
Foundations of Artificial Intelligence
8. Satisfiability and Model Construction

DPLL Procedure, Phase Transitions, Local Search, State of the Art

Joschka Boedecker and Wolfram Burgard and
Frank Hutter and Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

May 30, 2018

Motivation

SAT solving is the best available technology for practical solutions to many
NP-hard problems

Formal verification
- Verification of software

Ruling out unintended states (null-pointer exceptions, etc.)
Proving that the program computes the right solution

- Verification of hardware (Pentium bug, etc)

Practical approach:
encode into SAT & exploit the rapid progress in SAT solving

Solving CSP instances in practice
Solving graph coloring problems in practice

(University of Freiburg) Foundations of AI May 30, 2018 2 / 40

Contents

1 The SAT Problem

2 Davis-Putnam-Logemann-Loveland (DPLL) Procedure

3 “Average” Complexity of the Satisfiability Problem

4 Local Search Procedures

5 State of the Art

(University of Freiburg) Foundations of AI May 30, 2018 3 / 40

Lecture Overview

1 The SAT Problem

2 Davis-Putnam-Logemann-Loveland (DPLL) Procedure

3 “Average” Complexity of the Satisfiability Problem

4 Local Search Procedures

5 State of the Art

(University of Freiburg) Foundations of AI May 30, 2018 4 / 40

Logical deduction vs. satisfiability

Propositional Logic — typical algorithmic questions:

Logical deduction

Given: A logical theory (set of propositions)
Question: Does a proposition logically follow from this theory?
Reduction to unsatisfiability, which is coNP-complete (complementary to
NP problems)

Satisfiability of a formula (SAT)

Given: A logical theory
Wanted: Model of the theory
Example: Configurations that fulfill the constraints given in the theory
Can be “easier” because it is enough to find one model

(University of Freiburg) Foundations of AI May 30, 2018 5 / 40

The Satisfiability Problem (SAT)

Given:

Propositional formula ϕ in CNF

Wanted:

Model of ϕ.

or proof, that no such model exists.

(University of Freiburg) Foundations of AI May 30, 2018 6 / 40

SAT and CSP

SAT can be formulated as a Constraint-Satisfaction-Problem (→ search):

CSP-Variables = Symbols of the alphabet

Domain of values = {T, F}
Constraints given by clauses

(University of Freiburg) Foundations of AI May 30, 2018 7 / 40

SAT and CSP

SAT can be formulated as a Constraint-Satisfaction-Problem (→ search):

CSP-Variables = Symbols of the alphabet

Domain of values = {T, F}
Constraints given by clauses

(University of Freiburg) Foundations of AI May 30, 2018 7 / 40

Lecture Overview

1 The SAT Problem

2 Davis-Putnam-Logemann-Loveland (DPLL) Procedure

3 “Average” Complexity of the Satisfiability Problem

4 Local Search Procedures

5 State of the Art

(University of Freiburg) Foundations of AI May 30, 2018 8 / 40

The DPLL algorithm

The DPLL algorithm (Davis, Putnam, Logemann, Loveland, 1962)
corresponds to backtracking with inference in CSPs:

Recursive call DPLL (∆, l) with

∆: set of clauses
l: variable assignment

Result: satisfying assignment that extends l
or “unsatisfiable” if no such assignment exists.

First call by DPLL(∆, ∅)

Inference in DPLL:

Simplify: if variable v is assigned a value d, then all clauses containing v
are simplified immediately (corresponds to forward checking)

Variables in unit clauses (= clauses with only one variable) are
immediately assigned (corresponds to minimum remaining values
ordering in CSPs)

(University of Freiburg) Foundations of AI May 30, 2018 9 / 40

The DPLL algorithm

The DPLL algorithm (Davis, Putnam, Logemann, Loveland, 1962)
corresponds to backtracking with inference in CSPs:

Recursive call DPLL (∆, l) with

∆: set of clauses
l: variable assignment

Result: satisfying assignment that extends l
or “unsatisfiable” if no such assignment exists.

First call by DPLL(∆, ∅)

Inference in DPLL:

Simplify: if variable v is assigned a value d, then all clauses containing v
are simplified immediately (corresponds to forward checking)

Variables in unit clauses (= clauses with only one variable) are
immediately assigned (corresponds to minimum remaining values
ordering in CSPs)

(University of Freiburg) Foundations of AI May 30, 2018 9 / 40

The DPLL Procedure

DPLL Function

Given a set of clauses ∆ defined over a set of variables Σ, return
“satisfiable” if ∆ is satisfiable. Otherwise return “unsatisfiable”.

1. If ∆ = ∅ return “satisfiable”

2. If � ∈ ∆ return “unsatisfiable”

3. Unit-propagation Rule: If ∆ contains a unit-clause C, assign a
truth-value to the variable in C that satisfies C, simplify ∆ to ∆′ and
return DPLL(∆′).

