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Motivation: Deep Learning in the News

TheNew HorkTimes Science

THE NEW YORKER

NEWS  CULTURE  BOOKS & FICTION  SCINCESTECH  BUSNES  HUMOR  MAGAZINE  ARCHIVE

SUBSCRIBE

Scientists See Promise in Deep-Learning —q

15 “DEEP LEARNING” A REVOLUTION IN ARTIFICIAL w»

INTELLIGENCE?

;:iv M:i:j: . ‘IU BREAKTHRUUGH L:\atvsu‘dvt:::n The 10 Technologies
‘ TECHNOLOGIES 2013

Can anew technique known as deep
learning revolutionize artificial intelligence,
a5 yesterday’s front-page asticle at the New
York Times suggests? There is good reason
e bt e by ot s 10 DE €xcited about deep learning, a
sophistieated “machine learning” algorithm Deep .
that far exceeds many of its predecessors in Learnl ng
st an sl mlgonce e g by i 16 biltis 10 recognize syllables and
hebrain ecognizes paters echoloy compnies e reportn images. But there’s also good reason to be

ains i felds s diverse as computr vision,speech recognitior  gkeptical While the Times reports that L, | Withmassive
“advances in an artificial intelligence amounts of
technology that can recognize patterns offer computational
- power, machines can =
now recognize
objects and translate

speechinreal time.
Atrtificial intelligence
is finally getting
smart.
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Motivation: Why is Deep Learning so Popular?

o Excellent empirical results, e.g., in computer vision

Object recognition
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hy is Deep Learning so Popular?

o Excellent empirical results, e.g., in speech recognition

Speech recognition
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Motivation: Why is Deep Learning so Popular?

o Excellent empirical results, e.g., in reasoning in games

- Superhuman performance in playing
Atari games
[Mnih et al, Nature 2015]

- Beating the world’s best Go player
[Silver et al, Nature 2016]
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Motivation: Why is Deep Learning so Popular?

o Excellent empirical results, e.g., in reasoning in games

- Superhuman performance in playing
Atari games
[Mnih et al, Nature 2015]

- Beating the world’s best Go player
[Silver et al, Nature 2016]

@ More reasons for the popularity of deep learning throughout
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Lecture Overview

@ Representation Learning and Deep Learning
© Multilayer Perceptrons
© Optimization of Neural Networks in a Nutshell

@ Overview of Some Advanced Topics

© Wrapup
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Lecture Overview

@ Representation Learning and Deep Learning
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Some definitions

Representation learning

“a set of methods that allows a machine to be fed with raw data and to
automatically discover the representations needed for detection or
classification”
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Some definitions

Representation learning

“a set of methods that allows a machine to be fed with raw data and to
automatically discover the representations needed for detection or
classification”

Deep learning

“representation learning methods with multiple levels of representation,
obtained by composing simple but nonlinear modules that each transform
the representation at one level into a [...] higher, slightly more abstract
(one)”

(LeCun et al., 2015)
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Standard Machine Learning Pipeline

@ Standard machine learning algorithms are based on high-level attributes

or features of the data

o E.g., the binary attributes we used for decisions trees
o This requires (often substantial) feature engineering

Merkmale

rot, 3.5 cm
grun, 4 cm
grin, 10 cm
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Representation Learning Pipeline

@ Jointly learn features and classifier, directly from raw data
o This is also referrred to as end-to-end learning
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Shallow vs. Deep Learning

Human cat Dog Classes
mage /XSRS
X
%e'i?} ? ? ? 7?7 Hidden Layer
e
LS

| H B N

Foundations of Al July 11, 2018 11



Shallow vs. Deep Learning

Human Cat Dog Classes
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@ Deep Learning: learning a hierarchy of representations that build on
each other, from simple to complex
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Shallow vs. Deep Learning

Human Cat Dog Classes

SN
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@ Deep Learning: learning a hierarchy of representations that build on
each other, from simple to complex

@ Quintessential deep learning model: Multilayer Perceptrons
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Biological Inspiration of Artificial Neural Networks

Dendrites input information to the cell

Neuron fires (has action potential) if a certain threshold for the voltage
is exceeded

Output of information by axon
The axon is connected to dentrites of other cells via synapses

Learning: adaptation of the synapse's efficiency, its synaptical weight

dendrites

(D synapses
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A Very Brief History of Neural Networks

