Foundations of Artificial Intelligence 8. Satisfiability and Model Construction DPLL Procedure, Phase Transitions, Local Search, State of the Art

> Joschka Boedecker and Wolfram Burgard and Frank Hutter and Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

May 30, 2018

SAT solving is the best available technology for practical solutions to many NP-hard problems

- Formal verification
 - Verification of software
 - Ruling out unintended states (null-pointer exceptions, etc.)
 - Proving that the program computes the right solution
 - Verification of hardware (Pentium bug, etc)
- Practical approach: encode into SAT & exploit the rapid progress in SAT solving
 - Solving CSP instances in practice
 - Solving graph coloring problems in practice

The SAT Problem

- 2 Davis-Putnam-Logemann-Loveland (DPLL) Procedure
- 3 "Average" Complexity of the Satisfiability Problem
- 4 Local Search Procedures
- State of the Art

The SAT Problem

- 2 Davis-Putnam-Logemann-Loveland (DPLL) Procedure
- 3) "Average" Complexity of the Satisfiability Problem
- 4 Local Search Procedures
- 5 State of the Art

Propositional Logic — typical algorithmic questions:

- Logical deduction
 - Given: A logical theory (set of propositions)
 - Question: Does a proposition logically follow from this theory?
 - Reduction to unsatisfiability, which is coNP-complete (complementary to NP problems)
- Satisfiability of a formula (SAT)
 - Given: A logical theory
 - Wanted: Model of the theory
 - Example: Configurations that fulfill the constraints given in the theory
 - Can be "easier" because it is enough to find one model

Given:

Propositional formula φ in CNF

Wanted:

- Model of φ .
- or proof, that no such model exists.

SAT can be formulated as a Constraint-Satisfaction-Problem (\rightarrow search):

SAT can be formulated as a Constraint-Satisfaction-Problem (\rightarrow search):

- CSP-Variables = Symbols of the alphabet
- Domain of values = $\{T, F\}$
- Constraints given by clauses

1 The SAT Problem

Davis-Putnam-Logemann-Loveland (DPLL) Procedure

"Average" Complexity of the Satisfiability Problem

4 Local Search Procedures

5 State of the Art

The DPLL algorithm

The DPLL algorithm (Davis, Putnam, Logemann, Loveland, 1962) corresponds to backtracking with inference in CSPs:

- Recursive call DPLL (Δ, l) with
 - Δ : set of clauses
 - *l*: variable assignment
- Result: satisfying assignment that extends l or "unsatisfiable" if no such assignment exists.
- First call by $\mathsf{DPLL}(\Delta, \emptyset)$

The DPLL algorithm

The DPLL algorithm (Davis, Putnam, Logemann, Loveland, 1962) corresponds to backtracking with inference in CSPs:

- Recursive call DPLL (Δ, l) with
 - Δ : set of clauses
 - *l*: variable assignment
- Result: satisfying assignment that extends *l* or "unsatisfiable" if no such assignment exists.
- First call by $\mathsf{DPLL}(\Delta, \emptyset)$

Inference in DPLL:

- Simplify: if variable v is assigned a value d, then all clauses containing v are simplified immediately (corresponds to forward checking)
- Variables in unit clauses (= clauses with only one variable) are immediately assigned (corresponds to minimum remaining values ordering in CSPs)

DPLL Function

Given a set of clauses Δ defined over a set of variables Σ , return "satisfiable" if Δ is satisfiable. Otherwise return "unsatisfiable".

