
Foundations of Artificial Intelligence
14. Deep Learning

An Overview

Joschka Boedecker and Wolfram Burgard and
Frank Hutter and Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

July 11, 2018



Motivation: Deep Learning in the News

Foundations of AI July 11, 2018 2



Motivation: Why is Deep Learning so Popular?

Excellent empirical results, e.g., in computer vision

Foundations of AI July 11, 2018 3



Motivation: Why is Deep Learning so Popular?

Excellent empirical results, e.g., in speech recognition

Foundations of AI July 11, 2018 4



Motivation: Why is Deep Learning so Popular?

Excellent empirical results, e.g., in reasoning in games

- Superhuman performance in playing
Atari games
[Mnih et al, Nature 2015]

- Beating the world’s best Go player
[Silver et al, Nature 2016]

More reasons for the popularity of deep learning throughout

Foundations of AI July 11, 2018 5



Motivation: Why is Deep Learning so Popular?

Excellent empirical results, e.g., in reasoning in games

- Superhuman performance in playing
Atari games
[Mnih et al, Nature 2015]

- Beating the world’s best Go player
[Silver et al, Nature 2016]

More reasons for the popularity of deep learning throughout

Foundations of AI July 11, 2018 5



Lecture Overview

1 Representation Learning and Deep Learning

2 Multilayer Perceptrons

3 Optimization of Neural Networks in a Nutshell

4 Overview of Some Advanced Topics

5 Wrapup

Foundations of AI July 11, 2018 6



Lecture Overview

1 Representation Learning and Deep Learning

2 Multilayer Perceptrons

3 Optimization of Neural Networks in a Nutshell

4 Overview of Some Advanced Topics

5 Wrapup

Foundations of AI July 11, 2018 7



Some definitions

Representation learning

“a set of methods that allows a machine to be fed with raw data and to
automatically discover the representations needed for detection or
classification”

Deep learning

“representation learning methods with multiple levels of representation,
obtained by composing simple but nonlinear modules that each transform
the representation at one level into a [...] higher, slightly more abstract
(one)”

(LeCun et al., 2015)

Foundations of AI July 11, 2018 8



Some definitions

Representation learning

“a set of methods that allows a machine to be fed with raw data and to
automatically discover the representations needed for detection or
classification”

Deep learning

“representation learning methods with multiple levels of representation,
obtained by composing simple but nonlinear modules that each transform
the representation at one level into a [...] higher, slightly more abstract
(one)”

(LeCun et al., 2015)

Foundations of AI July 11, 2018 8



Standard Machine Learning Pipeline

Standard machine learning algorithms are based on high-level attributes
or features of the data
E.g., the binary attributes we used for decisions trees
This requires (often substantial) feature engineering

Foundations of AI July 11, 2018 9



Representation Learning Pipeline

Jointly learn features and classifier, directly from raw data
This is also referrred to as end-to-end learning

Foundations of AI July 11, 2018 10



Shallow vs. Deep Learning

Foundations of AI July 11, 2018 11



Shallow vs. Deep Learning

Image

Human Cat Dog Classes

Pixels

Edges

Contours

Object Parts

Deep Learning: learning a hierarchy of representations that build on
each other, from simple to complex

Quintessential deep learning model: Multilayer Perceptrons

Foundations of AI July 11, 2018 12



Shallow vs. Deep Learning

Image

Human Cat Dog Classes

Pixels

Edges

Contours

Object Parts

Deep Learning: learning a hierarchy of representations that build on
each other, from simple to complex

Quintessential deep learning model: Multilayer Perceptrons

Foundations of AI July 11, 2018 12



Biological Inspiration of Artificial Neural Networks

Dendrites input information to the cell

Neuron fires (has action potential) if a certain threshold for the voltage
is exceeded

Output of information by axon

The axon is connected to dentrites of other cells via synapses

Learning: adaptation of the synapse’s efficiency, its synaptical weight

AXON

dendrites

SYNAPSES

soma

Foundations of AI July 11, 2018 13



A Very Brief History of Neural Networks

Neural networks have a long history

- 1942: artificial neurons (McCulloch/Pitts)
- 1958/1969: perceptron (Rosenblatt; Minsky/Papert)
- 1986: multilayer perceptrons and backpropagation (Rumelhart)
- 1989: convolutional neural networks (LeCun)

Alternative theoretically motivated methods outperformed NNs

- Exaggeraged expectations: “It works like the brain” (No, it does not!)

