Foundations of Artificial Intelligence

14. Deep Learning

An Overview

Joschka Boedecker and Wolfram Burgard and Frank Hutter and Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

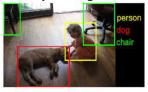
July 11, 2018

Motivation: Deep Learning in the News

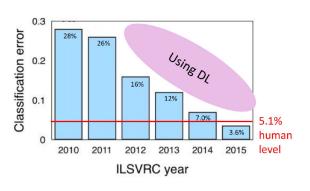


• Excellent empirical results, e.g., in computer vision

Object recognition



Self-driving cars



• Excellent empirical results, e.g., in speech recognition

Speech recognition

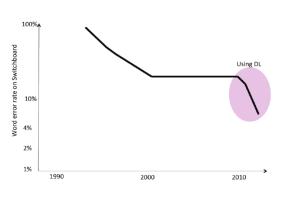


Image credit: Yoshua Bengio (data from Microsoft speech group)

• Excellent empirical results, e.g., in reasoning in games

 Superhuman performance in playing Atari games
 [Mnih et al, Nature 2015]

- Beating the world's best Go player [Silver et al, Nature 2016]

• Excellent empirical results, e.g., in reasoning in games

 Superhuman performance in playing Atari games
 [Mnih et al, Nature 2015]

- Beating the world's best Go player [Silver et al, Nature 2016]

More reasons for the popularity of deep learning throughout

Lecture Overview

- Representation Learning and Deep Learning
- 2 Multilayer Perceptrons
- 3 Optimization of Neural Networks in a Nutshell
- Overview of Some Advanced Topics
- Wrapup

Lecture Overview

- Representation Learning and Deep Learning
- 2 Multilayer Perceptrons
- 3 Optimization of Neural Networks in a Nutshell
- Overview of Some Advanced Topics
- Wrapup

Some definitions

Representation learning

"a set of methods that allows a machine to be fed with raw data and to automatically discover the representations needed for detection or classification"

Some definitions

Representation learning

"a set of methods that allows a machine to be fed with raw data and to automatically discover the representations needed for detection or classification"

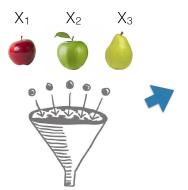
Deep learning

"representation learning methods with multiple levels of representation, obtained by composing simple but nonlinear modules that each transform the representation at one level into a [...] higher, slightly more abstract (one)"

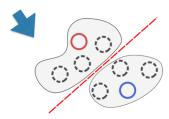
(LeCun et al., 2015)

Standard Machine Learning Pipeline

- Standard machine learning algorithms are based on high-level attributes or features of the data
- E.g., the binary attributes we used for decisions trees
- This requires (often substantial) feature engineering

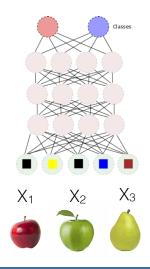


	Merkmale
X ₁	rot, 3.5 cm
X_2	grün, 4 cm
Хз	grün, 10 cm

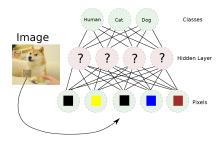


Representation Learning Pipeline

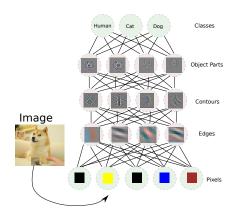
- Jointly learn features and classifier, directly from raw data
- This is also referrred to as end-to-end learning



Shallow vs. Deep Learning



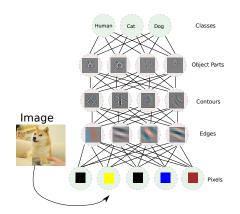
Shallow vs. Deep Learning



 Deep Learning: learning a hierarchy of representations that build on each other, from simple to complex

Foundations of Al July 11, 2018

Shallow vs. Deep Learning

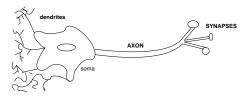


- Deep Learning: learning a hierarchy of representations that build on each other, from simple to complex
- Quintessential deep learning model: Multilayer Perceptrons

Foundations of Al July 11, 2018

Biological Inspiration of Artificial Neural Networks

- Dendrites input information to the cell
- Neuron fires (has action potential) if a certain threshold for the voltage is exceeded
- Output of information by axon
- The axon is connected to dentrites of other cells via synapses
- Learning: adaptation of the synapse's efficiency, its synaptical weight



A Very Brief History of Neural Networks

- Neural networks have a long history
 - 1942: artificial neurons (McCulloch/Pitts)
 - 1958/1969: perceptron (Rosenblatt; Minsky/Papert)
 - 1986: multilayer perceptrons and backpropagation (Rumelhart)
 - 1989: convolutional neural networks (LeCun)

A Very Brief History of Neural Networks

- Neural networks have a long history
 - 1942: artificial neurons (McCulloch/Pitts)
 - 1958/1969: perceptron (Rosenblatt; Minsky/Papert)
 - 1986: multilayer perceptrons and backpropagation (Rumelhart)
 - 1989: convolutional neural networks (LeCun)
- Alternative theoretically motivated methods outperformed NNs
 - Exaggeraged expectations: "It works like the brain" (No, it does not!)