- 1. If $\Delta = \emptyset$ return "satisfiable"
- 2. If $\Box \in \Delta$ return "unsatisfiable"
- 3. Unit-propagation Rule: If Δ contains a unit-clause C, assign a truth-value to the variable in C that satisfies C, simplify Δ to Δ' and return DPLL(Δ').
- 4. Splitting Rule: Select from Σ a variable v which has not been assigned a truth-value. Assign one truth value t to it, simplify Δ to Δ' and call $\mathrm{DPLL}(\Delta')$
 - a. If the call returns "satisfiable", then return "satisfiable".
 - b. Otherwise assign the other truth-value to v in Δ , simplify to Δ'' and return $\text{DPLL}(\Delta'')$.

$$\Delta = \{\{a, b, \neg c\}, \{\neg a, \neg b\}, \{c\}, \{a, \neg b\}\}$$

$$\Delta = \{\{a, b, \neg c\}, \{\neg a, \neg b\}, \{c\}, \{a, \neg b\}\}$$

1. Unit-propagation rule: $c \mapsto T$

$$\Delta = \{\{a, b, \neg c\}, \{\neg a, \neg b\}, \{c\}, \{a, \neg b\}\}$$

1. Unit-propagation rule: $c \mapsto T$ { $\{a, b\}, \{\neg a, \neg b\}, \{a, \neg b\}$ }

$$\Delta = \{\{a, b, \neg c\}, \{\neg a, \neg b\}, \{c\}, \{a, \neg b\}\}$$

1. Unit-propagation rule: $c \mapsto T$ $\{\{a, b\}, \{\neg a, \neg b\}, \{a, \neg b\}\}$

2. Splitting rule:

$$\Delta = \{\{a, b, \neg c\}, \{\neg a, \neg b\}, \{c\}, \{a, \neg b\}\}$$

1. Unit-propagation rule: $c \mapsto T$ $\{\{a, b\}, \{\neg a, \neg b\}, \{a, \neg b\}\}$

2. Splitting rule:

2a. $a \mapsto F$ $\{\{b\}, \{\neg b\}\}$

$$\Delta = \{\{a, b, \neg c\}, \{\neg a, \neg b\}, \{c\}, \{a, \neg b\}\}$$

1. Unit-propagation rule: $c \mapsto T$ $\{\{a, b\}, \{\neg a, \neg b\}, \{a, \neg b\}\}$

2. Splitting rule:

- 2a. $a \mapsto F$ $\{\{b\}, \{\neg b\}\}$
- 3a. Unit-propagation rule: $b \mapsto T$ $\{\Box\}$

$$\Delta = \{\{a, b, \neg c\}, \{\neg a, \neg b\}, \{c\}, \{a, \neg b\}\}$$

- 1. Unit-propagation rule: $c \mapsto T$ $\{\{a, b\}, \{\neg a, \neg b\}, \{a, \neg b\}\}$
- 2. Splitting rule:

2a. $a \mapsto F$ $\{\{b\}, \{\neg b\}\}$

$$\begin{array}{ll} \mathsf{2b.} & a \mapsto T \\ & \{\{\neg b\}\}\end{array}$$

3a. Unit-propagation rule: $b \mapsto T$ $\{\Box\}$

$$\Delta = \{\{a, b, \neg c\}, \{\neg a, \neg b\}, \{c\}, \{a, \neg b\}\}$$

- 1. Unit-propagation rule: $c \mapsto T$ $\{\{a, b\}, \{\neg a, \neg b\}, \{a, \neg b\}\}$
- 2. Splitting rule:

- 2a. $a \mapsto F$ {{b}, {¬b}}
- 3a. Unit-propagation rule: $b \mapsto T$ $\{\Box\}$

2b.
$$a \mapsto T$$

 $\{\{\neg b\}\}\$
3b. Unit-propagation rule: $b \mapsto F$
 $\{\}$

$$\Delta = \{\{a, b, \neg c\}, \{\neg a, \neg b\}, \{c\}, \{a, \neg b\}\}$$

- 1. Unit-propagation rule: $c \mapsto T$ $\{\{a, b\}, \{\neg a, \neg b\}, \{a, \neg b\}\}$
- 2. Splitting rule:

- 2a. $a \mapsto F$ $\{\{b\}, \{\neg b\}\}$
- 3a. Unit-propagation rule: $b \mapsto T$ $\{\Box\}$

2b. $a \mapsto T$ $\{\{\neg b\}\}\$ 3b. Unit-propagation rule: $b \mapsto F$ $\{\}\$

