

11LE13P-7302 Laboratory Deep Learning for Autonomous Driving

Team

Prof. Wolfram Burgard Instructor

Dr. Daniel Buscher Tutor

Abhinav Valada Tutor

Johan Vertens Tutor

Oier Mees Tutor

Andreas Eitel Tutor

Ayush Dewan Tutor

Organization Details

- Time: Every Friday 4pm-6pm building 082, computer pool R 00 029
- We will be there for questions, but we expect you to work on your own
- Attendance is required every week
- We expect you to have basic knowledge in ML (e.g. heard the ML lecture or did deep learning lab)
- Homepage: http://ais.informatik.unifreiburg.de/teaching/ss18/driving_lab

Organization Details

- Four lectures
 - Autonomous cars
 - Introduction to deep learning
 - Pytorch tutorial
 - Advanced deep learning
- Group project (2-3 people)
- Four subtasks, submit each subtask within specified time (code, results)
- Final poster session + demo + pitch talk (3min)

Communications & Computing

- We will use Slack for group communications
- dl4ad.slack.com
- Signup with your university email or contact valada@cs.uni-freiburg.de for access
- We will use the Google Cloud Platform for GPU computing
- Linux VMs with NVIDIA Tesla K80
- Pool computers for other preprocessing

Contacts (tutors)

- Abhinav Valada: valada@cs.uni-freiburg.de
- Johan Vertens: vertensj@cs.uni-freiburg.de
- Oier Mees: meeso@cs.uni-freiburg.de
- Andreas Eitel: eitel@cs.uni-freiburg.de
- Ayush Dewan: dewan@cs.uni-freiburg.de
- Daniel Buescher: buescher@cs.uni-freiburg.de

AIS Perception Car

Projects

- Semantic free space estimation (AIS percep car)
- Semantic 3D object detection (AIS percep car)
- Steering angle & speed prediction (AIS percep car)
- End-to-end driving (rAIS car)
- Vision-based localization (AIS percep car)
- Road segmentation (rAIS car)

Fill the form on the course website for project assignment ➡ by Wednesday, 25th April

P1: Semantic free space estimation

- Predict free space & semantic boundaries of objects in free space
- ➡Use images
- ➡ FCNs
- ➡At least 6 semantic classes
- Cityscapes, KITTI, ApolloScape, Berkely DeepDrive datasets
- ➡ Should run in real-time

Bonus:

- Lane detection
- Get on KITTI leaderboard

P2: Semantic 3D object detection

- Predict 3D bounding boxes & semantic category
- ➡ Use images and/or LiDAR
- Region proposal network
- CNN for classification and detection
- Distance to bounding boxes should be an output
- ➡KITTI dataset
- ➡ Should run in real-time

Bonus:

- Get on KITTI leaderboard
- Extend to instance segmentation

P3: Steering angle & speed prediction

- Predict steering angles & speed (into the future...)
- Use a sequence of images and/or optical flow
- Model as Sequence-tosequence prediction
- Recurrent CNN
- ➡Udacity dataset
- ➡ Should run in real-time

Ground Truth Angle: 5.1 Speed: 27.134 m/s

Predicted Angle: 3.22 Error: -1.88

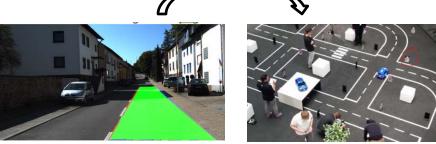
Bonus:

- Beat Team Komanda
- Improve with prior from other tasks


P4: End-to-end driving for the rAIScar

- Learn to drive from imitation
- Drive around with the rAIScar and record images, steering and acceleration commands, ...
- Train regression network for control behavior from public dataset
- Re-train network on your campus dataset and deploy on rAIScar for autonomous driving

P5: Vision-based localization


- Metric localization (x,y) with AIS perception car
- Multiple dataset collection runs on campus, ground truth from Applanix positioning system

- Deep pose regression: train a deep ConvNet to map from current image to global (x,y) pose
- Data fusion: add visual odometry to improve localization accuracy

P6: Semantic road segmentation for the rAIScar

- Semantic road and lane segmentation
- Fully convolutional neural networks: train a encoder-decoder net to infer pixel-wise road/lane classifications
- Pre-train net on public KITTI dataset
- Transfer vision system to rAIScar
- Fine-tune net with automatic labeling of lanes in indoor motion capture system

Thank you for your attention!