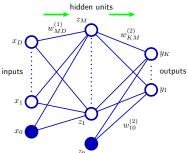
A Very Brief History of Neural Networks

- Neural networks have a long history
 - 1942: artificial neurons (McCulloch/Pitts)
 - 1958/1969: perceptron (Rosenblatt; Minsky/Papert)
 - 1986: multilayer perceptrons and backpropagation (Rumelhart)
 - 1989: convolutional neural networks (LeCun)
- Alternative theoretically motivated methods outperformed NNs
 - Exaggeraged expectations: "It works like the brain" (No, it does not!)
- Why the sudden success of neural networks in the last 5 years?
 - Data: Availability of massive amounts of labelled data
 - Compute power: Ability to train very large neural networks on GPUs
 - Methodological advances: many since first renewed popularization

Lecture Overview

- Representation Learning and Deep Learning
- Multilayer Perceptrons
- 3 Optimization of Neural Networks in a Nutshell
- Overview of Some Advanced Topics
- Wrapup

Multilayer Perceptrons



[figure from Bishop, Ch. 5]

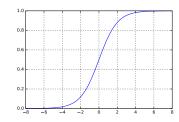
- Network is organized in layers
 - Outputs of k-th layer serve as inputs of k+1th layer
- Each layer *k* only does quite simple computations:
 - Linear function of previous layer's outputs \mathbf{z}_{k-1} : $\mathbf{a}_k = \mathbf{W}_k \mathbf{z}_{k-1} + \mathbf{b}_k$
 - Nonlinear transformation $\mathbf{z}_k = h_k(\mathbf{a}_k)$ through activation function h_k

Foundations of Al July 11, 2018

Activation Functions - Examples

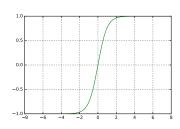
Logistic sigmoid activation function:

$$h_{logistic}(a) = \frac{1}{1 + \exp(-a)}$$



Logistic hyperbolic tangent activation function:

$$h_{tanh}(a) = \tanh(a)$$
$$= \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)}$$



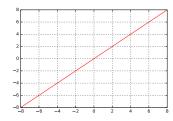
17

Foundations of Al July 11, 2018

Activation Functions - Examples (cont.)

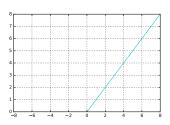
Linear activation function:

$$h_{linear}(a) = a$$



Rectified Linear (ReLU) activation function:

$$h_{relu}(a) = \max(0, a)$$



Depending on the task, typically:

• for regression: single output neuron with linear activation

Depending on the task, typically:

- for regression: single output neuron with linear activation
- for binary classification: single output neuron with logistic/tanh activation

Depending on the task, typically:

- for regression: single output neuron with linear activation
- for binary classification: single output neuron with logistic/tanh activation
- for multiclass classification: K output neurons and softmax activation

$$(\hat{\mathbf{y}}(\mathbf{x}, \mathbf{w}))_k = h_{softmax}((\mathbf{a})_k) = \frac{\exp((\mathbf{a})_k)}{\sum_j \exp((\mathbf{a})_j)}$$

Depending on the task, typically:

- for regression: single output neuron with linear activation
- for binary classification: single output neuron with logistic/tanh activation
- ullet for multiclass classification: K output neurons and softmax activation

$$(\hat{\mathbf{y}}(\mathbf{x}, \mathbf{w}))_k = h_{softmax}((\mathbf{a})_k) = \frac{\exp((\mathbf{a})_k)}{\sum_j \exp((\mathbf{a})_j)}$$

 \rightarrow so for the complete output layer:

$$\hat{\mathbf{y}}(\mathbf{x}, \mathbf{w}) = \begin{bmatrix} p(y_1 = 1|\mathbf{x}) \\ p(y_2 = 1|\mathbf{x}) \\ \vdots \\ p(y_K = 1|\mathbf{x}) \end{bmatrix} = \frac{1}{\sum_{j=1}^K \exp((\mathbf{a})_j)} \exp(\mathbf{a})$$

