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Summary 

Introduction to 
Mobile Robotics 

Wolfram Burgard 
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Probabilistic  
Robotics 
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Probabilistic Robotics 
Key idea: Explicit representation of 

uncertainty  
(using the calculus of probability theory) 

 
 Perception  = state estimation 
 Action       = utility optimization 



4 

Bayes Formula 
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Simple Example of State Estimation 

 Suppose a robot obtains measurement z 
 What is P(open|z)? 
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Causal vs. Diagnostic Reasoning 

 P(open|z) is diagnostic. 
 P(z|open) is causal. 
 Often causal knowledge is easier to 

obtain. 
 Bayes rule allows us to use causal 

knowledge: 
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Bayes Filters are Familiar! 

 Kalman filters 
 Particle filters 
 Hidden Markov models 
 Dynamic Bayesian networks 
 … 
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Sensor and 
Motion Models 
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Motion Models  

 Robot motion is inherently uncertain. 
 How can we model this uncertainty? 
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Probabilistic Motion Models 

 To implement the Bayes Filter, we 
need the transition model p(x | x’, u). 
 The term p(x | x’, u) specifies a posterior 

probability, that action u carries the 
robot from x’ to x. 
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Typical Motion Models 

 In practice, one often finds two types of 
motion models: 
 Odometry-based 
 Velocity-based (dead reckoning) 

 Odometry-based models are used when 
systems are equipped with wheel encoders. 

 Velocity-based models have to be applied 
when no wheel encoders are given.  

 They calculate the new pose based on the 
velocities and the time elapsed. 
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Odometry Model 
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Sensors for Mobile Robots 
 Contact sensors: Bumpers 

 Internal sensors 
 Accelerometers (spring-mounted masses) 
 Gyroscopes (spinning mass, laser light) 
 Compasses, inclinometers (earth magnetic field, gravity) 

 Proximity sensors 
 Sonar (time of flight) 
 Radar (phase and frequency) 
 Laser range-finders (triangulation, tof, phase) 
 Infrared (intensity) 

 Visual sensors: Cameras 

 Satellite-based sensors: GPS 
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Beam-based Sensor Model 
 Scan z consists of K measurements. 

 
 

 Individual measurements are independent 
given the robot position. 
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Beam-based Proximity Model 
Measurement noise 

zexp zmax 0 

Unexpected obstacles 

zexp zmax 0 
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Beam-based Proximity Model 
Random measurement Max range 

zexp zmax 0 zexp zmax 0 
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Resulting Mixture Density 
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How can we determine the model parameters? 
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 Bayes Filter 
in Robotics 
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Bayes Filters in Action 

 Discrete filters 
 Kalman filters 
 Particle filters 
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Discrete Filter 

 The belief is typically stored in a 
histogram / grid representation 
 To update the belief upon sensory 

input and to carry out the 
normalization one has to iterate over 
all cells of the grid 
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Piecewise  
Constant 
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Kalman Filter 

 Optimal for linear Gaussian systems! 
 
 Most robotics systems are nonlinear! 

 
 Polynomial in measurement 

dimensionality k and state 
dimensionality n:  
 
             O(k2.376 + n2)  
 



Kalman Filter Algorithm  
1.  Algorithm Kalman_filter( µt-1, Σt-1, ut, zt): 

 

2.  Prediction: 
3.        
4.    

 
5.  Correction: 
6.        
7.   
8.   

9.  Return µt, Σt       
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Extended Kalman Filter 

 Approach to handle non-linear models 
 Performs a linearization in each step 
 Not optimal 
 Can diverge if nonlinearities are large! 
 Works surprisingly well even when all 

assumptions are violated! 
 Same complexity than the KF 

             



Particle Filter  
 Basic principle 
 Set of state hypotheses (“particles”) 
 Survival-of-the-fittest 

 

 Particle filters are a way to efficiently 
represent non-Gaussian distributions 
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Mathematical Description 
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 Set of weighted samples 
 
 
 
 
 

 The samples represent the posterior 
 

State hypothesis Importance weight 
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Particle Filter Algorithm in Brief 

