
Foundations of Artificial Intelligence
9. Predicate Logic

Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution

Joschka Boedecker and Wolfram Burgard and
Frank Hutter and Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

June 6, 2018

Motivation

We can already do a lot with propositional logic. It is, however, annoying
that there is no structure in the atomic propositions.

Example:

“All blocks are red”
“There is a block A”
It should follow that “A is red”

But propositional logic cannot handle this.

Idea: We introduce individual variables, predicates, functions,

→ First-Order Predicate Logic (PL1)

(University of Freiburg) Foundations of AI June 6, 2018 2 / 54

Contents

1 Syntax and Semantics

2 Normal Forms

3 Resolution & Unification

4 Closing Remarks

(University of Freiburg) Foundations of AI June 6, 2018 3 / 54

Lecture Overview

1 Syntax and Semantics

2 Normal Forms

3 Resolution & Unification

4 Closing Remarks

(University of Freiburg) Foundations of AI June 6, 2018 4 / 54

The Alphabet of First-Order Predicate Logic

Symbols:

Operators: ¬, ∨, ∧, ∀, ∃, =

Variables: x, x1, x2, . . . , x′, x′′, . . . , y, . . . , z, . . .

Brackets: (), [],
()

,
[]

Function symbols (e.g., weight(), color())

Predicate symbols (e.g., Block(), Red())

Predicate and function symbols have an arity (number of arguments).
0-ary predicate = propositional logic atoms: P,Q,R, . . .
0-ary function = constants: a, b, c, . . .

We assume a countable set of predicates and functions of any arity.

“=” is usually not considered a predicate, but a logical symbol

(University of Freiburg) Foundations of AI June 6, 2018 5 / 54

The Grammar of First-Order Predicate Logic (1)

Terms (represent objects):

1. Every variable is a term.

2. If t1, t2, . . . , tn are terms and f is an n-ary function, then

f(t1, t2, . . . , tn)

is also a term.

Terms without variables: ground terms.

Atomic Formulae (represent statements about objects)

1. If t1, t2, . . . , tn are terms and P is an n-ary predicate, then
P (t1, t2, . . . , tn) is an atomic formula.

2. If t1 and t2 are terms, then t1 = t2 is an atomic formula.

Atomic formulae without variables: ground atoms.

(University of Freiburg) Foundations of AI June 6, 2018 6 / 54

The Grammar of First-Order Predicate Logic (2)

Formulae:

1. Every atomic formula is a formula.

2. If ϕ and ψ are formulae and x is a variable, then

¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ⇒ ψ, ϕ⇔ ψ, ∃xϕ and ∀xϕ

are also formulae.
∀, ∃ are as strongly binding as ¬.

Propositional logic is part of the PL1 language:

1. Atomic formulae: only 0-ary predicates

2. Neither variables nor quantifiers.

(University of Freiburg) Foundations of AI June 6, 2018 7 / 54

Alternative Notation

Here Elsewhere

¬ϕ ∼ϕ ϕ

ϕ ∧ ψ ϕ&ψ ϕ • ψ ϕ,ψ

ϕ ∨ ψ ϕ|ψ ϕ;ψ ϕ+ ψ

ϕ⇒ ψ ϕ→ ψ ϕ ⊃ ψ
ϕ⇔ ψ ϕ↔ ψ ϕ ≡ ψ
∀xϕ (∀x)ϕ ∧ xϕ
∃xϕ (∃x)ϕ ∨ xϕ

(University of Freiburg) Foundations of AI June 6, 2018 8 / 54

Meaning of PL1-Formulae

Our example: ∀x[Block(x)⇒ Red(x)], Block(a)

For all objects x: If x is a block, then x is red and a is a block.

Generally:

Terms are interpreted as objects.

Universally-quantified variables denote all objects in the universe.

Existentially-quantified variables represent one of the objects in the
universe (made true by the quantified expression).

Predicates represent subsets of the universe.

Similar to propositional logic, we define interpretations, satisfiability,
models, validity, . . .