$\Delta = \{\{a, \neg b, \neg c, \neg d\}, \{b, \neg d\}, \{c, \neg d\}, \{d\}\}$

$$\Delta = \{\{a, \neg b, \neg c, \neg d\}, \{b, \neg d\}, \{c, \neg d\}, \{d\}\}$$

1. Unit-propagation rule: $d \mapsto T$

$$\Delta = \{\{a, \neg b, \neg c, \neg d\}, \{b, \neg d\}, \{c, \neg d\}, \{d\}\}$$

1. Unit-propagation rule:
$$d \mapsto T$$

{{ $a, \neg b, \neg c$ }, { b }, { c }}

$$\Delta = \{\{a, \neg b, \neg c, \neg d\}, \{b, \neg d\}, \{c, \neg d\}, \{d\}\}$$

- 1. Unit-propagation rule: $d \mapsto T$ $\{\{a, \neg b, \neg c\}, \{b\}, \{c\}\}$
- 2. Unit-propagation rule: $b \mapsto T$ $\{\{a, \neg c\}, \{c\}\}$

$$\Delta = \{\{a, \neg b, \neg c, \neg d\}, \{b, \neg d\}, \{c, \neg d\}, \{d\}\}$$

- 1. Unit-propagation rule: $d \mapsto T$ $\{\{a, \neg b, \neg c\}, \{b\}, \{c\}\}$
- 2. Unit-propagation rule: $b \mapsto T$ $\{\{a, \neg c\}, \{c\}\}$
- 3. Unit-propagation rule: $c \mapsto T$ $\{\{a\}\}$

$$\Delta = \{\{a, \neg b, \neg c, \neg d\}, \{b, \neg d\}, \{c, \neg d\}, \{d\}\}$$

- 1. Unit-propagation rule: $d \mapsto T$ $\{\{a, \neg b, \neg c\}, \{b\}, \{c\}\}$
- 2. Unit-propagation rule: $b \mapsto T$ $\{\{a, \neg c\}, \{c\}\}$
- 3. Unit-propagation rule: $c \mapsto T$ $\{\{a\}\}$
- 4. Unit-propagation rule: $a \mapsto T$ {}

$$\Delta = \{\{a, \neg b, \neg c, \neg d\}, \{b, \neg d\}, \{c, \neg d\}, \{d\}\}$$

- 1. Unit-propagation rule: $d \mapsto T$ $\{\{a, \neg b, \neg c\}, \{b\}, \{c\}\}$
- 2. Unit-propagation rule: $b \mapsto T$ $\{\{a, \neg c\}, \{c\}\}$
- 3. Unit-propagation rule: $c \mapsto T$ $\{\{a\}\}$
- 4. Unit-propagation rule: $a \mapsto T$ {}

- DPLL is complete, correct, and guaranteed to terminate.
- DPLL constructs a model, if one exists.
- In general, DPLL requires exponential time (splitting rule!)
 → *Heuristics* are needed to determine which variable should be instantiated next and which value should be used.
- DPLL is polynomial on Horn clauses (see next slides).
- In current SAT competitions, DPLL-based procedures have shown the best performance.

Horn Clauses constitute an important special case, since they require only polynomial runtime of DPLL.

Definition: A Horn clause is a clause with maximally one positive literal E.g., $\neg A_1 \lor \ldots \lor \neg A_n \lor B$ or $\neg A_1 \lor \ldots \lor \neg A_n$ (n = 0 is permitted).

Equivalent representation: $\neg A_1 \lor \ldots \lor \neg A_n \lor B \Leftrightarrow \bigwedge_i A_i \Rightarrow B$ \rightarrow Basis of logic programming (e.g., PROLOG) Note:

- 1. The simplifications in DPLL on Horn clauses always generate Horn clauses
- 2. If the first sequence of applications of the unit propagation rule in DPLL does not lead to termination, a set of Horn clauses without unit clauses is generated
- 3. A set of Horn clauses without unit clauses and without the empty clause is satisfiable, since
 - All clauses have at least one negative literal (since all non-unit clauses have at least two literals, where at most one can be positive (Def. Horn))
 - Assigning false to all variables satisfies formula

4. It follows from 3 .:

- a. every time the splitting rule is applied, the current formula is satisfiable
- b. every time, when the wrong decision (= assignment in the splitting rule) is made, this will be immediately detected (e.g., only through unit propagation steps and the derivation of the empty clause).
- 5. Therefore, the search trees for n variables can only contain a maximum of n nodes, in which the splitting rule is applied (and the tree branches).
- 6. Therefore, the size of the search tree is only polynomial in n and therefore the running time is also polynomial.