4. Splitting Rule: Select from Σ a variable v which has not been assigned
a truth-value. Assign one truth value t to it, simplify ∆ to ∆′ and call
DPLL(∆′)

a. If the call returns “satisfiable”, then return “satisfiable”.
b. Otherwise assign the other truth-value to v in ∆, simplify to ∆′′ and

return DPLL(∆′′).

(University of Freiburg) Foundations of AI May 30, 2018 10 / 40

Example (1)

∆ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}

1. Unit-propagation rule: c 7→ T
{{a, b}, {¬a,¬b}, {a,¬b}}

2. Splitting rule:

2a. a 7→ F
{{b}, {¬b}}

3a. Unit-propagation rule:
b 7→ T
{�}

2b. a 7→ T
{{¬b}}

3b. Unit-propagation rule: b 7→ F
{}

(University of Freiburg) Foundations of AI May 30, 2018 11 / 40

Example (1)

∆ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}

1. Unit-propagation rule: c 7→ T

{{a, b}, {¬a,¬b}, {a,¬b}}
2. Splitting rule:

2a. a 7→ F
{{b}, {¬b}}

3a. Unit-propagation rule:
b 7→ T
{�}

2b. a 7→ T
{{¬b}}

3b. Unit-propagation rule: b 7→ F
{}

(University of Freiburg) Foundations of AI May 30, 2018 11 / 40

Example (1)

∆ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}

1. Unit-propagation rule: c 7→ T
{{a, b}, {¬a,¬b}, {a,¬b}}

2. Splitting rule:

2a. a 7→ F
{{b}, {¬b}}

3a. Unit-propagation rule:
b 7→ T
{�}

2b. a 7→ T
{{¬b}}

3b. Unit-propagation rule: b 7→ F
{}

(University of Freiburg) Foundations of AI May 30, 2018 11 / 40

Example (1)

∆ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}

1. Unit-propagation rule: c 7→ T
{{a, b}, {¬a,¬b}, {a,¬b}}

2. Splitting rule:

2a. a 7→ F
{{b}, {¬b}}

3a. Unit-propagation rule:
b 7→ T
{�}

2b. a 7→ T
{{¬b}}

3b. Unit-propagation rule: b 7→ F
{}

(University of Freiburg) Foundations of AI May 30, 2018 11 / 40

Example (1)

∆ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}

1. Unit-propagation rule: c 7→ T
{{a, b}, {¬a,¬b}, {a,¬b}}

2. Splitting rule:

2a. a 7→ F
{{b}, {¬b}}

3a. Unit-propagation rule:
b 7→ T
{�}

2b. a 7→ T
{{¬b}}

3b. Unit-propagation rule: b 7→ F
{}

(University of Freiburg) Foundations of AI May 30, 2018 11 / 40

Example (1)

∆ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}

1. Unit-propagation rule: c 7→ T
{{a, b}, {¬a,¬b}, {a,¬b}}

2. Splitting rule:

2a. a 7→ F
{{b}, {¬b}}

3a. Unit-propagation rule:
b 7→ T
{�}

2b. a 7→ T
{{¬b}}

3b. Unit-propagation rule: b 7→ F
{}

(University of Freiburg) Foundations of AI May 30, 2018 11 / 40

Example (1)

∆ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}

1. Unit-propagation rule: c 7→ T
{{a, b}, {¬a,¬b}, {a,¬b}}

2. Splitting rule:

2a. a 7→ F
{{b}, {¬b}}

3a. Unit-propagation rule:
b 7→ T
{�}

2b. a 7→ T
{{¬b}}

3b. Unit-propagation rule: b 7→ F
{}

(University of Freiburg) Foundations of AI May 30, 2018 11 / 40

Example (1)

∆ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}

1. Unit-propagation rule: c 7→ T
{{a, b}, {¬a,¬b}, {a,¬b}}

2. Splitting rule:

2a. a 7→ F
{{b}, {¬b}}

3a. Unit-propagation rule:
b 7→ T
{�}

2b. a 7→ T
{{¬b}}

3b. Unit-propagation rule: b 7→ F
{}

(University of Freiburg) Foundations of AI May 30, 2018 11 / 40

Example (1)

∆ = {{a, b,¬c}, {¬a,¬b}, {c}, {a,¬b}}

1. Unit-propagation rule: c 7→ T
{{a, b}, {¬a,¬b}, {a,¬b}}

2. Splitting rule:

2a. a 7→ F
{{b}, {¬b}}

3a. Unit-propagation rule:
b 7→ T
{�}

2b. a 7→ T
{{¬b}}

3b. Unit-propagation rule: b 7→ F
{}

(University of Freiburg) Foundations of AI May 30, 2018 11 / 40

Example (2)

∆ = {{a,¬b,¬c,¬d}, {b,¬d}, {c,¬d}, {d}}

1. Unit-propagation rule: d 7→ T
{{a,¬b,¬c}, {b}, {c}}

2. Unit-propagation rule: b 7→ T
{{a,¬c}, {c}}

3. Unit-propagation rule: c 7→ T
{{a}}

4. Unit-propagation rule: a 7→ T
{}

(University of Freiburg) Foundations of AI May 30, 2018 12 / 40

Example (2)