(University of Freiburg) Foundations of AI June 6, 2018 9 / 54

Semantics of PL1-Logic

Interpretation: I = 〈D, •I〉 where D is an arbitrary, non-empty set and •I
is a function that

maps n-ary function symbols to functions over D:
f I ∈ [Dn 7→ D]

maps individual constants to elements of D:
aI ∈ D

maps n-ary predicate symbols to relations over D:
P I ⊆ Dn

Interpretation of ground terms:

(f(t1, . . . , tn))I = f I(tI1, . . . , t
I
n)

Satisfaction of ground atoms P (t1, . . . , tn):

I |= P (t1, . . . , tn) iff 〈tI1, . . . , tIn〉 ∈ P I

(University of Freiburg) Foundations of AI June 6, 2018 10 / 54

Example (1)

D = {d1, . . . , dn | n > 1}
aI = d1

bI = d2

cI = . . .

Block I = {d1}
Red I = D

I |= Red(b)

I 6|= Block(b)

(University of Freiburg) Foundations of AI June 6, 2018 11 / 54

Example (2)

D = {1, 2, 3, . . .}
1I = 1

2I = 2

· · ·
EvenI = {2, 4, 6, . . .}
succI = {(1 7→ 2), (2 7→ 3), . . .}

I |= Even(2)

I 6|= Even(succ(2))

(University of Freiburg) Foundations of AI June 6, 2018 12 / 54

Semantics of PL1: Variable Assignment

Set of all variables V . Function α : V 7→ D

Notation: α[x/d] is the same as α apart from point x.

For x : α[x/d](x) = d.

Interpretation of terms under I, α:

xI,α = α(x)

aI,α = aI

(f(t1, . . . , tn))I,α = f I(tI,α1 , . . . , tI,αn)

Satisfaction of atomic formulae:

I, α |= P (t1, . . . , tn) iff 〈tI,α1 , . . . , tI,αn 〉 ∈ P I

(University of Freiburg) Foundations of AI June 6, 2018 13 / 54

Example

Block I = {d1}
Red I = D

α = {(x 7→ d1), (y 7→ d2)}
I, α |= Red(x)

I, α[y/d1] |= Block(y)

(University of Freiburg) Foundations of AI June 6, 2018 14 / 54

Semantics of PL1: Satisfiability

A formula ϕ is satisfied by an interpretation I and a variable assignment
α, i.e., I, α |= ϕ:

I, α |= >
I, α 6|= ⊥
I, α |= ¬ϕ iff I, α 6|= ϕ

· · ·

and all other propositional rules as well as

I, α |= P (t1, . . . , tn) iff 〈tI,α1 , . . . , tI,αn 〉 ∈ P I

I, α |= ∀xϕ iff for all d ∈ D, I, α[x/d] |= ϕ

I, α |= ∃xϕ iff there exists a d ∈ D with I, α[x/d] |= ϕ

(University of Freiburg) Foundations of AI June 6, 2018 15 / 54

Example

T = {Block(a),Block(b),∀x(Block(x) ⇒ Red(x))}
D = {d1, . . . , dn | n > 1}

aI = d1

bI = d2

BlockI = {d1}

RedI = D

α = {(x 7→ d1), (y 7→ d2)}

Questions:

1. I, α |= Block(b) ∨ ¬Block(b)?
2. I, α |= Block(x) ⇒ (Block(x) ∨ ¬Block(y))?
3. I, α |= Block(a) ∧ Block(b)?

4. I, α |= ∀x(Block(x) ⇒ Red(x))?

5. I, α |= >?

(University of Freiburg) Foundations of AI June 6, 2018 16 / 54

Free and Bound Variables

∀x
[
R(y , z) ∧ ∃y

(
(¬P (y, x) ∨R(y, z)

)]
The boxed appearances of y and z are free. All other appearances of x,y,z
are bound.

Formulae with no free variables are called closed formulae or sentences.
We form theories from closed formulae.

Note: With closed formulae, the concepts logical equivalence, satisfiability,
and implication, etc. are not dependent on the variable assignment α (i.e.,
we can always ignore all variable assignments).

With closed formulae, α can be left out on the left side of the model
relationship symbol:

I |= ϕ

(University of Freiburg) Foundations of AI June 6, 2018 17 / 54

Terminology

An interpretation I is called a model of ϕ under α if

I, α |= ϕ

A PL1 formula ϕ can, as in propositional logic, be satisfiable, unsatisfiable,
falsifiable, or valid.

