Foundations of Artificial Intelligence

Prof. Dr. J. Boedecker, Prof. Dr. W. Burgard, Prof. Dr. F. Hutter, Prof. Dr. B. Nebel M. Krawez, T. Schulte

Summer Term 2018
University of Freiburg
Department of Computer Science

Exercise Sheet 4

Due: Wednesday, June 13, 2018, before 12:00

Exercise 4.1 (DPLL)

Use the Davis-Putnam-Logemann-Loveland (DPLL) procedure to find a satisfying assignment for the formula ϕ_{i}. Write down all steps carried out by the algorithm during the process. If you have to apply a splitting rule, split on variables in alphabetical order, trying true first, then false. Indicate the satisfying assignment.
(a)

$$
\phi_{1}=(\neg A \vee C \vee \neg D) \wedge(A \vee B \vee C \vee \neg D) \wedge(\neg A \vee \neg E) \wedge \neg C \wedge(A \vee D) \wedge(A \vee C \vee E) \wedge(D \vee E)
$$

(b)

$$
\phi_{2}=(E \vee A) \wedge(B \vee \neg A \vee C) \wedge(E \vee \neg D) \wedge(B \vee \neg C) \wedge(\neg B \vee D) \wedge(\neg E \vee \neg A \vee \neg D \vee \neg B)
$$

Exercise 4.2 (Semantics of Predicate Logic)
Consider the Interpretation $\mathcal{I}=<\mathcal{D},{ }^{\mathcal{I}}>$ with

- $D=\{0,1,2,3\}$
- even $^{\mathcal{I}}=\{0,2\}$
- $o d d^{\mathcal{I}}=\{1,3\}$
- lessThan ${ }^{\mathcal{I}}=\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$
- $t w o^{\mathcal{I}}=2$
- plus ${ }^{\mathcal{I}}: D \times D \rightarrow D$, plus $^{\mathcal{I}}(a, b)=(a+b) \bmod 4$
and the variable assignment $\alpha=\{(x, 0),(y, 1)\}$.
Decide for the following formulae θ_{i} if \mathcal{I} is a model for θ_{i} under α, i.e. if $\mathcal{I}, \alpha \models \theta_{i}$.
Explain your answer by formally applying the semantics.
(a) $\theta_{1}=\operatorname{odd}(y) \wedge$ even $(t w o)$
(b) $\theta_{2}=\forall x($ even $(x) \vee \operatorname{odd}(x))$
(c) $\theta_{3}=\forall x \exists y$ lessThan (x, y)
(d) $\theta_{4}=\forall x(\operatorname{even}(x) \Rightarrow \exists y \operatorname{lessThan}(x, y))$
(e) $\theta_{5}=\forall x(o d d(x) \Rightarrow \operatorname{even}(\operatorname{plus}(x, y)))$

The exercise sheets may and should be worked on in groups of three (3) students.
Please write all your names on your solution.