Foundations of Al July 11, 2018

• Consider binary classification task using a single output unit with logistic sigmoid activation function:

$$\hat{y}(\mathbf{x}, \mathbf{w}) = h_{logistic}(a) = \frac{1}{1 + \exp(-a)}$$

 Consider binary classification task using a single output unit with logistic sigmoid activation function:

$$\hat{y}(\mathbf{x}, \mathbf{w}) = h_{logistic}(a) = \frac{1}{1 + \exp(-a)}$$

 This defines a (Bernoulli) probability distribution over the label of each data point \mathbf{x}_n :

$$p(y_n = 1 \mid \mathbf{x}_n, \mathbf{w}) = \hat{y}(\mathbf{x}_n, \mathbf{w})$$

$$p(y_n = 0 \mid \mathbf{x}_n, \mathbf{w}) = 1 - \hat{y}(\mathbf{x}_n, \mathbf{w})$$

 Consider binary classification task using a single output unit with logistic sigmoid activation function:

$$\hat{y}(\mathbf{x}, \mathbf{w}) = h_{logistic}(a) = \frac{1}{1 + \exp(-a)}$$

 This defines a (Bernoulli) probability distribution over the label of each data point \mathbf{x}_n :

$$p(y_n = 1 \mid \mathbf{x}_n, \mathbf{w}) = \hat{y}(\mathbf{x}_n, \mathbf{w})$$

$$p(y_n = 0 \mid \mathbf{x}_n, \mathbf{w}) = 1 - \hat{y}(\mathbf{x}_n, \mathbf{w})$$

Rewritten:

$$p(y_n \mid \mathbf{x}_n, \mathbf{w}) = \hat{y}(\mathbf{x}_n, \mathbf{w})^{y_n} \{1 - \hat{y}(\mathbf{x}_n, \mathbf{w})\}^{1 - y_n}$$

 Consider binary classification task using a single output unit with logistic sigmoid activation function:

$$\hat{y}(\mathbf{x}, \mathbf{w}) = h_{logistic}(a) = \frac{1}{1 + \exp(-a)}$$

 This defines a (Bernoulli) probability distribution over the label of each data point x_n:

$$p(y_n = 1 \mid \mathbf{x}_n, \mathbf{w}) = \hat{y}(\mathbf{x}_n, \mathbf{w})$$

$$p(y_n = 0 \mid \mathbf{x}_n, \mathbf{w}) = 1 - \hat{y}(\mathbf{x}_n, \mathbf{w})$$

• Rewritten:

$$p(y_n \mid \mathbf{x}_n, \mathbf{w}) = \hat{y}(\mathbf{x}_n, \mathbf{w})^{y_n} \{1 - \hat{y}(\mathbf{x}_n, \mathbf{w})\}^{1 - y_n}$$

Min. negative log likelihood of this distribution (aka cross entropy):

$$L(\mathbf{w}) = -\sum_{n=1}^{N} \{y_n \ln \hat{y}_n + (1 - y_n) \ln(1 - \hat{y}_n)\}\$$

Foundations of Al July 11, 2018

• For multiclass classification, use generalization of cross-entropy error:

$$L(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} y_{kn} \ln \hat{y}_k(\mathbf{x}_n, \mathbf{w})$$

• For regression, e.g., use squared error function:

$$L(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} {\{\hat{y}(\mathbf{x}_n, \mathbf{w}) - y_n\}^2}$$

Optimizing a loss / error function

- Given training data $\mathcal{D} = \langle (\mathbf{x}_i, y_i) \rangle_{i=1}^N$ and topology of an MLP
- Task: adapt weights w to minimize the loss:

$$\underset{\mathbf{w}}{minimize} \ L(\mathbf{w}; \mathcal{D})$$

 Interpret L just as a mathematical function depending on w and forget about its semantics, then we are faced with a problem of mathematical optimization

Lecture Overview

- Representation Learning and Deep Learning
- 2 Multilayer Perceptrons
- 3 Optimization of Neural Networks in a Nutshell
- Overview of Some Advanced Topics
- Wrapup

Optimization theory

• Discusses mathematical problems of the form:

$$minimize \ f(\mathbf{u}),$$

where \vec{u} is any vector of suitable size.

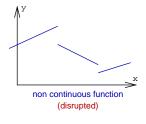
Optimization theory

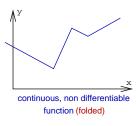
• Discusses mathematical problems of the form:

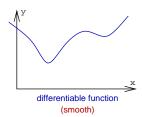
$$minimize \ f(\mathbf{u}),$$

where \vec{u} is any vector of suitable size.

ullet Simplification: here, we only consider functions f which are continuous and differentiable







• A global minimum \vec{u}^* is a point such that:

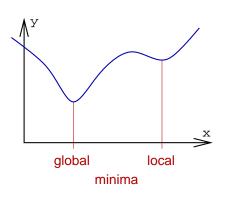
$$f(\mathbf{u}^*) \le f(\mathbf{u})$$

for all u.

