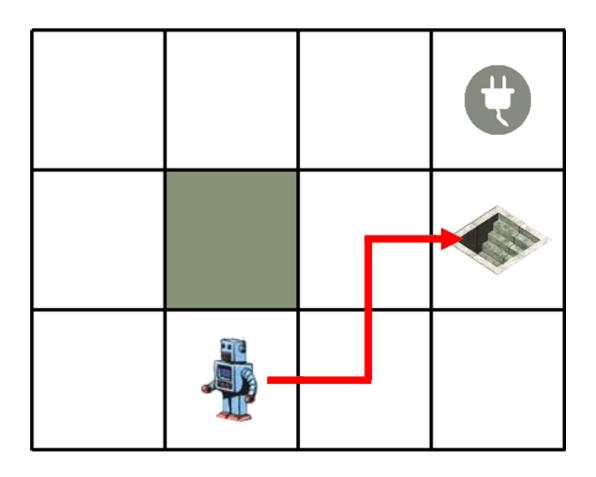


Executing the A* plan in this environment



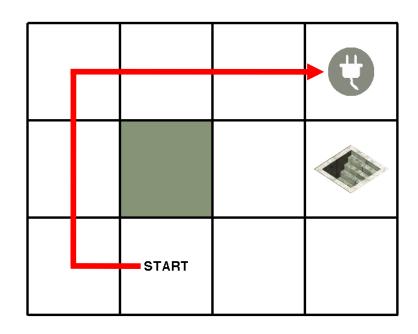
But: transitions are non-deterministic!

Executing the A* plan in this environment



This will happen sooner or later...

 Use a longer path with lower probability to end up in cell labelled -1



- This path has the highest overall utility
- Probability 0.8⁶ = 0.2621

Transition Model

The probability to reach the next state s' from state s by choosing action a

is called transition model

Markov Property:

The transition probabilities from s to s' depend only on the current state s and not on the history of earlier states

Reward

• In each state s, the agent receives a reward R(s)

 The reward may be positive or negative but must be bounded

• This can be generalized to be a function R(s,a,s').

Here: considering only R(s), does not change the problem

Reward

- In our example, the reward is -0.04 in all states (e.g. the cost of motion) except the terminal states (that have rewards +1/-1)
- A negative reward gives agents an incentive to reach the goal quickly
- Or: "living in this environment is not enjoyable"

-0.04	-0.04	-0.04	+1
-0.04		-0.04	-1
-0.04	-0.04	-0.04	-0.04

MDP Definition

- Given a sequential decision problem in a fully observable, stochastic environment with a known Markovian transition model
- Then a Markov Decision Process is defined by the components
 - Set of states: S
 - Set of actions: A
 - Initial state: s_0
 - Transition model: T(s, a, s')
 - Reward function: R(s)

Policy

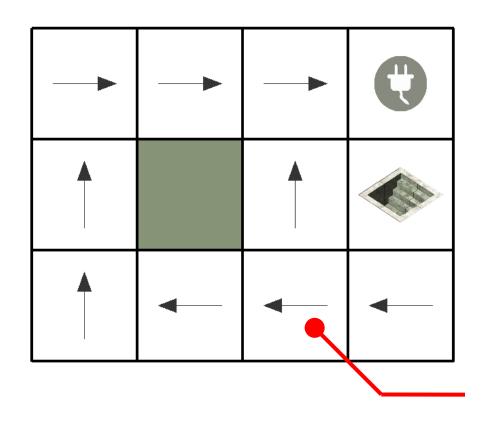
- An MDP solution is called **policy** π
- A policy is a mapping from states to actions

$$policy: States \mapsto Actions$$

- In each state, a policy tells the agent what to do next
- Let $\pi(s)$ be the *action* that π specifies for s
- Among the many policies that solve an MDP, the **optimal policy** π^* is what we seek. We'll see later what *optimal* means

Policy

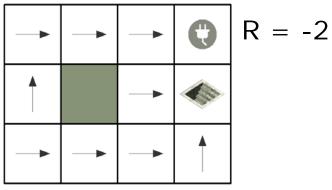
The optimal policy for our example



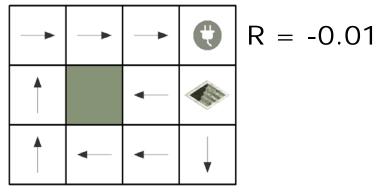
Take long way around as the cost per step of -0.04 is small compared with the penality to fall down the stairs and receive a -1 reward

Policy

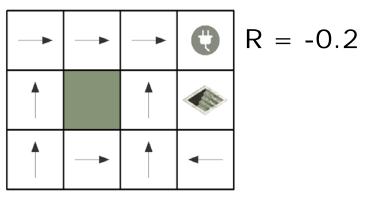
 When the balance of risk and reward changes, other policies are optimal