∆ = {{a,¬b,¬c,¬d}, {b,¬d}, {c,¬d}, {d}}

1. Unit-propagation rule: d 7→ T

{{a,¬b,¬c}, {b}, {c}}
2. Unit-propagation rule: b 7→ T
{{a,¬c}, {c}}

3. Unit-propagation rule: c 7→ T
{{a}}

4. Unit-propagation rule: a 7→ T
{}

(University of Freiburg) Foundations of AI May 30, 2018 12 / 40

Example (2)

∆ = {{a,¬b,¬c,¬d}, {b,¬d}, {c,¬d}, {d}}

1. Unit-propagation rule: d 7→ T
{{a,¬b,¬c}, {b}, {c}}

2. Unit-propagation rule: b 7→ T
{{a,¬c}, {c}}

3. Unit-propagation rule: c 7→ T
{{a}}

4. Unit-propagation rule: a 7→ T
{}

(University of Freiburg) Foundations of AI May 30, 2018 12 / 40

Example (2)

∆ = {{a,¬b,¬c,¬d}, {b,¬d}, {c,¬d}, {d}}

1. Unit-propagation rule: d 7→ T
{{a,¬b,¬c}, {b}, {c}}

2. Unit-propagation rule: b 7→ T
{{a,¬c}, {c}}

3. Unit-propagation rule: c 7→ T
{{a}}

4. Unit-propagation rule: a 7→ T
{}

(University of Freiburg) Foundations of AI May 30, 2018 12 / 40

Example (2)

∆ = {{a,¬b,¬c,¬d}, {b,¬d}, {c,¬d}, {d}}

1. Unit-propagation rule: d 7→ T
{{a,¬b,¬c}, {b}, {c}}

2. Unit-propagation rule: b 7→ T
{{a,¬c}, {c}}

3. Unit-propagation rule: c 7→ T
{{a}}

4. Unit-propagation rule: a 7→ T
{}

(University of Freiburg) Foundations of AI May 30, 2018 12 / 40

Example (2)

∆ = {{a,¬b,¬c,¬d}, {b,¬d}, {c,¬d}, {d}}

1. Unit-propagation rule: d 7→ T
{{a,¬b,¬c}, {b}, {c}}

2. Unit-propagation rule: b 7→ T
{{a,¬c}, {c}}

3. Unit-propagation rule: c 7→ T
{{a}}

4. Unit-propagation rule: a 7→ T
{}

(University of Freiburg) Foundations of AI May 30, 2018 12 / 40

Example (2)

∆ = {{a,¬b,¬c,¬d}, {b,¬d}, {c,¬d}, {d}}

1. Unit-propagation rule: d 7→ T
{{a,¬b,¬c}, {b}, {c}}

2. Unit-propagation rule: b 7→ T
{{a,¬c}, {c}}

3. Unit-propagation rule: c 7→ T
{{a}}

4. Unit-propagation rule: a 7→ T
{}

(University of Freiburg) Foundations of AI May 30, 2018 12 / 40

Properties of DPLL

DPLL is complete, correct, and guaranteed to terminate.

DPLL constructs a model, if one exists.

In general, DPLL requires exponential time (splitting rule!)
→ Heuristics are needed to determine which variable should be
instantiated next and which value should be used.

DPLL is polynomial on Horn clauses (see next slides).

In current SAT competitions, DPLL-based procedures have shown the
best performance.

(University of Freiburg) Foundations of AI May 30, 2018 13 / 40

DPLL on Horn Clauses (0)

Horn Clauses constitute an important special case, since they require only
polynomial runtime of DPLL.

Definition: A Horn clause is a clause with maximally one positive literal
E.g., ¬A1 ∨ . . . ∨ ¬An ∨B or ¬A1 ∨ . . . ∨ ¬An
(n = 0 is permitted).

Equivalent representation: ¬A1 ∨ . . . ∨ ¬An ∨B ⇔
∧
iAi ⇒ B

→ Basis of logic programming (e.g., PROLOG)

(University of Freiburg) Foundations of AI May 30, 2018 14 / 40

DPLL on Horn Clauses (1)

Note:

1. The simplifications in DPLL on Horn clauses always generate Horn
clauses

2. If the first sequence of applications of the unit propagation rule in
DPLL does not lead to termination, a set of Horn clauses without unit
clauses is generated

3. A set of Horn clauses without unit clauses and without the empty
clause is satisfiable, since

All clauses have at least one negative literal (since all non-unit clauses have
at least two literals, where at most one can be positive (Def. Horn))
Assigning false to all variables satisfies formula

(University of Freiburg) Foundations of AI May 30, 2018 15 / 40

DPLL on Horn Clauses (2)

4. It follows from 3.:

a. every time the splitting rule is applied, the current formula is satisfiable
b. every time, when the wrong decision (= assignment in the splitting rule) is

made, this will be immediately detected (e.g., only through unit
propagation steps and the derivation of the empty clause).