• A local minimum \mathbf{u}^+ is a point such that exist r > 0 with

$$f(\mathbf{u}^+) \le f(\mathbf{u})$$

for all points \vec{u} with $||\vec{u} - \vec{u}^+|| < r$



• Analytical way to find a minimum: For a local minimum ${\bf u}^+$, the gradient of f becomes zero:

$$\frac{\partial f}{\partial u_i}(\mathbf{u}^+) = 0 \quad \text{ for all } i$$

Hence, calculating all partial derivatives and looking for zeros is a good idea

26

 Analytical way to find a minimum: For a local minimum \mathbf{u}^+ , the gradient of f becomes zero:

$$\frac{\partial f}{\partial u_i}(\mathbf{u}^+) = 0 \quad \text{ for all } i$$

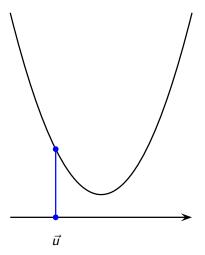
Hence, calculating all partial derivatives and looking for zeros is a good idea

- But: for neural networks, we can't write down a solution for the minimization problem in closed form
 - even though $\frac{\partial f}{\partial u_i} = 0$ holds at (local) solution points
 - → need to resort to iterative methods

26

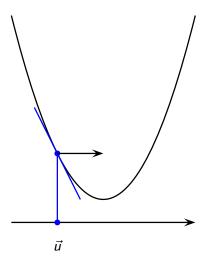
 Numerical way to find a minimum, searching: assume we start at point u.

Which is the best direction to search for a point \mathbf{v} with $f(\mathbf{v}) < f(\mathbf{u})$?



 Numerical way to find a minimum, searching: assume we start at point u.

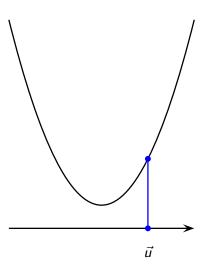
Which is the best direction to search for a point \mathbf{v} with $f(\mathbf{v}) < f(\mathbf{u})$?



slope is negative (descending), go right!

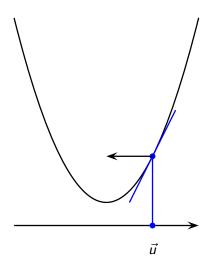
 Numerical way to find a minimum, searching: assume we start at point u.

Which is the best direction to search for a point \mathbf{v} with $f(\mathbf{v}) < f(\mathbf{u})$?



 Numerical way to find a minimum, searching: assume we start at point u.

Which is the best direction to search for a point \mathbf{v} with $f(\mathbf{v}) < f(\mathbf{u})$?

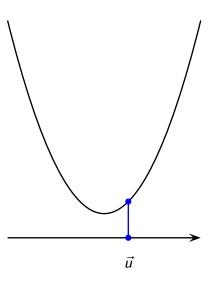


slope is positive (ascending), go left!

 Numerical way to find a minimum, searching: assume we start at point u.

Which is the best direction to search for a point ${\bf v}$ with $f({\bf v}) < f({\bf u})$?

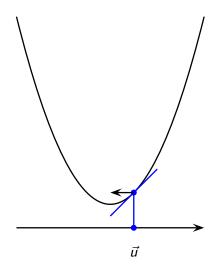
Which is the best stepwidth?



 Numerical way to find a minimum, searching: assume we start at point \mathbf{u} .

Which is the best direction to search for a point v with $f(\mathbf{v}) < f(\mathbf{u})$?

Which is the best stepwidth?

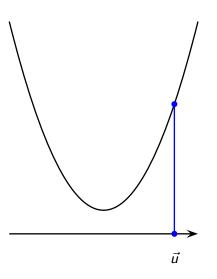


slope is small, small step!

 Numerical way to find a minimum, searching:
 assume we start at point u.

Which is the best direction to search for a point \mathbf{v} with $f(\mathbf{v}) < f(\mathbf{u})$?

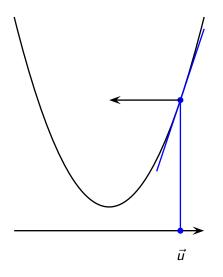
Which is the best stepwidth?



 Numerical way to find a minimum, searching: assume we start at point u.

Which is the best direction to search for a point ${\bf v}$ with $f({\bf v}) < f({\bf u})$?

Which is the best stepwidth?



slope is large, large step!

 Numerical way to find a minimum, searching: assume we start at point u.

Which is the best direction to search for a point ${\bf v}$ with $f({\bf v}) < f({\bf u})$?

Which is the best stepwidth?