@ Neural networks have a long history
- 1942: artificial neurons (McCulloch/Pitts)
- 1958/1969: perceptron (Rosenblatt; Minsky/Papert)

- 1986: multilayer perceptrons and backpropagation (Rumelhart)
- 1989: convolutional neural networks (LeCun)
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A Very Brief History of Neural Networks

@ Neural networks have a long history

- 1942: artificial neurons (McCulloch/Pitts)
- 1958/1969: perceptron (Rosenblatt; Minsky/Papert)

- 1986: multilayer perceptrons and backpropagation (Rumelhart)
- 1989: convolutional neural networks (LeCun)

@ Alternative theoretically motivated methods outperformed NNs
- Exaggeraged expectations: “It works like the brain” (No, it does not!)
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A Very Brief History of Neural Networks

@ Neural networks have a long history

- 1942: artificial neurons (McCulloch/Pitts)

- 1958/1969: perceptron (Rosenblatt; Minsky/Papert)

- 1986: multilayer perceptrons and backpropagation (Rumelhart)
- 1989: convolutional neural networks (LeCun)

@ Alternative theoretically motivated methods outperformed NNs
- Exaggeraged expectations: “It works like the brain” (No, it does not!)

@ Why the sudden success of neural networks in the last 5 years?

- Data: Availability of massive amounts of labelled data
- Compute power: Ability to train very large neural networks on GPUs
- Methodological advances: many since first renewed popularization
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Lecture Overview

© Multilayer Perceptrons

Foundations of Al July 11, 2018 15



Multilayer Perceptrons

hidden units

[figure from Bishop, Ch. 5]

@ Network is organized in layers
- Outputs of k-th layer serve as inputs of k + 1th layer
o Each layer k only does quite simple computations:

- Linear function of previous layer's outputs z;_1: a = Wyzp_1 + by
- Nonlinear transformation z; = hy(ay) through activation function hy
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Activation Functions - Examples

Logistic sigmoid activation function:

1 1.0
Riowisti = -
loglstlc(a) 1+ exp(—a) -
007 — 7/7
Logistic hyperbolic tangent
activation function:
htann(a) = tanh(a) N
_omle) —es(-a),
exp(a) + exp(—a)
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Activation Functions - Examples (cont.)

Linear activation function:

hlinear (a) =a

oo
© e A N o N & o ®

Rectified Linear (ReLU) activation
function:

hreru(a) = max(0, a)

R T R R - S

8 -6 -4 -2 0 2 4 6 8
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Output unit activation functions

Depending on the task, typically:

o for regression: single output neuron with linear activation
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Output unit activation functions

Depending on the task, typically:
o for regression: single output neuron with linear activation

e for binary classification: single output neuron with logistic/tanh
activation
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Output unit activation functions

Depending on the task, typically:
o for regression: single output neuron with linear activation

e for binary classification: single output neuron with logistic/tanh
activation

o for multiclass classification: K output neurons and softmax activation

e el
(F(x, W)k = hsoftmaz((a)r) = > exp((a);)
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Output unit activation functions

Depending on the task, typically:
o for regression: single output neuron with linear activation

e for binary classification: single output neuron with logistic/tanh
activation

o for multiclass classification: K output neurons and softmax activation

oy 2y — (@)
(¥(x, W)k hsoftmaz(( k) ZjeXP((a)j)

— so for the complete output layer:

ook
py2 = 1|x 1

Feew =1 S (@) P
p(yr = 1x)
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Loss function to be minimized

o Consider binary classification task using a single output unit with
logistic sigmoid activation function:
1

Q(X,W) = hlogistic(a) = HTP(—CL)
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Loss function to be minimized

o Consider binary classification task using a single output unit with
logistic sigmoid activation function:

_ 1

1+ exp(—a)

o This defines a (Bernoulli) probability distribution over the label of each
data point x,,:

@(X,W) = hlogistic(a)

Pyn = 1| %0, W) = §(Xp, W)
p(yn =0 | me) = 1- Q(Xnaw)
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Loss function to be minimized

o Consider binary classification task using a single output unit with
logistic sigmoid activation function:

1
1+ exp(—a)

o This defines a (Bernoulli) probability distribution over the label of each
data point x,,:

@(X,W) = hlogistic(a)

Pyn = 1| %0, W) = §(Xp, W)
p(yn =0 | me) = 1- Q(Xnaw)

@ Rewritten:

P(Yn | Xn, W) = §(xp, W) {1 — g(xnaw)}l_yn
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Loss function to be minimized

o Consider binary classification task using a single output unit with
logistic sigmoid activation function:

1
1+ exp(—a)
o This defines a (Bernoulli) probability distribution over the label of each
data point x;,:

@(X,W) = hlogistic(a) =

Pyn = 1| %0, W) = §(Xp, W)
p(yn =0 | Xnaw) = 1- Q(Xnaw)

@ Rewritten:

P(Yn | Xn, W) = §(Xn, W) {1 — §(xn, )}l_yn
@ Min. negative log likelihood of this distribution (aka cross entropy):

Z{yn Iny Yn + 1 - yn) ln(l - yn)}
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Loss function to be minimized

@ For multiclass classification, use generalization of cross-entropy error:

N K
> Ykn I G (x0, W)

n=1k=1

@ For regression, e.g., use squared error function:

Z{y (X, W) = Un}
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Optimizing a loss / error function

e Given training data D = ((x;,%;)); and topology of an MLP
@ Task: adapt weights w to minimize the loss:

minimize L(w; D)
W

@ Interpret L just as a mathematical function depending on w and forget
about its semantics, then we are faced with a problem of mathematical
optimization
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Lecture Overview

© Optimization of Neural Networks in a Nutshell
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Optimization theory

@ Discusses mathematical problems of the form:
minimize f(u),
u

where 4 is any vector of suitable size.
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Optimization theory

@ Discusses mathematical problems of the form:
minimize f(u),
u
where 4 is any vector of suitable size.

e Simplification: here, we only consider functions f which are continuous
and differentiable

y y y
X X X
non continuous function continuous, non differentiable differentiable function
(disrupted) function (folded) (smooth)
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Optimization theory (cont.)

@ A global minimum «* is a point y

such that: N

f() < f(u)

for all u.

@ A local minimum u™ is a point X

such that exist » > 0 with ‘ ‘
global local

fah) < f(u) minima

for all points @ with ||@ — dT|| < r
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Optimization theory (cont.)

@ Analytical way to find a minimum:
For a local minimum u™, the gradient of f becomes zero:

of
aui

(ut)=0 foralli

Hence, calculating all partial derivatives and looking for zeros is a good
idea
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Optimization theory (cont.)

@ Analytical way to find a minimum:
For a local minimum u™, the gradient of f becomes zero:

of

3 (ut)=0 foralli
Uj

Hence, calculating all partial derivatives and looking for zeros is a good
idea

@ But: for neural networks, we can't write down a solution for the
minimization problem in closed form

- even though % = 0 holds at (local) solution points
— need to resort to iterative methods

Foundations of Al July 11, 2018 26



Optimization theory (cont.)

@ Numerical way to find a minimum,
searching:
assume we start at point u.

Which is the best direction to
search for a point v with

fv) < f(u)?

<y
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Optimization theory (cont.)

@ Numerical way to find a minimum,
searching:
assume we start at point u.

Which is the best direction to
search for a point v with

fv) < f(u)?

Y

<y

slope is negative (descending), go right!
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Optimization theory (cont.)

@ Numerical way to find a minimum,
searching:
assume we start at point u.

Which is the best direction to
search for a point v with

fv) < f(u)?

<y
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Optimization theory (cont.)

@ Numerical way to find a minimum,
searching:
assume we start at point u.

Which is the best direction to
search for a point v with

fv) < f(u)?

slope is positive (ascending), go left!

Foundations of Al

<y
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Optimization theory (cont.)

@ Numerical way to find a minimum,
searching:
assume we start at point u.

Which is the best direction to
search for a point v with

fv) < f(u)?

Which is the best stepwidth?

Y

Foundations of Al

<y
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Optimization theory (cont.)

@ Numerical way to find a minimum,
searching:
assume we start at point u.

Which is the best direction to
search for a point v with

fv) < f(u)?

Which is the best stepwidth?

slope is small, small step!

Foundations of Al

<y
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Optimization theory (cont.)

@ Numerical way to find a minimum,
searching:
assume we start at point u.

Which is the best direction to
search for a point v with

fv) < f(u)?

Which is the best stepwidth?

<y
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Optimization theory (cont.)

@ Numerical way to find a minimum,
searching:
assume we start at point u.

Which is the best direction to
search for a point v with

fv) < f(u)?

Which is the best stepwidth?

<y

slope is large, large step!

Foundations of Al July 11, 2018
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Optimization theory (cont.)

@ Numerical way to find a minimum,
searching:
assume we start at point u.