5. Therefore, the search trees for n variables can only contain a maximum
of n nodes, in which the splitting rule is applied (and the tree branches).

6. Therefore, the size of the search tree is only polynomial in n and
therefore the running time is also polynomial.

(University of Freiburg) Foundations of AI May 30, 2018 16 / 40

Lecture Overview

1 The SAT Problem

2 Davis-Putnam-Logemann-Loveland (DPLL) Procedure

3 “Average” Complexity of the Satisfiability Problem

4 Local Search Procedures

5 State of the Art

(University of Freiburg) Foundations of AI May 30, 2018 17 / 40

How Good is DPLL in the Average Case?

We know that SAT is NP-complete, i.e., in the worst case, it takes
exponential time.

This is clearly also true for the DPLL-procedure.
→ Couldn’t we do better in the average case?

For CNF-formulae, in which the probability for a positive appearance,
negative appearance and non-appearance in a clause is 1/3, DPLL needs
on average quadratic time (Goldberg 79)!
→ The probability that these formulae are satisfiable is, however, very
high.

(University of Freiburg) Foundations of AI May 30, 2018 18 / 40

Phase Transitions . . .

Conversely, we can, of course, try to identify hard to solve problem
instances.

Cheeseman et al. (IJCAI-91) came up with the following plausible
conjecture:

All NP-complete problems have at least one order parameter and the hard to
solve problems are around a critical value of this order parameter. This
critical value (a phase transition) separates one region from another, such as
over-constrained and under-constrained regions of the problem space.

Confirmation for graph coloring and Hamiltonian path . . . , later also for
other NP-complete problems.

(University of Freiburg) Foundations of AI May 30, 2018 19 / 40

Phase Transitions with 3-SAT

Constant clause length model (Mitchell et al., AAAI-92):
Clause length k is given. Choose variables for every clause k and use the
complement with probability 0.5 for each variable.

Phase transition for 3-SAT with a clause/variable ratio of approx. 4.3:

(University of Freiburg) Foundations of AI May 30, 2018 20 / 40

Empirical Difficulty

The Davis-Putnam (DPLL) Procedure shows extreme runtime peaks at
the phase transition:

Note: Hard instances can exist even in the regions of the more easily
satisfiable/unsatisfiable instances!

(University of Freiburg) Foundations of AI May 30, 2018 21 / 40

Notes on the Phase Transition

When the probability of a solution is close to 1 (under-constrained),
there are many solutions, and the first search path of a backtracking
search is usually successful.

If the probability of a solution is close to 0 (over-constrained), this fact
can usually be determined early in the search.

In the phase transition stage, there are many near successes (“close, but
no cigar”)

→ (limited) possibility of predicting the difficulty of finding a solution
based on the parameters

→ (search intensive) benchmark problems are located in the phase
region (but they have a special structure)

(University of Freiburg) Foundations of AI May 30, 2018 22 / 40

Lecture Overview

1 The SAT Problem

2 Davis-Putnam-Logemann-Loveland (DPLL) Procedure

3 “Average” Complexity of the Satisfiability Problem

4 Local Search Procedures

5 State of the Art

(University of Freiburg) Foundations of AI May 30, 2018 23 / 40

Local Search Methods for Solving Logical Problems

In many cases, we are interested in finding a satisfying assignment of
variables (example CSP), and we can sacrifice completeness if we can
“solve” much larger instances this way.

Standard process for optimization problems: Local Search

Based on a (random) configuration

Through local modifications, we hope to produce better configurations

→ Main problem: local maxima

(University of Freiburg) Foundations of AI May 30, 2018 24 / 40

Dealing with Local Maxima

As a measure of the value of a configuration in a logical problem, we could
use the number of satisfied constraints/clauses.

At first glance, local search seems inappropriate, considering that we want
to find a global maximum (all constraints/clauses satisfied).

However:

By restarting and/or injecting noise, we can often escape local maxima.

Local search can perform very well for SAT solving

(University of Freiburg) Foundations of AI May 30, 2018 25 / 40

A pioneering local search method for SAT: GSAT (1993)

Procedure GSAT
INPUT: a set of clauses α, Max-Flips, and Max-Tries
OUTPUT: a satisfying truth assignment of α, if found

begin
for i := 1 to Max-Tries
T := a randomly-generated truth assignment
for j := 1 to Max-Flips

if T satisfies α then return T
v := a propositional variable such that a change in its

truth assignment gives the largest increase in
the number of clauses of α that are satisfied by T

T := T with the truth assignment of v reversed
end for

end for
return “no satisfying assignment found”

end

(University of Freiburg) Foundations of AI May 30, 2018 26 / 40

The Search Behavior of GSAT

In contrast to many other local search methods, we must also allow
sideways movements!