Analogously, two formulae are logically equivalent (ϕ ≡ ψ) if for all I, α:

I, α |= ϕ iff I, α |= ψ

Note: P (x) 6≡ P (y)!

Logical Implication is also analogous to propositional logic.

Question: How can we define derivation?

(University of Freiburg) Foundations of AI June 6, 2018 18 / 54

Lecture Overview

1 Syntax and Semantics

2 Normal Forms

3 Resolution & Unification

4 Closing Remarks

(University of Freiburg) Foundations of AI June 6, 2018 19 / 54

Prenex Normal Form

Because of the quantifiers, we cannot produce the CNF form of a formula
directly.

First step: Produce the prenex normal form

quantifier prefix + (quantifier-free) matrix

Qx1Qx2Qx3 . . . Qxn ϕ

(University of Freiburg) Foundations of AI June 6, 2018 20 / 54

Equivalences for the Production of Prenex Normal Form

(∀xϕ) ∧ ψ ≡ ∀x(ϕ ∧ ψ) if x not free in ψ

(∀xϕ) ∨ ψ ≡ ∀x(ϕ ∨ ψ) if x not free in ψ

(∃xϕ) ∧ ψ ≡ ∃x(ϕ ∧ ψ) if x not free in ψ

(∃xϕ) ∨ ψ ≡ ∃x(ϕ ∨ ψ) if x not free in ψ

∀xϕ ∧ ∀xψ ≡ ∀x(ϕ ∧ ψ)

∃xϕ ∨ ∃xψ ≡ ∃x(ϕ ∨ ψ)

¬∀xϕ ≡ ∃x¬ϕ
¬∃xϕ ≡ ∀x¬ϕ

. . . and propositional logic equivalents

(University of Freiburg) Foundations of AI June 6, 2018 21 / 54

Production of Prenex Normal Form

1. Eliminate ⇒ and ⇔
2. Move ¬ inwards

3. Move quantifiers outwards

Example: ¬∀x[(∀xP (x))⇒ Q(x)]

→ ¬∀x[¬(∀xP (x)) ∨Q(x)]
→ ∃x[(∀xP (x)) ∧ ¬Q(x)]
And now?

(University of Freiburg) Foundations of AI June 6, 2018 22 / 54

Production of Prenex Normal Form

1. Eliminate ⇒ and ⇔
2. Move ¬ inwards

3. Move quantifiers outwards

Example: ¬∀x[(∀xP (x))⇒ Q(x)]
→ ¬∀x[¬(∀xP (x)) ∨Q(x)]

→ ∃x[(∀xP (x)) ∧ ¬Q(x)]
And now?

(University of Freiburg) Foundations of AI June 6, 2018 22 / 54

Production of Prenex Normal Form

1. Eliminate ⇒ and ⇔
2. Move ¬ inwards

3. Move quantifiers outwards

Example: ¬∀x[(∀xP (x))⇒ Q(x)]
→ ¬∀x[¬(∀xP (x)) ∨Q(x)]
→ ∃x[(∀xP (x)) ∧ ¬Q(x)]
And now?

(University of Freiburg) Foundations of AI June 6, 2018 22 / 54

Renaming of Variables

ϕ[xt] is obtained from ϕ by replacing all free appearances of x in ϕ by t.

Lemma: Let y be a variable that does not appear in ϕ. Then it holds that

∀xϕ ≡ ∀yϕ[xy] and ∃xϕ ≡ ∃yϕ[xy]

Theorem: There exists an algorithm that calculates the prenex normal
form of any formula.

(University of Freiburg) Foundations of AI June 6, 2018 23 / 54

Skolemization

Idea: Elimination of existential quantifiers by applying a function that
produces the “right” element.

Theorem (Skolem Normal Form): Let ϕ be a closed formula in prenex
normal form such that all quantified variables are pair-wise distinct and the
function symbols g1, g2, . . . do not appear in ϕ. Let

ϕ = ∀x1 · · · ∀xi∃yψ,

then ϕ is satisfiable iff

ϕ′ = ∀x1 · · · ∀xiψ
[

y
gi(x1,...,xi)

]
is satisfiable.