Which is the best direction to
search for a point v with

fv) < f(u)?

Which is the best stepwidth?

@ general principle:

of
8’11,1‘
€ > 0 is called learning rate

Vi < U; — €
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Gradient descent

o Gradient descent approach:

Require: mathematical function f, learning rate e > 0
Ensure: returned vector is close to a local minimum of f
1: choose an initial point u

2: while ||V f(u)|| not close to 0 do
33 u+u—c-Vyf(u)

4: end while

5: return u

o Note: Vyf = [a%%, ..., 2L for K-dimensionsal u

’ Qu

Foundations of Al July 11, 2018 28



Calculating partial derivatives

@ Our typical loss functions are defined across data points:

N
L(W) = Z Ln(w) = L(f(xn;w)ayn)
n=1
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Calculating partial derivatives

@ Our typical loss functions are defined across data points:
N
= Ln(wW) = L(f (xa; W), yn)
n=1

@ We can compute their partial derivatives as a sum over data points:

aw] nz: awj

Foundations of Al July 11, 2018 p]



Calculating partial derivatives

@ Our typical loss functions are defined across data points:
N
= Ln(wW) = L(f (xa; W), yn)
n=1

@ We can compute their partial derivatives as a sum over data points:

awj nz: awj

@ The method of backpropagation makes consistent use of the chain rule
of calculus to compute the partial derivatives % w.r.t. each network
J

weight wj, re-using previously computed results
- Backpropagation is not covered here, but, e.g., in ML lecture
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Do we need gradients based on the entire data set?

@ Using the entire set is referred to as batch gradient descent
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Do we need gradients based on the entire data set?

@ Using the entire set is referred to as batch gradient descent

o Gradients get more accurate when based on more data points
- But using more data has diminishing returns w.r.t reduction in error

- Usually faster progress by updating more often based on cheaper, less
accurate estimates of the gradient

Foundations of Al July 11, 2018 30



Do we need gradients based on the entire data set?

@ Using the entire set is referred to as batch gradient descent

o Gradients get more accurate when based on more data points

- But using more data has diminishing returns w.r.t reduction in error

- Usually faster progress by updating more often based on cheaper, less
accurate estimates of the gradient

@ Common approach in practice: compute gradients over mini-batches
- Mini-batch: small subset of the training data
- Today, this is commonly called stochastic gradient descent (SGD)
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Stochastic gradient descent

@ Stochastic gradient descent (SGD)

Require: mathematical function f, learning rate e > 0
Ensure: returned vector is close to a local minimum of f

1: choose an initial point w

2: while stopping criterion not met do

3. Sample a minibatch of m examples x| ... x(™) with

corresponding targets y(* from the training set

4:  Compute gradient g + LV, 37" L(f(x®; w),y)

5. Update parameter: w <~ w —¢- g

6: end while

7: return w

Foundations of Al July 11, 2018 31



Problems with suboptimal choices for learning rate

@ choice of ¢

1. case small e: convergence
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Problems with suboptimal choices for learning rate

@ choice of ¢

2. case very small €: convergence,
but it may take very long
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Problems with suboptimal choices for learning rate

@ choice of ¢

3. case medium size €:
convergence

A

Y
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Problems with suboptimal choices for learning rate

@ choice of ¢ {

4. case large €: divergence

Y

A
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Other reasons for problems with gradient descent

o flat spots and steep valleys:
need larger € in @ to jump over the
uninteresting flat area but need
smaller € in ¥ to meet the
minimum

<L
<{
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Other reasons for problems with gradient descent

o flat spots and steep valleys:
need larger € in @ to jump over the
uninteresting flat area but need
smaller € in ¥ to meet the
minimum . | S

u v

in higher dimensions: € is not

appropriate for all dimensions W
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Learning rate quizz

Which curve denotes low, high, very high, and good learning rate?

loss

epoch

Foundations of Al July 11, 2018 37



Gradient descent — Conclusion

o Pure gradient descent is a nice framework
@ In practice, stochastic gradient descent is used
o Finding the right learning rate ¢ is tedious
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Gradient descent — Conclusion

@ Pure gradient descent is a nice framework
@ In practice, stochastic gradient descent is used

o Finding the right learning rate ¢ is tedious

Heuristics to overcome problems of gradient descent:
o Gradient descent with momentum

@ Individual learning rates for each dimension

@ Adaptive learning rates

@ Decoupling steplength from partial derivates
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Lecture Overview