Most time is spent searching on plateaus.

(University of Freiburg) Foundations of AI May 30, 2018 27 / 40

Lecture Overview

1 The SAT Problem

2 Davis-Putnam-Logemann-Loveland (DPLL) Procedure

3 “Average” Complexity of the Satisfiability Problem

4 Local Search Procedures

5 State of the Art

(University of Freiburg) Foundations of AI May 30, 2018 28 / 40

Practical Improvements of DPLL Algorithms

Clause Learning
- Consider an exemplary SAT problem

26 variables A, . . . , Z
Amongst many other clauses, we have
{(¬A, Y, Z)}, {(¬A,¬Y,Z)}, {(¬A, Y,¬Z)}, {(¬A,¬Y,¬Z)}
We’ll branch on variables in lexicographic order and try true first

- What will happen?

There is no satisfying assignment to the clauses above when A=T
For each assignment to variables B, . . . , X, we’ll have to rediscover this fact
Rather: reason about the variables that led to a conflict: A, Y and Z
We can ‘Learn” (here: logically infer) a new clause: ¬A
Leads to conflict-directed clause learning (CDCL)

Intelligent Backjumping

Closely related to clause learning
Jump back to the branching decision responsible for a conflict

(University of Freiburg) Foundations of AI May 30, 2018 29 / 40

Practical Improvements of DPLL Algorithms

Clause Learning
- Consider an exemplary SAT problem

26 variables A, . . . , Z
Amongst many other clauses, we have
{(¬A, Y, Z)}, {(¬A,¬Y,Z)}, {(¬A, Y,¬Z)}, {(¬A,¬Y,¬Z)}
We’ll branch on variables in lexicographic order and try true first

- What will happen?

There is no satisfying assignment to the clauses above when A=T

For each assignment to variables B, . . . , X, we’ll have to rediscover this fact
Rather: reason about the variables that led to a conflict: A, Y and Z
We can ‘Learn” (here: logically infer) a new clause: ¬A
Leads to conflict-directed clause learning (CDCL)

Intelligent Backjumping

Closely related to clause learning
Jump back to the branching decision responsible for a conflict

(University of Freiburg) Foundations of AI May 30, 2018 29 / 40

Practical Improvements of DPLL Algorithms

Clause Learning
- Consider an exemplary SAT problem

26 variables A, . . . , Z
Amongst many other clauses, we have
{(¬A, Y, Z)}, {(¬A,¬Y,Z)}, {(¬A, Y,¬Z)}, {(¬A,¬Y,¬Z)}
We’ll branch on variables in lexicographic order and try true first

- What will happen?

There is no satisfying assignment to the clauses above when A=T
For each assignment to variables B, . . . , X, we’ll have to rediscover this fact
Rather: reason about the variables that led to a conflict: A, Y and Z
We can ‘Learn” (here: logically infer) a new clause: ¬A
Leads to conflict-directed clause learning (CDCL)

Intelligent Backjumping

Closely related to clause learning
Jump back to the branching decision responsible for a conflict

(University of Freiburg) Foundations of AI May 30, 2018 29 / 40

Practical Improvements of DPLL Algorithms

Clause Learning
- Consider an exemplary SAT problem

26 variables A, . . . , Z
Amongst many other clauses, we have
{(¬A, Y, Z)}, {(¬A,¬Y,Z)}, {(¬A, Y,¬Z)}, {(¬A,¬Y,¬Z)}
We’ll branch on variables in lexicographic order and try true first

- What will happen?

There is no satisfying assignment to the clauses above when A=T
For each assignment to variables B, . . . , X, we’ll have to rediscover this fact
Rather: reason about the variables that led to a conflict: A, Y and Z
We can ‘Learn” (here: logically infer) a new clause: ¬A
Leads to conflict-directed clause learning (CDCL)

Intelligent Backjumping

Closely related to clause learning
Jump back to the branching decision responsible for a conflict

(University of Freiburg) Foundations of AI May 30, 2018 29 / 40

Practical Improvements of SAT Algorithms

Both for DPLL/CDCL algorithms and local search algorithms

Efficient data structures, indexing, etc
Engineering ingenious heuristics

Meta-algorithmic advances

- Automated parameter tuning and algorithm configuration
- Selection of the best-fitting algorithm based on instance characteristics
- Selection of the best-fitting parameters based on instance characteristics
- Use of machine learning to pinpoint what factors most affects performance

(University of Freiburg) Foundations of AI May 30, 2018 30 / 40

Practical Improvements of SAT Algorithms

Both for DPLL/CDCL algorithms and local search algorithms

Efficient data structures, indexing, etc
Engineering ingenious heuristics

Meta-algorithmic advances

- Automated parameter tuning and algorithm configuration
- Selection of the best-fitting algorithm based on instance characteristics
- Selection of the best-fitting parameters based on instance characteristics
- Use of machine learning to pinpoint what factors most affects performance

(University of Freiburg) Foundations of AI May 30, 2018 30 / 40

The Current State of the Art

SAT competitions since beginning of the 90s

Current SAT competitions (http://www.satcompetition.org/):

Largest “industrial” instances: > 10,000,000 variables

Complete solvers dominate handcrafted and industrial tracks

Incomplete local search solvers best on random satisfiable instances

Best solvers use meta-algorithmic methods, such as algorithm
configuration, selection, etc.