Example: ∀x∃y[P (x)⇒ Q(y)] → ∀x[P (x)⇒ Q(g(x))]

(University of Freiburg) Foundations of AI June 6, 2018 24 / 54

Skolem Normal Form

Skolem Normal Form: Prenex normal form without existential quantifiers.
Notation: ϕ* is the SNF of ϕ.

Theorem: It is possible to calculate the Skolem normal form of every
closed formula ϕ.

Example: ∃x((∀xP (x)) ∧ ¬Q(x))

∃y((∀xP (x)) ∧ ¬Q(y))

∃y(∀x(P (x) ∧ ¬Q(y)))

∀x(P (x) ∧ ¬Q(g0))

develops as follows:

Note: This transformation is not an equivalence transformation; it only
preserves satisfiability!

Note: . . . and is not unique.

(University of Freiburg) Foundations of AI June 6, 2018 25 / 54

Production of Clausal Form from SNF

We have: Skolem Normal Form
quantifier prefix + (quantifier-free) matrix
∀x1∀x2∀x3 · · · ∀xn ϕ

1. Put Matrix ϕ into CNF using propositional logic equivalences.

2. Eliminate universal quantifiers.

3. Eliminate conjunction symbol.

4. Rename variables so that no variable appears in more than one clause.

Theorem: It is possible to calculate the clausal form of every closed
formula ϕ.

Note: Same remarks as for SNF

(University of Freiburg) Foundations of AI June 6, 2018 26 / 54

Conversion to Clausal Form (1)

Everyone who loves all animals is loved by someone:

∀x
(
[∀y(Animal(y)⇒ Loves(x, y))]⇒ [∃yLoves(y, x)]

)
1. Eliminate biconditionals and implications

∀x
(
¬[∀y(¬Animal(y) ∨ Loves(x, y))] ∨ [∃yLoves(y, x)]

)
2. Move ¬ inwards: ¬∀xp ≡ ∃x¬p, ¬∃xp ≡ ∀x¬p

∀x
(
[∃y(¬(¬Animal(y) ∨ Loves(x, y)))] ∨ [∃yLoves(y, x)]

)
∀x
(
[∃y(¬¬Animal(y) ∧ ¬Loves(x, y))] ∨ [∃yLoves(y, x)]

)
∀x
(
[∃y(Animal(y) ∧ ¬Loves(x, y))] ∨ [∃yLoves(y, x)]

)

(University of Freiburg) Foundations of AI June 6, 2018 27 / 54

Conversion to Clausal Form (2)

3. Standardize variables: each quantifier should use a different one

∀x
(
[∃y(Animal(y) ∧ ¬Loves(x, y))] ∨ [∃zLoves(z, x)]

)
4. Prenex norm form: all quantifiers in front of the matrix:

∀x∃y∃z
(
[(Animal(y) ∧ ¬Loves(x, y))] ∨ [Loves(z, x)]

)
5. Skolemize: Each existential variable is replaced by a Skolem function of

the enclosing universally quantified variables:

∀x
(
[Animal(f(x)) ∧ ¬Loves(x, f(x))] ∨ [Loves(g(x), x)]

)
6. Distribute ∧ over ∨:

∀x
(
[Animal(f(x)) ∨ Loves(g(x), x)] ∧ [¬Loves(x, f(x)) ∨ Loves(g(x), x)]

)

(University of Freiburg) Foundations of AI June 6, 2018 28 / 54

Conversion to Clausal Form (3)

7. Eliminate universal quantification (implicitely assumed):(
[Animal(f(x))∨Loves(g(x), x)]∧ [¬Loves(x, g(x))∨Loves(g(x), x)]

)
8. Elimiate conjunction (and transform to set of disjunctions:{

[Animal(f(x)) ∨ Loves(g(x), x)], [¬Loves(x, g(x)) ∨ Loves(g(x), x)]
}

9. Normalize variables:{
[Animal(f(x)) ∨ Loves(g(x), x)], [¬Loves(y, g(y)) ∨ Loves(g(y), y)]

}

(University of Freiburg) Foundations of AI June 6, 2018 29 / 54

Lecture Overview

1 Syntax and Semantics

2 Normal Forms

3 Resolution & Unification

4 Closing Remarks

(University of Freiburg) Foundations of AI June 6, 2018 30 / 54

Clauses and Resolution

Assumption: KB is a set of clauses.