The SAT Problem

2 Davis-Putnam-Logemann-Loveland (DPLL) Procedure

(3) "Average" Complexity of the Satisfiability Problem

4 Local Search Procedures

5 State of the Art

- We know that SAT is NP-complete, i.e., in the worst case, it takes exponential time.
- This is clearly also true for the DPLL-procedure.
 - $\rightarrow~$ Couldn't we do better in the average case?
- For CNF-formulae, in which the probability for a positive appearance, negative appearance and non-appearance in a clause is 1/3, DPLL needs on average quadratic time (Goldberg 79)!

 $\rightarrow~$ The probability that these formulae are satisfiable is, however, very high.

Conversely, we can, of course, try to identify hard to solve problem instances.

Cheeseman et al. (IJCAI-91) came up with the following plausible conjecture:

All NP-complete problems have at least *one order* parameter and the hard to solve problems are around a critical value of this order parameter. This critical value (a phase transition) separates one region from another, such as over-constrained and under-constrained regions of the problem space.

Confirmation for graph coloring and Hamiltonian path ..., later also for other NP-complete problems.

Constant clause length model (Mitchell et al., AAAI-92):

Clause length k is given. Choose variables for every clause k and use the complement with probability 0.5 for each variable.

Phase transition for 3-SAT with a clause/variable ratio of approx. 4.3:

Empirical Difficulty

The Davis-Putnam (DPLL) Procedure shows extreme runtime peaks at the phase transition:

Note: Hard instances can exist even in the regions of the more easily satisfiable/unsatisfiable instances!

- When the probability of a solution is close to 1 (under-constrained), there are many solutions, and the first search path of a backtracking search is usually successful.
- If the probability of a solution is close to 0 (over-constrained), this fact can usually be determined early in the search.
- In the phase transition stage, there are many near successes ("close, but no cigar")

 $\rightarrow~({\rm limited})$ possibility of predicting the difficulty of finding a solution based on the parameters

 $\rightarrow\,$ (search intensive) benchmark problems are located in the phase region (but they have a special structure)

The SAT Problem

2 Davis-Putnam-Logemann-Loveland (DPLL) Procedure

3) "Average" Complexity of the Satisfiability Problem

4 Local Search Procedures

5 State of the Art

- In many cases, we are interested in finding a satisfying assignment of variables (example CSP), and we can sacrifice completeness if we can "solve" much larger instances this way.
- Standard process for optimization problems: Local Search
- Based on a (random) configuration
- Through local modifications, we hope to produce better configurations
 - \rightarrow Main problem: local maxima

As a measure of the value of a configuration in a logical problem, we could use the number of satisfied constraints/clauses.

At first glance, local search seems inappropriate, considering that we want to find a global maximum (all constraints/clauses satisfied).

However:

- By restarting and/or injecting noise, we can often escape local maxima.
- Local search can perform very well for SAT solving

Procedure GSAT

```
INPUT: a set of clauses \alpha, MAX-FLIPS, and MAX-TRIES OUTPUT: a satisfying truth assignment of \alpha, if found
```

begin

for i := 1 to MAX-TRIES

 $T:=\mathsf{a}$ randomly-generated truth assignment

for
$$j := 1$$
 to MAX-FLIPS

if T satisfies α then return T

- v := a propositional variable such that a change in its truth assignment gives the largest increase in the number of clauses of α that are satisfied by T
- T:=T with the truth assignment of \boldsymbol{v} reversed

end for

end for

return "no satisfying assignment found"

end

- In contrast to many other local search methods, we must also allow sideways movements!
- Most time is spent searching on plateaus.