We thus discuss these briefly next

(University of Freiburg) Foundations of AI May 30, 2018 31 / 40

http://www.satcompetition.org/

The Current State of the Art

SAT competitions since beginning of the 90s

Current SAT competitions (http://www.satcompetition.org/):

Largest “industrial” instances: > 10,000,000 variables

Complete solvers dominate handcrafted and industrial tracks

Incomplete local search solvers best on random satisfiable instances

Best solvers use meta-algorithmic methods, such as algorithm
configuration, selection, etc.

We thus discuss these briefly next

(University of Freiburg) Foundations of AI May 30, 2018 31 / 40

http://www.satcompetition.org/

Algorithm Configuration

Configuration Task

Instances I
Algorithm A and
its Configuration

Space Θ

Select θ ∈ Θ
and π ∈ I

Run A(θ) on π to
measure m(θ, π)

Returns Best
Configuration θ̂

Return Cost

Definition: algorithm configuration

Given:

a parameterized algorithm A with possible parameter settings Θ;

a distribution D over problem instances with domain I; and

a cost metric m : Θ× I → R,

Find: θ∗ ∈ arg minθ∈ΘEπ∼D(m(θ, π)).

(University of Freiburg) Foundations of AI May 30, 2018 32 / 40

Algorithm Configuration

Configuration Task

Instances I
Algorithm A and
its Configuration

Space Θ

Select θ ∈ Θ
and π ∈ I

Run A(θ) on π to
measure m(θ, π)

Returns Best
Configuration θ̂

Return Cost

Definition: algorithm configuration

Given:

a parameterized algorithm A with possible parameter settings Θ;

a distribution D over problem instances with domain I; and

a cost metric m : Θ× I → R,

Find: θ∗ ∈ arg minθ∈ΘEπ∼D(m(θ, π)).

(University of Freiburg) Foundations of AI May 30, 2018 32 / 40

Configuration of a SAT Solver for Verification [Hutter et al, 2007]

Formal verification

Software verification [Babić & Hu; CAV ’07]

Hardware verification (Bounded model checking) [Zarpas; SAT ’05]

Recent progress based on SAT solvers

CDCL solver for SAT-based verification

SPEAR, developed by Domagoj Babić at UBC

26 parameters, 8.34× 1017 configurations

(University of Freiburg) Foundations of AI May 30, 2018 33 / 40

http://aad.informatik.uni-freiburg.de/papers/07-fmcad-BoostingVerification.pdf

Configuration of a SAT Solver for Verification [Hutter et al, 2007]

Formal verification

Software verification [Babić & Hu; CAV ’07]

Hardware verification (Bounded model checking) [Zarpas; SAT ’05]

Recent progress based on SAT solvers

CDCL solver for SAT-based verification

SPEAR, developed by Domagoj Babić at UBC

26 parameters, 8.34× 1017 configurations

(University of Freiburg) Foundations of AI May 30, 2018 33 / 40

http://aad.informatik.uni-freiburg.de/papers/07-fmcad-BoostingVerification.pdf

Configuration of a SAT Solver for Verification [Hutter et al, 2007]

Ran algorithm configuration method ParamILS: 2 days on 10 machines

– On a training set from each benchmark

Compared to manually-engineered default

– 1 week of performance tuning
– Competitive with the state of the art
– Comparison on unseen test instances

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r

IB
M

−
B

M
C

 (
s)

4.5-fold speedup
on hardware verification

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r

S
W

V
 (

s)

500-fold speedup won category
QF BV in 2007 SMT competition

(University of Freiburg) Foundations of AI May 30, 2018 34 / 40

http://aad.informatik.uni-freiburg.de/papers/07-fmcad-BoostingVerification.pdf

Configuration of a SAT Solver for Verification [Hutter et al, 2007]

Ran algorithm configuration method ParamILS: 2 days on 10 machines

– On a training set from each benchmark

Compared to manually-engineered default

– 1 week of performance tuning
– Competitive with the state of the art
– Comparison on unseen test instances

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r

IB
M

−
B

M
C

 (
s)

4.5-fold speedup
on hardware verification

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r

S
W

V
 (

s)

500-fold speedup won category
QF BV in 2007 SMT competition

(University of Freiburg) Foundations of AI May 30, 2018 34 / 40

http://aad.informatik.uni-freiburg.de/papers/07-fmcad-BoostingVerification.pdf

Configuration of a SAT Solver for Verification [Hutter et al, 2007]