 Sample the next generation for particles 
using the proposal distribution 
 
 Compute the importance weights : 

weight = target distribution / proposal distribution 
 
 Resampling: “Replace unlikely samples by 

more likely ones” 
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 We can even use a different distribution g to 
generate samples from f 

 By introducing an importance weight w, we can 
account for the “differences between g and f ” 

 w = f / g 
 f is often called 

target 
 g is often called 

proposal 
 Pre-condition: 

 f(x)>0  g(x)>0 

Importance Sampling Principle 
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draw xi
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draw xi
t from p(xt | xi
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Particle Filter Algorithm 
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w2 

w3 

w1 wn 

Wn-1 

Resampling 

w2 

w3 

w1 wn 

Wn-1 

 Roulette wheel 
 Binary search, n log n 

 Stochastic universal sampling 
 Systematic resampling 
 Linear time complexity 
 Easy to implement, low variance 
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MCL Example 
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 Mapping 



Why Mapping? 
 Learning maps is one of the fundamental 

problems in mobile robotics 
 Maps allow robots to efficiently carry out 

their tasks, allow localization … 
 Successful robot systems rely on maps for 

localization, path planning, activity planning 
etc 
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Occupancy Grid Maps 

 Discretize the world into equally 
spaced cells 
 Each cells stores the probability that 

the corresponding area is occupied by 
an obstacle 
 The cells are assumed to be 

conditionally independent 
 If the pose of the robot is know, 

mapping is easy 
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Occupancy Update Rule 
 Recursive rule 

 
 
 
 
 

 In log-odds form 
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Reflection Probability Maps 

 Value of interest: P(reflects(x,y))  

 For every cell count 
 hits(x,y): number of cases where a beam 

ended at <x,y> 
 misses(x,y): number of cases where a 

beam passed through <x,y> 
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 SLAM 
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 Given: 
 The robot’s controls 
 Observations of nearby features 

 Estimate: 
 Map of features 
 Path of the robot 

The SLAM Problem 

A robot is exploring an 
unknown, static environment. 



Chicken-and-Egg-Problem 
 SLAM is a chicken-and-egg problem 
 A map is needed for localizing a robot 
 A good pose estimate is needed to build a map 

 Thus, SLAM is regarded as a hard problem 
in robotics 

 A variety of different approaches to address 
the SLAM problem have been presented 

 Probabilistic methods outperform most 
other techniques 
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SLAM:  
Simultaneous Localization and Mapping 

 Full SLAM: 
 
 
 Online SLAM: 

 
 

Integrations typically done one at a time  
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Estimates most recent pose and 
map! 

Estimates entire path and map! 
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Why is SLAM a hard problem? 

 In the real world, the mapping between 
observations and landmarks is unknown 

 Picking wrong data associations can have 
catastrophic consequences 

 Pose error correlates data associations 

Robot pose 
uncertainty 
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 Map with N landmarks:(3+2N)-dimensional 
Gaussian 
 
 
 
 
 
 
 

 Can handle hundreds of dimensions 

(E)KF-SLAM 



46 

EKF-SLAM 

Map              Correlation matrix 
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EKF-SLAM 

Map              Correlation matrix 
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EKF-SLAM 

Map              Correlation matrix 
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FastSLAM 

 Use a particle filter for map learning 
 Problem: the map is high-dimensional 
 Solution: separate the estimation of 

the robot’s trajectory from the one of 
the map of the environment 
 This is done by means of a 

factorization in the SLAM posterior 
often called Rao-Blackwellization 
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Rao-Blackwellization 

SLAM posterior 

Robot path posterior 

Mapping with known poses 

Factorization first introduced by Murphy in 1999 

poses map observations & movements 
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Rao-Blackwellized Mapping 

 Each particle represents a possible 
trajectory of the robot 
 

 Each particle  
 maintains its own map and  
 updates it upon “mapping with known 

poses” 
 

 Each particle survives with a probability 
proportional to the likelihood of the 
observations relative to its own map 
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FastSLAM 
 Rao-Blackwellized particle filtering based on 

landmarks      
 Each landmark is represented by a 2x2  

Extended Kalman Filter (EKF) 
 Each particle therefore has to maintain M EKFs 

Landmark 1 Landmark 2 Landmark M … x, y, θ 

Landmark 1 Landmark 2 Landmark M … x, y, θ Particle 
#1 

Landmark 1 Landmark 2 Landmark M … x, y, θ Particle 
#2 

Particle 
N 

…
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Typical Results 
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Robot Motion 
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Robot Motion Planning 

Latombe (1991): “… eminently necessary 
since, by definition, a robot accomplishes 
tasks by moving in the real world.” 