The SAT Problem

- 2 Davis-Putnam-Logemann-Loveland (DPLL) Procedure
- 3) "Average" Complexity of the Satisfiability Problem
- 4 Local Search Procedures

5 State of the Art

Practical Improvements of DPLL Algorithms

- Clause Learning
 - Consider an exemplary SAT problem
 - 26 variables A, ..., Z
 - Amongst many other clauses, we have

- We'll branch on variables in lexicographic order and try true first
- What will happen?

Practical Improvements of DPLL Algorithms

Clause Learning

- Consider an exemplary SAT problem
 - 26 variables A, ..., Z
 - Amongst many other clauses, we have

- We'll branch on variables in lexicographic order and try true first
- What will happen?
 - $\bullet\,$ There is no satisfying assignment to the clauses above when A=T

• Clause Learning

- Consider an exemplary SAT problem
 - 26 variables A, ..., Z
 - Amongst many other clauses, we have

- We'll branch on variables in lexicographic order and try true first
- What will happen?
 - $\bullet\,$ There is no satisfying assignment to the clauses above when A=T
 - $\bullet\,$ For each assignment to variables B, \ldots , X, we'll have to rediscover this fact
 - $\bullet\,$ Rather: reason about the variables that led to a conflict: A, Y and Z
 - We can 'Learn" (here: logically infer) a new clause: $\neg A$
 - Leads to conflict-directed clause learning (CDCL)

• Clause Learning

- Consider an exemplary SAT problem
 - 26 variables A, ..., Z
 - Amongst many other clauses, we have

- We'll branch on variables in lexicographic order and try true first
- What will happen?
 - $\bullet\,$ There is no satisfying assignment to the clauses above when A=T
 - $\bullet\,$ For each assignment to variables B, \ldots , X, we'll have to rediscover this fact
 - $\bullet\,$ Rather: reason about the variables that led to a conflict: A, Y and Z
 - We can 'Learn" (here: logically infer) a new clause: $\neg A$
 - Leads to conflict-directed clause learning (CDCL)
- Intelligent Backjumping
 - Closely related to clause learning
 - Jump back to the branching decision responsible for a conflict

Both for DPLL/CDCL algorithms and local search algorithms

- Efficient data structures, indexing, etc
- Engineering ingenious heuristics

- Both for DPLL/CDCL algorithms and local search algorithms
 - Efficient data structures, indexing, etc
 - Engineering ingenious heuristics
 - Meta-algorithmic advances
 - Automated parameter tuning and algorithm configuration
 - Selection of the best-fitting algorithm based on instance characteristics
 - Selection of the best-fitting parameters based on instance characteristics
 - Use of machine learning to pinpoint what factors most affects performance

- SAT competitions since beginning of the 90s
- Current SAT competitions (http://www.satcompetition.org/):
 - Largest "industrial" instances: > 10,000,000 variables
- Complete solvers dominate handcrafted and industrial tracks
- Incomplete local search solvers best on random satisfiable instances

- SAT competitions since beginning of the 90s
- Current SAT competitions (http://www.satcompetition.org/):
 - Largest "industrial" instances: > 10,000,000 variables
- Complete solvers dominate handcrafted and industrial tracks
- Incomplete local search solvers best on random satisfiable instances
- Best solvers use meta-algorithmic methods, such as algorithm configuration, selection, etc.
 - We thus discuss these briefly next

Algorithm Configuration

Definition: algorithm configuration

Given:

- a parameterized algorithm \mathcal{A} with possible parameter settings Θ ;
- \bullet a distribution ${\cal D}$ over problem instances with domain ${\cal I};$ and

Algorithm Configuration

Definition: algorithm configuration

Given:

- a parameterized algorithm ${\mathcal A}$ with possible parameter settings $\Theta;$
- a distribution $\mathcal D$ over problem instances with domain $\mathcal I$; and
- a cost metric $m: \boldsymbol{\Theta} \times \mathcal{I} \to \mathbb{R}$,
- Find: $\theta^* \in \arg\min_{\theta \in \Theta} \mathbb{E}_{\pi \sim \mathcal{D}}(m(\theta, \pi)).$