• general principle:

$$v_i \leftarrow u_i - \epsilon \frac{\partial f}{\partial u_i}$$

 $\epsilon > 0$ is called learning rate

Gradient descent

• Gradient descent approach:

Require: mathematical function f, learning rate $\epsilon > 0$ **Ensure:** returned vector is close to a local minimum of f

- 1: choose an initial point ${f u}$
- 2: while $||\nabla_{\mathbf{u}} f(\mathbf{u})||$ not close to 0 do
- 3: $\mathbf{u} \leftarrow \mathbf{u} \epsilon \cdot \nabla_{\mathbf{u}} f(\mathbf{u})$
- 4: end while
- 5: return u
- Note: $abla_{\mathbf{u}}f:=[rac{\partial f}{\partial u_1},\ldots,rac{\partial f}{\partial u_K}]$ for K-dimensionsal \mathbf{u}

Calculating partial derivatives

• Our typical loss functions are defined across data points:

$$L(\mathbf{w}) = \sum_{n=1}^{N} L_n(\mathbf{w}) = L(f(\mathbf{x_n}; \mathbf{w}), y_n)$$

Calculating partial derivatives

• Our typical loss functions are defined across data points:

$$L(\mathbf{w}) = \sum_{n=1}^{N} L_n(\mathbf{w}) = L(f(\mathbf{x_n}; \mathbf{w}), y_n)$$

• We can compute their partial derivatives as a sum over data points:

$$\frac{\partial L}{\partial w_j} = \sum_{n=1}^{N} \frac{\partial L_n}{\partial w_j}$$

Calculating partial derivatives

• Our typical loss functions are defined across data points:

$$L(\mathbf{w}) = \sum_{n=1}^{N} L_n(\mathbf{w}) = L(f(\mathbf{x_n}; \mathbf{w}), y_n)$$

• We can compute their partial derivatives as a sum over data points:

$$\frac{\partial L}{\partial w_j} = \sum_{n=1}^{N} \frac{\partial L_n}{\partial w_j}$$

- The method of backpropagation makes consistent use of the chain rule of calculus to compute the partial derivatives $\frac{\partial L_n}{\partial w_j}$ w.r.t. each network weight w_j , re-using previously computed results
 - Backpropagation is not covered here, but, e.g., in ML lecture

Foundations of Al July 11, 2018

Do we need gradients based on the entire data set?

• Using the entire set is referred to as batch gradient descent

Do we need gradients based on the entire data set?

- Using the entire set is referred to as batch gradient descent
- Gradients get more accurate when based on more data points
 - But using more data has diminishing returns w.r.t reduction in error
 - Usually faster progress by updating more often based on cheaper, less accurate estimates of the gradient

Do we need gradients based on the entire data set?

- Using the entire set is referred to as batch gradient descent
- Gradients get more accurate when based on more data points
 - But using more data has diminishing returns w.r.t reduction in error
 - Usually faster progress by updating more often based on cheaper, less accurate estimates of the gradient
- Common approach in practice: compute gradients over mini-batches
 - Mini-batch: small subset of the training data
 - Today, this is commonly called stochastic gradient descent (SGD)

Stochastic gradient descent

• Stochastic gradient descent (SGD)

```
Require: mathematical function f, learning rate \epsilon > 0

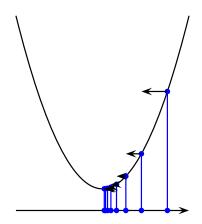
Ensure: returned vector is close to a local minimum of f

1: choose an initial point \mathbf{w}

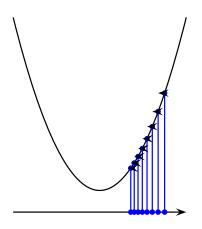
2: while stopping criterion not met do
```

- 3: Sample a minibatch of m examples $\mathbf{x^{(1)}}, \dots, \mathbf{x^{(m)}}$ with corresponding targets $\mathbf{y}^{(i)}$ from the training set
- 4: Compute gradient $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\mathbf{w}} \sum_{i=1}^{m} L(f(\mathbf{x^{(i)}}; \mathbf{w}), \mathbf{y^{(i)}})$
- 5: Update parameter: $\mathbf{w} \leftarrow \mathbf{w} \epsilon \cdot \mathbf{g}$
- 6: end while
- 7: return w

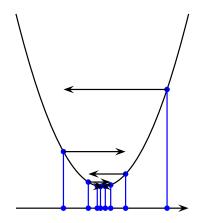
- ullet choice of ϵ
 - 1. case small ϵ : convergence



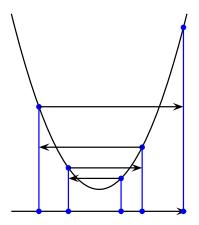
- choice of ϵ
 - 2. case very small ϵ : convergence, but it may take very long



- ullet choice of ϵ
 - 3. case medium size ϵ : convergence

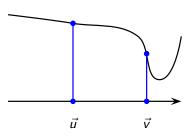


- ullet choice of ϵ
 - 4. case large ϵ : divergence



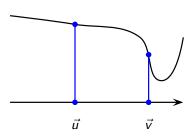
Other reasons for problems with gradient descent