Ran algorithm configuration method ParamILS: 2 days on 10 machines

– On a training set from each benchmark

Compared to manually-engineered default

– 1 week of performance tuning
– Competitive with the state of the art
– Comparison on unseen test instances

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r

IB
M

−
B

M
C

 (
s)

4.5-fold speedup
on hardware verification

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r

S
W

V
 (

s)

500-fold speedup won category
QF BV in 2007 SMT competition

(University of Freiburg) Foundations of AI May 30, 2018 34 / 40

http://aad.informatik.uni-freiburg.de/papers/07-fmcad-BoostingVerification.pdf

Configuration of a SAT Solver for Verification [Hutter et al, 2007]

Ran algorithm configuration method ParamILS: 2 days on 10 machines

– On a training set from each benchmark

Compared to manually-engineered default

– 1 week of performance tuning
– Competitive with the state of the art
– Comparison on unseen test instances

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r

IB
M

−
B

M
C

 (
s)

4.5-fold speedup
on hardware verification

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
, o

pt
im

iz
ed

 fo
r

S
W

V
 (

s)

500-fold speedup won category
QF BV in 2007 SMT competition

(University of Freiburg) Foundations of AI May 30, 2018 34 / 40

http://aad.informatik.uni-freiburg.de/papers/07-fmcad-BoostingVerification.pdf

Algorithm Selection

Definition: algorithm selection

Given

a set I of problem instances,

a portfolio of algorithms P,

and a cost metric m : P × I → R,

the per-instance algorithm selection problem is to find a mapping
s : I → P that optimizes

∑
π∈Im(s(π), π), the sum of cost measures

achieved by running the selected algorithm s(π) for instance π.

Compute
Features f(π)Instance π

Select Algorithm
f(π) 7→ â Run â on π

Algorithm
Portfolio P

(University of Freiburg) Foundations of AI May 30, 2018 35 / 40

Algorithm Selection

Definition: algorithm selection

Given

a set I of problem instances,

a portfolio of algorithms P,

and a cost metric m : P × I → R,

the per-instance algorithm selection problem is to find a mapping
s : I → P that optimizes

∑
π∈Im(s(π), π), the sum of cost measures

achieved by running the selected algorithm s(π) for instance π.

Compute
Features f(π)Instance π

Select Algorithm
f(π) 7→ â Run â on π

Algorithm
Portfolio P

(University of Freiburg) Foundations of AI May 30, 2018 35 / 40

Example SAT Challenge 2012

The VBS is the best possible performance
of an algorithm selection system.

(pink: algorithm selectors, blue: portfolios, green: single-engine solvers)

(University of Freiburg) Foundations of AI May 30, 2018 36 / 40

Automated construction of portfolios from a single
algorithm

Algorithm Configuration

Strength: find a single configuration with strong performance for a given
cost metric
Weakness: for heterogeneous instance sets, there is often no configuration
that performs great for all instances

Algorithm Selection

Strength: for heterogeneous instance sets, pick the right algorithm from a set
Weakness: the set to choose from typically only contains a few algorithms

Putting the two together

Use algorithm configuration to determine useful configurations
Use algorithm selection to select from them based on instance characteristics

(University of Freiburg) Foundations of AI May 30, 2018 37 / 40

Automated construction of portfolios from a single
algorithm

Algorithm Configuration

Strength: find a single configuration with strong performance for a given
cost metric
Weakness: for heterogeneous instance sets, there is often no configuration
that performs great for all instances

Algorithm Selection

Strength: for heterogeneous instance sets, pick the right algorithm from a set
Weakness: the set to choose from typically only contains a few algorithms

Putting the two together

Use algorithm configuration to determine useful configurations
Use algorithm selection to select from them based on instance characteristics

(University of Freiburg) Foundations of AI May 30, 2018 37 / 40

Automated construction of portfolios from a single
algorithm

Algorithm Configuration

Strength: find a single configuration with strong performance for a given
cost metric
Weakness: for heterogeneous instance sets, there is often no configuration
that performs great for all instances

Algorithm Selection

Strength: for heterogeneous instance sets, pick the right algorithm from a set
Weakness: the set to choose from typically only contains a few algorithms

Putting the two together

Use algorithm configuration to determine useful configurations
Use algorithm selection to select from them based on instance characteristics

(University of Freiburg) Foundations of AI May 30, 2018 37 / 40

Automated construction of portfolios from a single
algorithm: Hydra [Xu et al. 2010, 2011]

Idea

Iteratively add configurations to a portfolio P, starting with P = ∅
In each iteration, determine configuration that is complementary to P

Maximize marginal contribution of configuration θ to current portfolio P:

m(P)−m(P ∪ {θ})

Configuration Task

Instances I
Algorithm A and
its Configuration

Space Θ

Select θ ∈ Θ
and π ∈ I P =

Return Cost

(University of Freiburg) Foundations of AI May 30, 2018 38 / 40

Automated construction of portfolios from a single
algorithm: Hydra [Xu et al. 2010, 2011]