Due to commutativity, associativity, and idempotence of ∨ , clauses can
also be understood as sets of literals. The empty set of literals is denoted
by � (and denotes falsity).

Set of clauses: ∆

Set of literals: C, D

Literal: l

Negation of a literal: l

(University of Freiburg) Foundations of AI June 6, 2018 31 / 54

Propositional Resolution

C1∪̇{l}, C2∪̇{l}
C1 ∪ C2

C1 ∪ C2 are called resolvents of the parent clauses C1∪̇{l} and C2∪̇{l}. l
and l are the resolution literals.

Example: {a, b,¬c} resolves with {a, d, c} to {a, b, d}.

Notation: R(∆) = ∆ ∪ {C | C is a resolvent of two clauses from ∆}

(University of Freiburg) Foundations of AI June 6, 2018 32 / 54

First-order Resolution: What Changes?

Examples

{{Nat(s(0)),¬Nat(0)}, {Nat(0)}} ` {Nat(s(0))}

{{Nat(s(0)),¬Nat(x)}, {Nat(0)}} ` {Nat(s(0))}

{{Nat(s(x)),¬Nat(x)}, {Nat(0)}} ` {Nat(s(0))}

We need unification, a way to make literals identical.

Based on the notion of substitution, e.g., {x0}.

(University of Freiburg) Foundations of AI June 6, 2018 33 / 54

Substitutions

A substitution s = {v1t1 , . . . ,
vn
tn
} substitutes variables vi by terms ti (ti

must not contain vi).

Applying a substitution s to an expression ϕ yields the expression ϕs
which is ϕ with all occurrences of vi replaced by ti for all i.

(University of Freiburg) Foundations of AI June 6, 2018 34 / 54

Substitution Examples

P (x, f(y), b)

P (z, f(w), b) s = {x
z
,
y

w
}

P (x, f(a), b) s = {y
a
}

P (g(z), f(a), b) s =

{
x

g(z)
,
y

a

}
P (c, f(a), a)

Reminder: x, y, z, . . . are variables, a, b, c, . . . are constants, f, g, . . . are functions.

(University of Freiburg) Foundations of AI June 6, 2018 35 / 54

Composing Substitutions

Composing substitutions s1 and s2 gives s1s2 which is that substitution
obtained by first applying s2 to the terms in s1 and adding remaining
term/variable pairs (not occurring in s1) to s1.

Example:
{

z
g(x,y)

}{
x
a ,

y
b ,

w
c ,

z
d

}
=
{

z
g(a,b) ,

x
a ,

y
b ,

w
c

}
Application example: P (x, y, z) → P (a, b, g(a, b))

(University of Freiburg) Foundations of AI June 6, 2018 36 / 54

Properties of substitutions

For a formula ϕ and substitutions s1, s2

(ϕs1)s2 = ϕ(s1s2)

(s1s2)s3 = s1(s2s3) associativity

s1s2 6= s2s1 no commutativity!

(University of Freiburg) Foundations of AI June 6, 2018 37 / 54

Unification

Unifying a set of expressions {wi}

Find substitution s such that wis = wjs for all i, j

Example
{P (x, f(y), b), P (x, f(b), b)}
s = {yb ,

z
a} not the simplest unifier

s = {yb} most general unifier (mgu)

The most general unifier, the mgu, g of {wi} has the property that if s is
any unifier of {wi} then there exists a substitution s′ such that
{wi}s = {wi}gs′

Property: The common expression produced is unique up to alphabetic
variants (variable renaming) for all mgus.

(University of Freiburg) Foundations of AI June 6, 2018 38 / 54

Disagreement Set

The disagreement set of a set of expressions {wi} is the set of sub-terms
{ti} of {wi} at the first position in {wi} for which the {wi} disagree

Examples

{P (x, a, f(y)), P (v, b, z)} gives {x, v}

{P (x, a, f(y)), P (x, b, z)} gives {a, b}

{P (x, y, f(y)), P (x, b, z)} gives {y, b}

(University of Freiburg) Foundations of AI June 6, 2018 39 / 54

Unification Algorithm

Unify(Terms):

1 k ← 0

2 Tk = Terms

3 sk = ∅
4 If Tk is a singleton, then return sk.