Goals: 
 Collision-free trajectories. 
 Robot should reach the goal location as 

fast as possible. 
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Classic Two-layered Architecture 

Planning 

Collision 
Avoidance 

sensor data 

map 

robot 

low frequency 

high frequency 

sub-goal 

motion command 
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Exploration 
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Multi-Robot Exploration 

Given: 
 Unknown environment 
 Team of robots 
Task: 
 Coordinate the robots to  

efficiently learn a complete  
map of the environment 

Complexity: 
 NP-hard for single robots in known, graph-like 

environments 
 Exponential in the number of robots 
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Levels of Coordination 

 No exchange of information 
 

 Implicit coordination: Sharing a joint map 
[Yamauchi et.al, 98] 
 Communication of the individual maps and 

poses 
 Central mapping system  

 

 Explicit coordination: Determine better 
target locations to distribute the robots 
 Central planner for target point assignment 
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Information Gain-based 
Exploration 

 SLAM is typically passive, because it 
consumes incoming sensor data 

 Exploration actively guides the robot to 
cover the environment with its sensors 

 Exploration in combination with SLAM: 
Acting under pose and map uncertainty 

 Uncertainty should/needs to be taken into 
account when selecting an action 

 Key question: Where to move next? 

 



Mutual Information 
 The mutual information I is given by the 

reduction of entropy in the belief 
 

action to be carried out 

uncertainty of the filter – 
 “uncertainty of the filter 
 after carrying out action a” 
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Focusing on Specific Actions 
To efficiently sample actions we consider 
 exploratory actions (1-3) 
 loop closing actions (4) and 
 place revisiting actions (5) 
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The Exam is Approaching … 
 This lecture gave a short overview over the 

most important topics addressed in this 
course 

 For the exam, you need to know at least the 
basic formulas (e.g., Bayes filter, MCL eqs., 
Rao-Blackwellization, entropy, …) 
 

Good luck for the exam! 


	Summary
	Probabilistic �Robotics
	Probabilistic Robotics
	Bayes Formula
	Simple Example of State Estimation
	Causal vs. Diagnostic Reasoning
	Bayes Filters are Familiar!
	Sensor and Motion Models
	Motion Models 
	Probabilistic Motion Models
	Typical Motion Models
	Odometry Model
	Sensors for Mobile Robots
	Beam-based Sensor Model
	Beam-based Proximity Model
	Beam-based Proximity Model
	Resulting Mixture Density
	 Bayes Filter�in Robotics
	Bayes Filters in Action
	Discrete Filter
	Piecewise �Constant
	Kalman Filter
	Kalman Filter Algorithm 
	Extended Kalman Filter
	Particle Filter 
	Mathematical Description
	Particle Filter Algorithm in Brief
	Importance Sampling Principle
	Particle Filter Algorithm
	Resampling
	MCL Example
	 Mapping
	Why Mapping?
	Occupancy Grid Maps
	Occupancy Update Rule
	Reflection Probability Maps
	 SLAM
	The SLAM Problem
	Chicken-and-Egg-Problem
	SLAM: �Simultaneous Localization and Mapping
	Why is SLAM a hard problem?
	(E)KF-SLAM
	EKF-SLAM
	EKF-SLAM
	EKF-SLAM
	FastSLAM
	Rao-Blackwellization
	Rao-Blackwellized Mapping
	FastSLAM
	Typical Results
	Robot Motion�
	Robot Motion Planning
	Classic Two-layered Architecture
	Exploration�
	Multi-Robot Exploration
	Levels of Coordination
	Information Gain-based Exploration
	Mutual Information
	Focusing on Specific Actions
	The Exam is Approaching …