Why the sudden success of neural networks in the last 5 years?

- Data: Availability of massive amounts of labelled data
- Compute power: Ability to train very large neural networks on GPUs
- Methodological advances: many since first renewed popularization

Foundations of AI July 11, 2018 14



A Very Brief History of Neural Networks

Neural networks have a long history

- 1942: artificial neurons (McCulloch/Pitts)
- 1958/1969: perceptron (Rosenblatt; Minsky/Papert)
- 1986: multilayer perceptrons and backpropagation (Rumelhart)
- 1989: convolutional neural networks (LeCun)

Alternative theoretically motivated methods outperformed NNs

- Exaggeraged expectations: “It works like the brain” (No, it does not!)

Why the sudden success of neural networks in the last 5 years?

- Data: Availability of massive amounts of labelled data
- Compute power: Ability to train very large neural networks on GPUs
- Methodological advances: many since first renewed popularization

Foundations of AI July 11, 2018 14



A Very Brief History of Neural Networks

Neural networks have a long history

- 1942: artificial neurons (McCulloch/Pitts)
- 1958/1969: perceptron (Rosenblatt; Minsky/Papert)
- 1986: multilayer perceptrons and backpropagation (Rumelhart)
- 1989: convolutional neural networks (LeCun)

Alternative theoretically motivated methods outperformed NNs

- Exaggeraged expectations: “It works like the brain” (No, it does not!)

Why the sudden success of neural networks in the last 5 years?

- Data: Availability of massive amounts of labelled data
- Compute power: Ability to train very large neural networks on GPUs
- Methodological advances: many since first renewed popularization

Foundations of AI July 11, 2018 14



Lecture Overview

1 Representation Learning and Deep Learning

2 Multilayer Perceptrons

3 Optimization of Neural Networks in a Nutshell

4 Overview of Some Advanced Topics

5 Wrapup

Foundations of AI July 11, 2018 15



Multilayer Perceptrons

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

[figure from Bishop, Ch. 5]

Network is organized in layers

- Outputs of k-th layer serve as inputs of k + 1th layer

Each layer k only does quite simple computations:

- Linear function of previous layer’s outputs zk−1: ak = Wkzk−1 + bk

- Nonlinear transformation zk = hk(ak) through activation function hk

Foundations of AI July 11, 2018 16



Activation Functions - Examples

Logistic sigmoid activation function:

hlogistic(a) =
1

1 + exp(−a)

8 6 4 2 0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Logistic hyperbolic tangent
activation function:

htanh(a) = tanh(a)

=
exp(a)− exp(−a)
exp(a) + exp(−a)

}

8 6 4 2 0 2 4 6 8
1.0

0.5

0.0

0.5

1.0

Foundations of AI July 11, 2018 17



Activation Functions - Examples (cont.)