Idea

Iteratively add configurations to a portfolio P, starting with P = ∅
In each iteration, determine configuration that is complementary to P

Maximize marginal contribution of configuration θ to current portfolio P:

m(P)−m(P ∪ {θ})

Configuration Task

Instances I
Algorithm A and
its Configuration

Space Θ

Select θ ∈ Θ
and π ∈ I

Assess
A(θ) on π

P ={}

{}
Return Cost

(University of Freiburg) Foundations of AI May 30, 2018 38 / 40

Automated construction of portfolios from a single
algorithm: Hydra [Xu et al. 2010, 2011]

Idea

Iteratively add configurations to a portfolio P, starting with P = ∅
In each iteration, determine configuration that is complementary to P

Maximize marginal contribution of configuration θ to current portfolio P:

m(P)−m(P ∪ {θ})

Configuration Task

Instances I
Algorithm A and
its Configuration

Space Θ

Select θ ∈ Θ
and π ∈ I

Assess
A(θ) on π

P ={θ1}

θ1

Return Cost

(University of Freiburg) Foundations of AI May 30, 2018 38 / 40

Automated construction of portfolios from a single
algorithm: Hydra [Xu et al. 2010, 2011]

Idea

Iteratively add configurations to a portfolio P, starting with P = ∅
In each iteration, determine configuration that is complementary to P

Maximize marginal contribution of configuration θ to current portfolio P:

m(P)−m(P ∪ {θ})

Configuration Task

Instances I
Algorithm A and
its Configuration

Space Θ

Select θ ∈ Θ
and π ∈ I

Assess
A(θ||θ1) on π

P ={θ1}

{θ1}
Return Cost

(University of Freiburg) Foundations of AI May 30, 2018 38 / 40

Automated construction of portfolios from a single
algorithm: Hydra [Xu et al. 2010, 2011]

Idea

Iteratively add configurations to a portfolio P, starting with P = ∅
In each iteration, determine configuration that is complementary to P

Maximize marginal contribution of configuration θ to current portfolio P:

m(P)−m(P ∪ {θ})

Configuration Task

Instances I
Algorithm A and
its Configuration

Space Θ

Select θ ∈ Θ
and π ∈ I

Assess
A(θ||θ1) on π

P ={θ1, θ2}

θ2

Return Cost

(University of Freiburg) Foundations of AI May 30, 2018 38 / 40

Automated construction of portfolios from a single
algorithm: Hydra [Xu et al. 2010, 2011]

Idea

Iteratively add configurations to a portfolio P, starting with P = ∅
In each iteration, determine configuration that is complementary to P

Maximize marginal contribution of configuration θ to current portfolio P:

m(P)−m(P ∪ {θ})

Configuration Task

Instances I
Algorithm A and
its Configuration

Space Θ

Select θ ∈ Θ
and π ∈ I

Assess
A(θ||θ1||θ2) on π

P ={θ1, θ2}

{θ1, θ2}
Return Cost

(University of Freiburg) Foundations of AI May 30, 2018 38 / 40

A Large-Scale Application of SAT Technology

FCC Spectrum Auction
Wireless frequency spectra: demand increases
US Federal Communications Commission (FCC) held 13-month auction

Key Computational Problem: feasibility
testing based on interference constraints

a hard graph colouring problem
2991 stations (nodes) &
2.7 million interference constraints
Need to solve many different instances
More instances solved: higher revenue

Best solution: based on SAT solving & meta-algorithmic improvements
CDCL Solver Clasp, optimized with algo. configuration method SMAC
Instance-specific configuration with Hydra (using SATzilla for algo. selection)
Improved ratio of instances solved from 73% to 99.6%
Net income for US government: $7 billion (used to pay down national debt)

(University of Freiburg) Foundations of AI May 30, 2018 39 / 40

A Large-Scale Application of SAT Technology

FCC Spectrum Auction
Wireless frequency spectra: demand increases
US Federal Communications Commission (FCC) held 13-month auction

Key Computational Problem: feasibility
testing based on interference constraints

a hard graph colouring problem
2991 stations (nodes) &
2.7 million interference constraints
Need to solve many different instances
More instances solved: higher revenue

Best solution: based on SAT solving & meta-algorithmic improvements
CDCL Solver Clasp, optimized with algo. configuration method SMAC
Instance-specific configuration with Hydra (using SATzilla for algo. selection)
Improved ratio of instances solved from 73% to 99.6%
Net income for US government: $7 billion (used to pay down national debt)

(University of Freiburg) Foundations of AI May 30, 2018 39 / 40

Concluding Remarks

SAT solving very prominently uses resolution

DPLL: combines resolution and backtracking

Very efficient implementation techniques
Good branching heuristics
Clause learning

Incomplete randomized SAT-solvers

Perform best on random satisfiable problem instances

State of the art

Typically obtained by automatic algorithm configuration & selection

(University of Freiburg) Foundations of AI May 30, 2018 40 / 40