@ Overview of Some Advanced Topics
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Lecture Overview

@ Overview of Some Advanced Topics
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Historical context and inspiration from Neuroscience

Hubel & Wiesel (Nobel prize 1981) found in several studies in the 1950s
and 1960s:

. Electrical si| I
@ Visual cortex has feature detectors from brain

(e.g., cells with preference for Recording electrode —

edges with specific orientation) Vieust erca
- edge location did not matter
@ Simple cells as local feature \
0 ;
detectors . G A

@ Complex cells pool responses of
simple cells

@ There is a feature hierarchy

Foundations of Al July 11, 2018 41



Learned feature hierar

[From recent Yann
LeCun slides]

Feature

Low-Level
L)

Mid-Level
Feature

High-Level
— —

Feature
'Y

Trainable
Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

[slide credit: Andrej Karpathy]
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Convolutions illustrated

32x32x3 image

/
A

[slide credit: Andrej Karpathy]

32

3

Filters always extend the full
depth of the input volume

/

5x5x3 filter

/7

II Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”
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Convolutions illustrated (cont.)

__— 32x32x3 image

5x5x3 filter w
2

"~ 1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

wiz+b

=\

PN

|

[slide credit: Andrej Karpathy]
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Convolutions illustrated (cont.)

activation map

32x32x3 image
5x5x3 filter

V

28

=\

convolve (slide) over all
spatial locations

x
R
L

¥

®

w|
—

[slide credit: Andrej Karpathy]
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Convolutions — several filters

A=
I

32

3

[slide credit: Andrej Karpathy]

consider a second, green filter

32x32x3 image activation maps
5x5x3 filter
28
convolve (slide) over all

spatial locations
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Convolutions — several filters

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

7

32
3

32

Convolution Layer

activation maps

We stack these up to get a “new image” of size 28x28x6!

[slide credit: Andrej Karpathy]

Foundations of Al
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Stacking several convolutional layers

Convolutional layers stacked in a ConvNet

A A A

CONYV, CONYV, CONYV,
RelLU RelLU ReLU
e.g.6 e.g. 10
5x5x3 5x5x6

L 32 filters L | 28 filters 24

3 6 10

[slide credit: Andrej Karpathy]
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Learned feature hierar

[From recent Yann
LeCun slides]

Feature

Low-Level
L)

Mid-Level
Feature

High-Level
— —

Feature
'Y

Trainable
Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

[slide credit: Andrej Karpathy]

Foundations of Al
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Lecture Overview

@ Overview of Some Advanced Topics
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Feedforward vs Recurrent Neural Networks

O O
ol >0 ol N
N O e ~N / ¢O
7 ~N < O >
o © 0 o: O oS0
N e NN s
0£30 0o 7

[Source: Jaeger, 2001]
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Recurrent Neural Networks (RNNs)

@ Neural Networks that allow for cycles in the connectivity graph
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Recurrent Neural Networks (RNNs)

@ Neural Networks that allow for cycles in the connectivity graph

o Cycles let information persist in the network for some time (state), and
provide a time-context or (fading) memory
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Recurrent Neural Networks (RNNs)

@ Neural Networks that allow for cycles in the connectivity graph

o Cycles let information persist in the network for some time (state), and
provide a time-context or (fading) memory

@ Very powerful for processing sequences
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Recurrent Neural Networks (RNNs)

@ Neural Networks that allow for cycles in the connectivity graph

@ Cycles let information persist in the network for some time (state), and
provide a time-context or (fading) memory

@ Very powerful for processing sequences

o Implement dynamical systems rather than function mappings, and can
approximate any dynamical system with arbitrary precision
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Recurrent Neural Networks (RNNs)

(]

Neural Networks that allow for cycles in the connectivity graph

Cycles let information persist in the network for some time (state), and
provide a time-context or (fading) memory

Very powerful for processing sequences

Implement dynamical systems rather than function mappings, and can
approximate any dynamical system with arbitrary precision

They are Turing-complete [Siegelmann and Sontag, 1991]

Foundations of Al July 11, 2018
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Abstract schematic

With fully connected hidden layer:

) —

Unfold

[Goodfellow et al’2016]
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Sequence to sequence mapping

one to many many to one

U E
H1 H1
) T

image caption temporal
generation classification
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Sequence to sequence mapping (cont.)