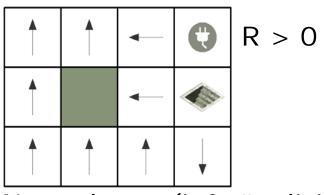
Leave as soon as possible



No risks are taken



Take shortcut, minor risks



Never leave (inf. #policies)

Utility of a State

- The utility of a state U(s) quantifies the benefit of a state for the overall task
- We first define $U^{\pi}(s)$ to be the **expected** utility of all state sequences that start in s given π

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} R(s_t) \mid \pi, s_0 = s\right]$$

• U(s) evaluates (and encapsulates) all possible futures **from** s **onwards**

Utility of a State

• With this definition, we can express $U^{\pi}(s)$ as a **function of its next state** s'

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} R(s_t) \mid \pi, s_0 = s\right]$$

$$= E\left[R(s_0) + R(s_1) + R(s_2) + \dots \mid \pi, s_0 = s\right]$$

$$= E\left[R(s_0) \mid s_0 = s\right] + E\left[R(s_1) + R(s_2) + \dots \mid \pi\right]$$

$$= R(s) + E\left[\sum_{t=0}^{\infty} R(s_t) \mid \pi, s_0 = s'\right]$$

$$= R(s) + U^{\pi}(s')$$

Optimal Policy

- The utility of a state allows us to apply the Maximum Expected Utility principle to define the optimal policy π^*
- The **optimal policy** π^* in s chooses the action a that maximizes the expected utility of s (and of s')

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} E\left[U^{\pi}(s)\right]$$

Expectation taken over all policies

Optimal Policy

• Substituting $U^{\pi}(s)$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} E\left[U^{\pi}(s)\right]$$

$$= \underset{a}{\operatorname{argmax}} E\left[R(s) + U^{\pi}(s')\right]$$

$$= \underset{a}{\operatorname{argmax}} E\left[R(s)\right] + E\left[U^{\pi}(s')\right]$$

$$= \underset{a}{\operatorname{argmax}} E\left[U(s')\right]$$

$$= \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') U(s')$$

 Recall that E[X] is the weighted average of all possible values that X can take on

Utility of a State

• The **true utility of a state** U(s) is then obtained by application of the optimal policy, i.e. $U^{\pi^*}(s) = U(s)$. We find

$$U(s) = \max_{a} E \left[U^{\pi}(s) \right]$$

$$= \max_{a} E \left[R(s) + U^{\pi}(s') \right]$$

$$= \max_{a} E \left[R(s) \right] + E \left[U^{\pi}(s') \right]$$

$$= R(s) + \max_{a} E \left[U(s') \right]$$

$$= R(s) + \max_{a} \sum_{s'} T(s, a, s') U(s')$$

Utility of a State

This result is noteworthy:

$$U(s) = R(s) + \max_{a} \sum_{s'} T(s, a, s') U(s')$$

We have found a direct relationship between the utility of a state and the utility of its neighbors

The utility of a state is the immediate reward for that state plus the expected utility of the next state, provided the agent chooses the optimal action

Bellman Equation

$$U(s) = R(s) + \max_{a} \sum_{s'} T(s, a, s') U(s')$$

- For each state there is a Bellman equation to compute its utility
- There are n states and n unknowns
- Solve the system using Linear Algebra?
- No! The max-operator that chooses the optimal action makes the system nonlinear
- We must go for an iterative approach

Discounting

We have made a **simplification** on the way:

 The utility of a state sequence is often defined as the sum of discounted rewards

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \underline{\gamma^t} R(s_t) \mid \pi, s_0 = s\right]$$

with $\theta \delta \gamma \delta 1$ being the discount factor

- Discounting says that future rewards are less significant than current rewards.
 This is a natural model for many domains
- The other expressions change accordingly

Separability

We have made an **assumption** on the way:

- Not all utility functions (for state sequences) can be used
- The utility function must have the property of separability (a.k.a. stationarity), e.g. additive utility functions:

$$U([s_0 + s_1 + \ldots + s_n]) = R(s_0) + U([s_1 + \ldots + s_n])$$

 Loosely speaking: the preference between two state sequences is unchanged over different start states

Utility of a State

The state utilities for our example

0.812	0.868	0.918	+1
0.762		0.66	-1
0.705	0.655	0.611	0.388

 Note that utilities are higher closer to the goal as fewer steps are needed to reach it

Iterative Computation

Idea:

The utility is computed iteratively:

$$U_{i+1}(s) \leftarrow R(s) + \max_{a} \sum_{s'} T(s, a, s') U_{i}(s')$$

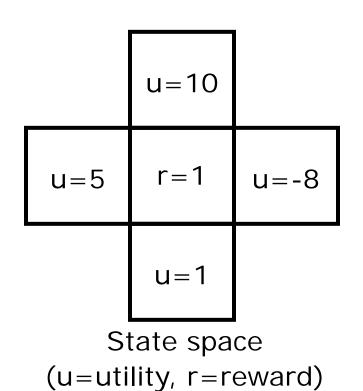
- Optimal utility: $U^* = \lim_{t \to \infty} U_t$
- Abort, if change in utility is below a threshold

Value I teration Example

Calculate utility of the center cell

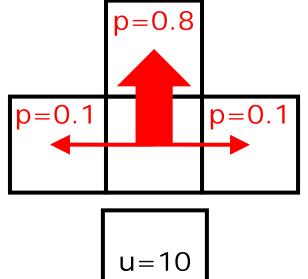
$$U_{i+1}(s) \leftarrow R(s) + \max_{a} \sum_{s'} T(s, a, s') U_{i}(s')$$

desired action = Up p=0.8 p=0.1 p=0.1Transition Model



Value I teration Example

$$U_{i+1}(s) \leftarrow R(s) + \max_{a} \sum_{s'} T(s, a, s') U_i(s')$$
p=0.8



$$r=1$$
 $u=-8$

u=5

$$= reward + max{}$$

$$0.1 \cdot 1 + 0.8 \cdot 5 + 0.1 \cdot 10 \quad (\leftarrow),$$

$$0.1 \cdot 5 + 0.8 \cdot 10 + 0.1 \cdot -8 \quad (\uparrow),$$

$$0.1 \cdot 10 + 0.8 \cdot -8 + 0.1 \cdot 1 \quad (\rightarrow),$$

$$0.1 \cdot -8 + 0.8 \cdot 1 + 0.1 \cdot 5 \quad (\downarrow)$$

$$= 1 + \max\{5.1(\leftarrow), 7.7(\uparrow),$$

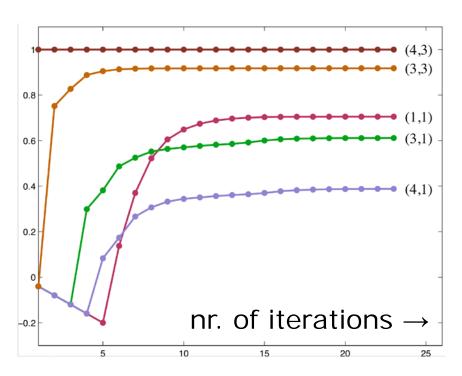
$$-5.3 (\rightarrow), 0.5 (\downarrow)$$

$$= 1 + 7.7$$

$$= 8.7$$

Value I teration Example

In our example



 States far from the goal first accumulate negative rewards until a path is found to the goal

Convergence

• The condition close-enough(U, U') in the algorithm can be formulated by

$$RMS = \frac{1}{|S|} \sqrt{\sum_{s} (U(s) - U'(s))^2}$$

$$RMS(U, U') < \epsilon$$

- Different ways to detect convergence:
 - RMS error: root mean square error
 - Max error: $\|U U'\| = \max_{s} |U(s) U'(s)|$
 - Policy loss

Value Iteration

- Value Iteration finds the optimal solution to the Markov Decision Problem!
- Converges to the unique solution of the Bellman equation system
- Initial values for U' are arbitrary
- Proof involves the concept of *contraction*. $\|B U_i B U_i'\| \le \gamma \|U_i U_i'\|$ with B being the Bellman operator (see textbook)
- VI propagates information through the state space by means of local updates

Optimal Policy

 How to finally compute the optimal policy? Can be easily extracted along the way by

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') U(s')$$

Note: U(s) and R(s) are quite different quantities. R(s) is the short-term reward for being in s, whereas U(s) is the longterm reward from s onwards

Summary

- Robust navigation requires combined path planning & collision avoidance.
- Approaches need to consider robot's kinematic constraints and plans in the velocity space.
- Combination of search and reactive techniques show better results than the pure DWA in a variety of situations.
- Using the 5D-approach the quality of the trajectory scales with the performance of the underlying hardware.
- The resulting paths are often close to the optimal ones.

Summary

- Planning is a complex problem.
- Focus on subset of the configuration space:
 - road maps,
 - grids.
- Sampling algorithms are faster and have a trade-off between optimality and speed.
- Uncertainty in motion leads to the need of Markov Decision Problems.

What's Missing?

- More complex vehicles (e.g., cars, legged robots, manipulators, ...).
- Moving obstacles, motion prediction.
- High dimensional spaces.
- Heuristics for improved performances.
- Learning.