5 Let Dk be the disagreement set of Tk.

6 If there exists a var vk and a term tk in Dk such that vk does not occur
in tk, continue. Otherwise, exit with failure.

7 sk+1 ← sk{vktk }
8 Tk+1 ← Tk{vktk }
9 k ← k + 1

10 Continue with step 4.

(University of Freiburg) Foundations of AI June 6, 2018 40 / 54

Example

{P (x, f(y), y), P (z, f(b), b)}

(University of Freiburg) Foundations of AI June 6, 2018 41 / 54

Binary Resolution

C1∪̇{l1}, C2∪̇{l2}
[C1 ∪ C2]s

where s = mgu(l1, l2), the most general unifier [C1 ∪ C2]s is the resolvent
of the parent clauses C1∪̇{l1} and C2∪̇{l2}.

C1∪̇{l1} and C2∪̇{l2} do not share variables l1 and l2 are the resolution
literals.

Examples: {{Nat(s(0)),¬Nat(0)}, {Nat(0)}} ` {Nat(s(0))}

{{Nat(s(0)),¬Nat(x)}, {Nat(0)}} ` {Nat(s(0))}

{{Nat(s(x)),¬Nat(x)}, {Nat(0)}} ` {Nat(s(0))}

(University of Freiburg) Foundations of AI June 6, 2018 42 / 54

Some Further Examples

Resolve {P (x), Q(f(x))} and {R(g(x)),¬Q(f(a))}

Standardizing the variables apart gives {P (x), Q(f(x))} and
{R(g(y)),¬Q(f(a))}

Substitution s = {xa} Resolvent {P (a), R(g(y))}

Resolve {P (x), Q(x, y)} and {¬P (a),¬R(b, z)}

Standardizing the variables apart

Substitution s = {xa} and Resolvent {Q(a, y),¬R(b, z)}

(University of Freiburg) Foundations of AI June 6, 2018 43 / 54

Factoring

C1∪̇{l1}∪̇{l2}
[C1 ∪ {l1}]s

where s = mgu(l1, l2) is the most general unifier.

Needed because:
{{P (u), P (v)}, {¬P (x),¬P (y)}} |= �

but � cannot be derived by binary resolution

Factoring yields:
{P (u)} and {¬P (x)} whose resolvent is �.

(University of Freiburg) Foundations of AI June 6, 2018 44 / 54

Derivations

Notation: R(∆) = ∆ ∪ {C | C is a resolvent or a factor of two clauses
from ∆}

We say D can be derived from ∆, i.e.,

∆ ` D,

if there exist C1, C2, C3, . . . , Cn = D such that
Ci ∈ R(∆ ∪ {C1, . . . , Ci−1}) for 1 ≤ i ≤ n.

(University of Freiburg) Foundations of AI June 6, 2018 45 / 54

Properties of Resolution

Lemma: (soundness) If ∆ ` D, then ∆ |= D.

Lemma: resolution is refutation-complete:
∆ is unsatisfiable implies ∆ ` �.

Theorem: ∆ is unsatisfiable iff ∆ ` �.

Technique: to prove that ∆ |= C negate C and prove that
∆ ∪ {¬C} ` �.

(University of Freiburg) Foundations of AI June 6, 2018 46 / 54

Recursive Enumeration and Decidability

Based on the result, we can construct a semi-decision procedure for
validity, i.e., we can give a (rather inefficient) algorithm that enumerates
all valid formulae step by step.

Theorem: The set of valid (and unsatisfiable) formulae in PL1 is
recursively enumerable.

What about satisfiable formulae?

Theorem (undecidability of PL1): It is undecidable, whether a formula of
PL1 is valid.

(Proof by reduction from PCP)

Corollary: The set of satisfiable formulae in PL1 is not recursively
enumerable.

In other words: If a formula is valid (or follows logically from a set of
formulae), we can effectively confirm this. Otherwise, we can end up in an
infinite loop (producing resolvents without end).