Formal verification

- Software verification [Babić & Hu; CAV '07]
- Hardware verification (Bounded model checking) [Zarpas; SAT '05]
- Recent progress based on SAT solvers

Formal verification

- Software verification [Babić & Hu; CAV '07]
- Hardware verification (Bounded model checking) [Zarpas; SAT '05]
- Recent progress based on SAT solvers

CDCL solver for SAT-based verification

- SPEAR, developed by Domagoj Babić at UBC
- 26 parameters, 8.34×10^{17} configurations

- Ran algorithm configuration method ParamILS: 2 days on 10 machines
 - On a training set from each benchmark

- Ran algorithm configuration method ParamILS: 2 days on 10 machines
 - On a training set from each benchmark
- Compared to manually-engineered default
 - 1 week of performance tuning
 - Competitive with the state of the art
 - Comparison on unseen test instances

- Ran algorithm configuration method ParamILS: 2 days on 10 machines
 - On a training set from each benchmark
- Compared to manually-engineered default
 - 1 week of performance tuning
 - Competitive with the state of the art
 - Comparison on unseen test instances

- Ran algorithm configuration method ParamILS: 2 days on 10 machines
 - On a training set from each benchmark
- Compared to manually-engineered default
 - 1 week of performance tuning
 - Competitive with the state of the art
 - Comparison on unseen test instances

(University of Freiburg)

Foundations of AI

May 30, 2018 34 / 40

Definition: algorithm selection

Given

- $\bullet\,$ a set ${\cal I}$ of problem instances,
- a portfolio of algorithms \mathcal{P} ,
- and a cost metric $m:\mathcal{P}\times\mathcal{I}\rightarrow\mathbb{R}$,

the per-instance algorithm selection problem is to find a mapping $s: \mathcal{I} \to \mathcal{P}$ that optimizes $\sum_{\pi \in \mathcal{I}} m(s(\pi), \pi)$, the sum of cost measures achieved by running the selected algorithm $s(\pi)$ for instance π .

Definition: algorithm selection

Given

- $\bullet\,$ a set ${\cal I}$ of problem instances,
- a portfolio of algorithms \mathcal{P} ,
- and a cost metric $m:\mathcal{P}\times\mathcal{I}\rightarrow\mathbb{R}$,

the per-instance algorithm selection problem is to find a mapping $s: \mathcal{I} \to \mathcal{P}$ that optimizes $\sum_{\pi \in \mathcal{I}} m(s(\pi), \pi)$, the sum of cost measures achieved by running the selected algorithm $s(\pi)$ for instance π .

Example SAT Challenge 2012

Rank	RiG	Solver	#solved
-	-	Virtual Best Solver (VBS)	568
1	1	SATzilla2012 APP	531
2	2	SATzilla2012 ALL	515
3	1	Industrial SAT Solver	499
-	-	lingeling (SAT Competition 2011 Bronze)	488
4	2	interactSAT	480
5	1	glucose	475
6	2	SINN	472
7	3	ZENN	468
8	4	Lingeling	467
9	5	linge_dyphase	458
10	6	simpsat	453

The VBS is the best possible performance of an algorithm selection system.

(pink: algorithm selectors, blue: portfolios, green: single-engine solvers)

Automated construction of portfolios from a single algorithm

- Algorithm Configuration
 - Strength: find a single configuration with strong performance for a given cost metric
 - Weakness: for heterogeneous instance sets, there is often no configuration that performs great for all instances

Automated construction of portfolios from a single algorithm

- Algorithm Configuration
 - Strength: find a single configuration with strong performance for a given cost metric
 - Weakness: for heterogeneous instance sets, there is often no configuration that performs great for all instances
- Algorithm Selection
 - Strength: for heterogeneous instance sets, pick the right algorithm from a set
 - Weakness: the set to choose from typically only contains a few algorithms