• flat spots and steep valleys: need larger ϵ in \vec{u} to jump over the uninteresting flat area but need smaller ϵ in \vec{v} to meet the minimum

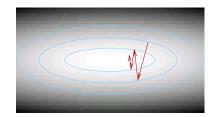


Other reasons for problems with gradient descent

• flat spots and steep valleys: need larger ϵ in \vec{u} to jump over the uninteresting flat area but need smaller ϵ in \vec{v} to meet the minimum

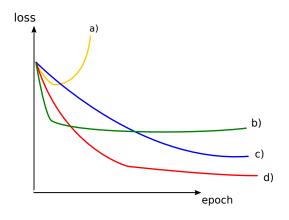


• zig-zagging: in higher dimensions: ϵ is not appropriate for all dimensions



Learning rate quizz

Which curve denotes low, high, very high, and good learning rate?



Gradient descent - Conclusion

- Pure gradient descent is a nice framework
- In practice, stochastic gradient descent is used
- ullet Finding the right learning rate ϵ is tedious

Gradient descent - Conclusion

- Pure gradient descent is a nice framework
- In practice, stochastic gradient descent is used
- ullet Finding the right learning rate ϵ is tedious

Heuristics to overcome problems of gradient descent:

- Gradient descent with momentum
- Individual learning rates for each dimension
- Adaptive learning rates
- Decoupling steplength from partial derivates

Lecture Overview

- Representation Learning and Deep Learning
- 2 Multilayer Perceptrons
- 3 Optimization of Neural Networks in a Nutshell
- Overview of Some Advanced Topics
- Wrapup

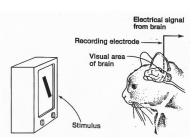
Lecture Overview

- Representation Learning and Deep Learning
- 2 Multilayer Perceptrons
- 3 Optimization of Neural Networks in a Nutshell
- 4 Overview of Some Advanced Topics
- Wrapup

Historical context and inspiration from Neuroscience

Hubel & Wiesel (Nobel prize 1981) found in several studies in the 1950s and 1960s:

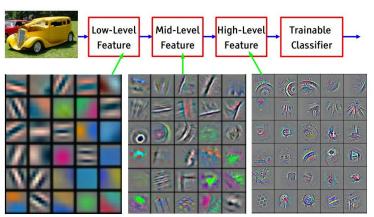
- Visual cortex has feature detectors (e.g., cells with preference for edges with specific orientation)
 - edge location did not matter
- Simple cells as local feature detectors
- Complex cells pool responses of simple cells
- There is a feature hierarchy



Learned feature hierarchy

[From recent Yann LeCun slides]

42

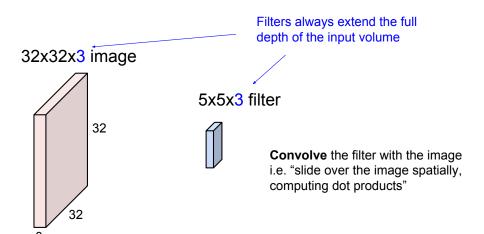


Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

[slide credit: Andrej Karpathy]

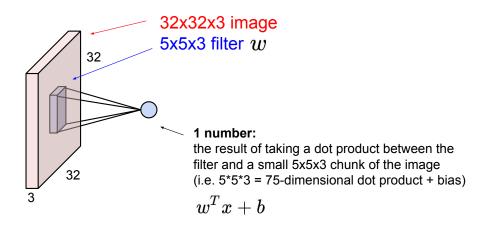
Foundations of Al July 11, 2018

Convolutions illustrated



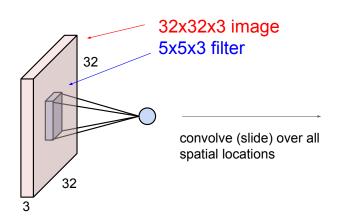
[slide credit: Andrej Karpathy]

Convolutions illustrated (cont.)

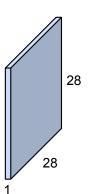


[slide credit: Andrej Karpathy]

Convolutions illustrated (cont.)



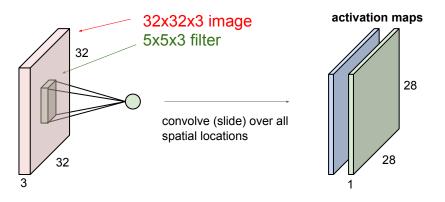
activation map



[slide credit: Andrej Karpathy]

Convolutions – several filters

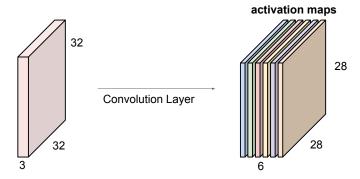
consider a second, green filter



[slide credit: Andrej Karpathy]

Convolutions – several filters

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

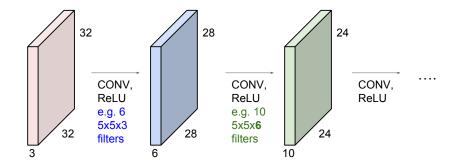


We stack these up to get a "new image" of size 28x28x6!