(University of Freiburg) Foundations of AI June 6, 2018 47 / 54

Example

From Russell and Norvig:

The law says it is a crime for an American to sell weapons to hostile
nations. The country Nono, an enemy of America, has some missiles,
and all of its missiles were sold to it by Colonel West, who is
American.

Prove that Col. West is a criminal.

(University of Freiburg) Foundations of AI June 6, 2018 48 / 54

Example

. . . it is a crime for an American to sell weapons to hostile nations:
American(x) ∧ weapon(y) ∧ Sells(x, y, z) ∧Hostile(z) ⇒ Criminal(x)

Nono . . . has some missiles, i.e., ∃xOwns(Nono, x) ∧Missile(x):
Owns(Nono,M1) and Missile(M1)

. . . all of its missiles were sold to it by Colonel West.
∀xMissiles(x) ∧Owns(Nono, x) ⇒ Sells(West , x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as “hostile”:
Enemy(x,America) ⇒ Hostile(x)

West, who is American . . .
American(West)

The country Nono, an enemy of America

Enemy(Nono,America)

(University of Freiburg) Foundations of AI June 6, 2018 49 / 54

An Example

¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x,y,z) ∨ ¬Hostile(z) ∨ Criminal(x) ¬Criminal(West)

¬Enemy(Nono,America)Enemy(Nono,America)

¬Missile(x) ∨ Weapon(x) ¬Weapon(y) ∨ ¬Sells(West,y,z) ∨ ¬Hostile(z)

Missile(M1) ¬Missile(y) ∨ ¬Sells(West,y,z) ∨ ¬Hostile(z)

¬Missile(x) ∨ ¬Owns(Nono,x) ∨ Sells(West,x,Nono) ¬Sells(West,M1,z) ∨ ¬Hostile(z)

¬American(West) ∨ ¬Weapon(y) ∨ ¬Sells(West,y,z) ∨ ¬Hostile(z)American(West)

¬Missile(M1) ∨ ¬Owns(Nono,M1) ∨ ¬Hostile(Nono)Missile(M1)

¬Owns(Nono,M1) ∨ ¬Hostile(Nono)Owns(Nono,M1)

¬Enemy(x,America) ∨ Hostile(x) ¬Hostile(Nono)

(University of Freiburg) Foundations of AI June 6, 2018 50 / 54

Lecture Overview

1 Syntax and Semantics

2 Normal Forms

3 Resolution & Unification

4 Closing Remarks

(University of Freiburg) Foundations of AI June 6, 2018 51 / 54

Closing Remarks: Processing

PL1-Resolution: forms the basis of

most state of the art theorem provers for PL1
the programming language Prolog

only Horn clauses
considerably more efficient methods.

not dealt with : search/resolution strategies

Finite theories: In applications, we often have to deal with a fixed set of
objects. Domain closure axiom:

∀x[x = c1 ∨ x = c2 ∨ . . . ∨ x = cn]

Translation into finite propositional theory is possible.

(University of Freiburg) Foundations of AI June 6, 2018 52 / 54

Closing Remarks: Possible Extensions

PL1 is definitely very expressive, but in some circumstances we would
like more . . .

Second-Order Logic: Also over predicate quantifiers
∀x, y[(x = y)⇔ {∀p[p(x)⇔ p(y)]}]

Validity is no longer semi-decidable

Lambda Calculus: Definition of predicates, e.g.,
λx, y[∃zP (x, z) ∧Q(z, y)] defines a new predicate of arity 2

Reducible to PL1 through Lambda-Reduction

Uniqueness quantifier: ∃!xϕ(x) - there is exactly one x . . .

Reduction to PL1:
∃x[ϕ(x) ∧ ∀y(ϕ(y)⇒ x = y)]

(University of Freiburg) Foundations of AI June 6, 2018 53 / 54

Summary

PL1 makes it possible to structure statements, thereby giving us
considerably more expressive power than propositional logic.

Formulae consist of terms and atomic formulae, which, together with
connectors and quantifiers, can be put together to produce formulae.

Interpretations in PL1 consist of a universe and an interpretation
function.

Resolution is sound and refutation complete

Validity in PL1 is not decidable (it is only semi-decidable)

(University of Freiburg) Foundations of AI June 6, 2018 54 / 54