JINIL
HH HH
JOE E0H

video automatic
frame labeling translation

July 11, 2018
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Lecture Overview

@ Overview of Some Advanced Topics

Foundations of Al July 11, 2018 56



Reinforcement Learning

state reward
s

|
LY

", I Agent

action
a;

Sra g

Environment ]<—
[Sutton & Barto'98]

e Finding optimal policies for MDPs

@ Reminder: states s € S, actions a € A, transition model T', rewards r

@ Policy: complete mapping 7 : .S — A that specifies for each state s

which action 7(s) to take
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Deep Reinforcement Learning

@ Policy-based deep RL

- Represent policy m: S — A as a deep neural network with weights w
- Evaluate w by “rolling out” the policy defined by w

- Optimize weights to obtain higher rewards (using approx. gradients)
- Examples: AlphaGo & modern Atari agents
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Deep Reinforcement Learning

@ Policy-based deep RL
- Represent policy m: S — A as a deep neural network with weights w
- Evaluate w by “rolling out” the policy defined by w

- Optimize weights to obtain higher rewards (using approx. gradients)
- Examples: AlphaGo & modern Atari agents

@ Value-based deep RL

- Basically value iteration, but using a deep neural network (= function
approximator) to generalize across many states and actions

- Approximate optimal state-value function U(s)
or state-action value function Q(s, a)
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Deep Reinforcement Learning

@ Policy-based deep RL
- Represent policy m: S — A as a deep neural network with weights w
- Evaluate w by “rolling out” the policy defined by w
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Deep Reinforcement Learning

@ Policy-based deep RL
- Represent policy m: S — A as a deep neural network with weights w
- Evaluate w by “rolling out” the policy defined by w

- Optimize weights to obtain higher rewards (using approx. gradients)
- Examples: AlphaGo & modern Atari agents

@ Value-based deep RL

- Basically value iteration, but using a deep neural network (= function
approximator) to generalize across many states and actions

- Approximate optimal state-value function U(s)
or state-action value function Q(s, a)

o Model-based deep RL
- If transition model T is not known

- Approximate T with a deep neural network (learned from data)
- Plan using this approximate transition model

— Use deep neural networks to represent policy / value function / model
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Lecture Overview

© Wrapup
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An Exciting Approach to Al:

Learning as an Alternative to Traditional Programming

@ We don’t understand how the human brain solves certain problems
- Face recognition
- Speech recognition
- Playing Atari games
- Picking the next move in the game of Go

@ We can nevertheless learn these tasks from data/experience
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An Exciting Approach to Al:

Learning as an Alternative to Traditional Programming

@ We don't understand how the human brain solves certain problems

- Face recognition

- Speech recognition

- Playing Atari games

- Picking the next move in the game of Go

@ We can nevertheless learn these tasks from data/experience
o If the task changes, we simply re-train

@ We can construct computer systems that are too complex for us to
understand anymore ourselves. . .

- E.g., deep neural networks have millions of weights.
- E.g., AlphaGo, the system that beat world champion Lee Sedol

+ David Silver, lead author of AlphaGo cannot say why a move is good
+ Paraphrased: “You would have to ask a Go expert.”
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Summary: Why is Deep Learning so Popular?

o Excellent empirical results in many domains

- very scalable to big data
- but beware: not a silver bullet
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Summary: Why is Deep Learning so Popular?

o Excellent empirical results in many domains

- very scalable to big data
- but beware: not a silver bullet

@ Analogy to the ways humans process information
- mostly tangential

o Allows end-to-end learning

- no more need for many complicated subsystems
- e.g., dramatically simplified Google's translation

o Very versatile/flexible

- easy to combine building blocks
- allows supervised, unsupervised, and reinforcement learning
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Lots of Work on Deep Learning in Freiburg

o Computer Vision (Thomas Brox)
- Images, video

Robotics (Wolfram Burgard)

- Navigation, grasping, object recognition

Neurorobotics (Joschka Boedecker)
- Robotic control

Machine Learning (Frank Hutter)
- Optimization of deep nets, learning to learn

Neuroscience (Tonio Ball, Michael Tangermann, and others )
- EEG data and other applications from BrainLinks-BrainTools

— Details when the individual groups present their research
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Summary by learning goals

Having heard this lecture, you can now ...

@ Explain the terms representation learning and deep learning
@ Describe the main principles behind MLPs

@ Describe how neural networks are optimized in practice

@ On a high level, describe

- Convolutional Neural Networks
- Recurrent Neural Networks
- Deep Reinforcement Learning
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