Automated construction of portfolios from a single algorithm

- Algorithm Configuration
 - Strength: find a single configuration with strong performance for a given cost metric
 - Weakness: for heterogeneous instance sets, there is often no configuration that performs great for all instances
- Algorithm Selection
 - Strength: for heterogeneous instance sets, pick the right algorithm from a set
 - Weakness: the set to choose from typically only contains a few algorithms
- Putting the two together
 - Use algorithm configuration to determine useful configurations
 - Use algorithm selection to select from them based on instance characteristics

Idea

- Iteratively add configurations to a portfolio $\mathcal P$, starting with $\mathcal P=\emptyset$
- $\bullet\,$ In each iteration, determine configuration that is complementary to ${\cal P}\,$

Idea

 \bullet Iteratively add configurations to a portfolio $\mathcal P$, starting with $\mathcal P=\emptyset$

• In each iteration, determine configuration that is complementary to \mathcal{P} Maximize marginal contribution of configuration θ to current portfolio \mathcal{P} :

 $m(\mathcal{P}) - m(\mathcal{P} \cup \{\theta\})$

Idea

• Iteratively add configurations to a portfolio $\mathcal P$, starting with $\mathcal P=\emptyset$

- $\bullet\,$ In each iteration, determine configuration that is complementary to ${\cal P}\,$
- Maximize marginal contribution of configuration θ to current portfolio \mathcal{P} :

$$m(\mathcal{P}) - m(\mathcal{P} \cup \{\theta\})$$

Idea

• Iteratively add configurations to a portfolio $\mathcal P$, starting with $\mathcal P=\emptyset$

- $\bullet\,$ In each iteration, determine configuration that is complementary to ${\cal P}\,$
- Maximize marginal contribution of configuration θ to current portfolio \mathcal{P} :

$$m(\mathcal{P}) - m(\mathcal{P} \cup \{\theta\})$$

(University of Freiburg)

Idea

• Iteratively add configurations to a portfolio $\mathcal P$, starting with $\mathcal P=\emptyset$

- $\bullet\,$ In each iteration, determine configuration that is complementary to ${\cal P}\,$
- Maximize marginal contribution of configuration θ to current portfolio \mathcal{P} :

$$m(\mathcal{P}) - m(\mathcal{P} \cup \{\theta\})$$

Idea

• Iteratively add configurations to a portfolio $\mathcal P$, starting with $\mathcal P=\emptyset$

- $\bullet\,$ In each iteration, determine configuration that is complementary to ${\cal P}\,$
- Maximize marginal contribution of configuration θ to current portfolio \mathcal{P} :

$$m(\mathcal{P}) - m(\mathcal{P} \cup \{\theta\})$$

(University of Freiburg)
A Large-Scale Application of SAT Technology

• FCC Spectrum Auction

- Wireless frequency spectra: demand increases
- US Federal Communications Commission (FCC) held 13-month auction
- Key Computational Problem: feasibility testing based on interference constraints
 - a hard graph colouring problem
 - 2991 stations (nodes) &
 2.7 million interference constraints
 - Need to solve many different instances
 - More instances solved: higher revenue

A Large-Scale Application of SAT Technology

• FCC Spectrum Auction

- Wireless frequency spectra: demand increases
- US Federal Communications Commission (FCC) held 13-month auction
- Key Computational Problem: feasibility testing based on interference constraints
 - a hard graph colouring problem
 - 2991 stations (nodes) &
 2.7 million interference constraints
 - Need to solve many different instances
 - More instances solved: higher revenue

• Best solution: based on SAT solving & meta-algorithmic improvements

- CDCL Solver Clasp, optimized with algo. configuration method SMAC
- Instance-specific configuration with Hydra (using SATzilla for algo. selection)
- Improved ratio of instances solved from 73% to 99.6%
- Net income for US government: \$7 billion (used to pay down national debt)

- SAT solving very prominently uses resolution
- DPLL: combines resolution and backtracking
 - Very efficient implementation techniques
 - Good branching heuristics
 - Clause learning
- Incomplete randomized SAT-solvers
 - Perform best on random satisfiable problem instances
- State of the art
 - Typically obtained by automatic algorithm configuration & selection