[slide credit: Andrej Karpathy]

Stacking several convolutional layers

Convolutional layers stacked in a ConvNet

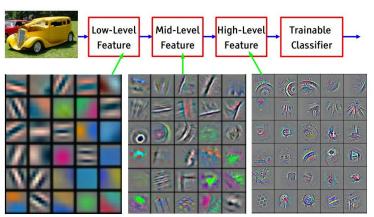


[slide credit: Andrej Karpathy]

Learned feature hierarchy

[From recent Yann LeCun slides]

49



 $Feature\ visualization\ of\ convolutional\ net\ trained\ on\ ImageNet\ from\ [Zeiler\ \&\ Fergus\ 2013]$

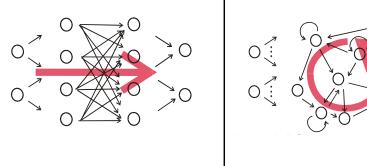
[slide credit: Andrej Karpathy]

Foundations of Al July 11, 2018

Lecture Overview

- Representation Learning and Deep Learning
- Multilayer Perceptrons
- 3 Optimization of Neural Networks in a Nutshell
- Overview of Some Advanced Topics
- Wrapup

Feedforward vs Recurrent Neural Networks



[Source: Jaeger, 2001]

• Neural Networks that allow for cycles in the connectivity graph

- Neural Networks that allow for cycles in the connectivity graph
- Cycles let information persist in the network for some time (state), and provide a time-context or (fading) memory

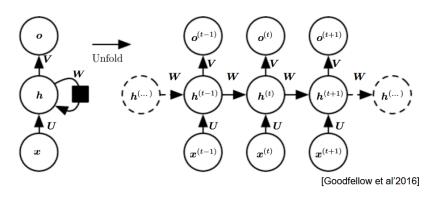
- Neural Networks that allow for cycles in the connectivity graph
- Cycles let information persist in the network for some time (state), and provide a time-context or (fading) memory
- Very powerful for processing sequences

- Neural Networks that allow for cycles in the connectivity graph
- Cycles let information persist in the network for some time (state), and provide a time-context or (fading) memory
- Very powerful for processing sequences
- Implement dynamical systems rather than function mappings, and can approximate any dynamical system with arbitrary precision

- Neural Networks that allow for cycles in the connectivity graph
- Cycles let information persist in the network for some time (state), and provide a time-context or (fading) memory
- Very powerful for processing sequences
- Implement dynamical systems rather than function mappings, and can approximate any dynamical system with arbitrary precision
- They are Turing-complete [Siegelmann and Sontag, 1991]

Abstract schematic

With fully connected hidden layer:



Foundations of Al July 11, 2018

Sequence to sequence mapping

one to many

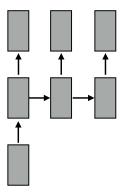
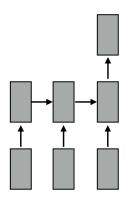


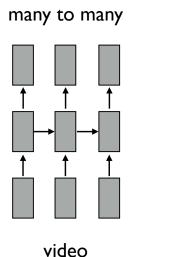
image caption generation

many to one

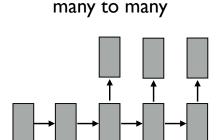


temporal classification

Sequence to sequence mapping (cont.)



video frame labeling

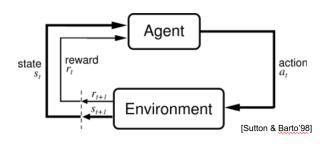


automatic translation

Lecture Overview

- Representation Learning and Deep Learning
- 2 Multilayer Perceptrons
- 3 Optimization of Neural Networks in a Nutshell
- 4 Overview of Some Advanced Topics
- Wrapup

Reinforcement Learning



- Finding optimal policies for MDPs
- Reminder: states $s \in S$, actions $a \in A$, transition model T, rewards r
- \bullet Policy: complete mapping $\pi:S\to A$ that specifies for each state s which action $\pi(s)$ to take

Foundations of Al July 11, 2018

Policy-based deep RL

- Represent policy $\pi:S\to A$ as a deep neural network with weights w
- Evaluate w by "rolling out" the policy defined by w
- Optimize weights to obtain higher rewards (using approx. gradients)
- Examples: AlphaGo & modern Atari agents

Policy-based deep RL

- Represent policy $\pi:S\to A$ as a deep neural network with weights w
- Evaluate w by "rolling out" the policy defined by w
- Optimize weights to obtain higher rewards (using approx. gradients)
- Examples: AlphaGo & modern Atari agents

Value-based deep RL

- Basically value iteration, but using a deep neural network (= function approximator) to generalize across many states and actions
- Approximate optimal state-value function U(s) or state-action value function Q(s,a)

Policy-based deep RL

- Represent policy $\pi: S \to A$ as a deep neural network with weights w
- Evaluate w by "rolling out" the policy defined by w
- Optimize weights to obtain higher rewards (using approx. gradients)
- Examples: AlphaGo & modern Atari agents

Value-based deep RL

- Basically value iteration, but using a deep neural network (= function approximator) to generalize across many states and actions
- Approximate optimal state-value function U(s)or state-action value function Q(s, a)

Model-based deep RL

- If transition model T is not known
- Approximate T with a deep neural network (learned from data)
- Plan using this approximate transition model

Policy-based deep RL

- Represent policy $\pi:S\to A$ as a deep neural network with weights w
- Evaluate w by "rolling out" the policy defined by w
- Optimize weights to obtain higher rewards (using approx. gradients)
- Examples: AlphaGo & modern Atari agents

Value-based deep RL

- Basically value iteration, but using a deep neural network (= function approximator) to generalize across many states and actions
- Approximate optimal state-value function U(s) or state-action value function Q(s,a)

Model-based deep RL

- If transition model T is not known
- Approximate T with a deep neural network (learned from data)
- Plan using this approximate transition model
- $\rightarrow\,$ Use deep neural networks to represent policy / value function / model

Lecture Overview

- Representation Learning and Deep Learning
- 2 Multilayer Perceptrons
- 3 Optimization of Neural Networks in a Nutshell
- Overview of Some Advanced Topics
- Wrapup

An Exciting Approach to AI: Learning as an Alternative to Traditional Programming

- We don't understand how the human brain solves certain problems
 - Face recognition
 - Speech recognition
 - Playing Atari games
 - Picking the next move in the game of Go
- We can nevertheless learn these tasks from data/experience

An Exciting Approach to AI: Learning as an Alternative to Traditional Programming

- We don't understand how the human brain solves certain problems
 - Face recognition
 - Speech recognition
 - Playing Atari games
 - Picking the next move in the game of Go
- We can nevertheless learn these tasks from data/experience
- If the task changes, we simply re-train

An Exciting Approach to AI: Learning as an Alternative to Traditional Programming

- We don't understand how the human brain solves certain problems
 - Face recognition
 - Speech recognition
 - Playing Atari games
 - Picking the next move in the game of Go
- We can nevertheless learn these tasks from data/experience
- If the task changes, we simply re-train
- We can construct computer systems that are too complex for us to understand anymore ourselves...
 - E.g., deep neural networks have millions of weights.
 - E.g., AlphaGo, the system that beat world champion Lee Sedol
 - + David Silver, lead author of AlphaGo cannot say why a move is good
 - + Paraphrased: "You would have to ask a Go expert."

- Excellent empirical results in many domains
 - very scalable to big data
 - but beware: not a silver bullet

- Excellent empirical results in many domains
 - very scalable to big data
 - but beware: not a silver bullet
- Analogy to the ways humans process information
 - mostly tangential

- Excellent empirical results in many domains
 - very scalable to big data
 - but beware: not a silver bullet
- Analogy to the ways humans process information
 - mostly tangential
- Allows end-to-end learning
 - no more need for many complicated subsystems
 - e.g., dramatically simplified Google's translation

- Excellent empirical results in many domains
 - very scalable to big data
 - but beware: not a silver bullet
- Analogy to the ways humans process information
 - mostly tangential
- Allows end-to-end learning
 - no more need for many complicated subsystems
 - e.g., dramatically simplified Google's translation
- Very versatile/flexible
 - easy to combine building blocks
 - allows supervised, unsupervised, and reinforcement learning

Lots of Work on Deep Learning in Freiburg

- Computer Vision (Thomas Brox)
 - Images, video
- Robotics (Wolfram Burgard)
 - Navigation, grasping, object recognition
- Neurorobotics (Joschka Boedecker)
 - Robotic control
- Machine Learning (Frank Hutter)
 - Optimization of deep nets, learning to learn
- Neuroscience (Tonio Ball, Michael Tangermann, and others)
 - EEG data and other applications from BrainLinks-BrainTools
- → Details when the individual groups present their research

Summary by learning goals

Having heard this lecture, you can now ...

- Explain the terms representation learning and deep learning
- Describe the main principles behind MLPs
- Describe how neural networks are optimized in practice
- On a high level, describe
 - Convolutional Neural Networks
 - Recurrent Neural Networks
 - Deep Reinforcement Learning