Linear activation function:

hlinear(a) = a

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8

Rectified Linear (ReLU) activation
function:

hrelu(a) = max(0, a)

8 6 4 2 0 2 4 6 8
0

1

2

3

4

5

6

7

8

Foundations of AI July 11, 2018 18



Output unit activation functions

Depending on the task, typically:

for regression: single output neuron with linear activation

for binary classification: single output neuron with logistic/tanh
activation

for multiclass classification: K output neurons and softmax activation

(ŷ(x,w))k = hsoftmax((a)k) =
exp((a)k)∑
j exp((a)j)

→ so for the complete output layer:

ŷ(x,w) =


p(y1 = 1|x)
p(y2 = 1|x)

...
p(yK = 1|x)

 =
1∑K

j=1 exp((a)j)
exp(a)

Foundations of AI July 11, 2018 19



Output unit activation functions

Depending on the task, typically:

for regression: single output neuron with linear activation

for binary classification: single output neuron with logistic/tanh
activation

for multiclass classification: K output neurons and softmax activation

(ŷ(x,w))k = hsoftmax((a)k) =
exp((a)k)∑
j exp((a)j)

→ so for the complete output layer:

ŷ(x,w) =


p(y1 = 1|x)
p(y2 = 1|x)

...
p(yK = 1|x)

 =
1∑K

j=1 exp((a)j)
exp(a)

Foundations of AI July 11, 2018 19



Output unit activation functions

Depending on the task, typically:

for regression: single output neuron with linear activation

for binary classification: single output neuron with logistic/tanh
activation

for multiclass classification: K output neurons and softmax activation

(ŷ(x,w))k = hsoftmax((a)k) =
exp((a)k)∑
j exp((a)j)

→ so for the complete output layer:

ŷ(x,w) =


p(y1 = 1|x)
p(y2 = 1|x)

...
p(yK = 1|x)

 =
1∑K

j=1 exp((a)j)
exp(a)

Foundations of AI July 11, 2018 19



Output unit activation functions

Depending on the task, typically:

for regression: single output neuron with linear activation

for binary classification: single output neuron with logistic/tanh
activation

for multiclass classification: K output neurons and softmax activation

(ŷ(x,w))k = hsoftmax((a)k) =
exp((a)k)∑
j exp((a)j)

→ so for the complete output layer:

ŷ(x,w) =


p(y1 = 1|x)
p(y2 = 1|x)

...
p(yK = 1|x)

 =
1∑K

j=1 exp((a)j)
exp(a)

Foundations of AI July 11, 2018 19



Loss function to be minimized

Consider binary classification task using a single output unit with
logistic sigmoid activation function:

ŷ(x,w) = hlogistic(a) =
1

1 + exp(−a)

This defines a (Bernoulli) probability distribution over the label of each
data point xn:

p(yn = 1 | xn,w) = ŷ(xn,w)

p(yn = 0 | xn,w) = 1− ŷ(xn,w)

Rewritten:

p(yn | xn,w) = ŷ(xn,w)yn{1− ŷ(xn,w)}1−yn

Min. negative log likelihood of this distribution (aka cross entropy):

L(w) = −
N∑

n=1

{yn ln ŷn + (1− yn) ln(1− ŷn)}

Foundations of AI July 11, 2018 20



Loss function to be minimized

Consider binary classification task using a single output unit with
logistic sigmoid activation function:

ŷ(x,w) = hlogistic(a) =
1

1 + exp(−a)
This defines a (Bernoulli) probability distribution over the label of each
data point xn:

p(yn = 1 | xn,w) = ŷ(xn,w)

p(yn = 0 | xn,w) = 1− ŷ(xn,w)

Rewritten:

p(yn | xn,w) = ŷ(xn,w)yn{1− ŷ(xn,w)}1−yn

Min. negative log likelihood of this distribution (aka cross entropy):

L(w) = −
N∑

n=1

{yn ln ŷn + (1− yn) ln(1− ŷn)}

Foundations of AI July 11, 2018 20



Loss function to be minimized

Consider binary classification task using a single output unit with
logistic sigmoid activation function:

ŷ(x,w) = hlogistic(a) =
1

1 + exp(−a)
This defines a (Bernoulli) probability distribution over the label of each
data point xn:

p(yn = 1 | xn,w) = ŷ(xn,w)

p(yn = 0 | xn,w) = 1− ŷ(xn,w)

Rewritten:

p(yn | xn,w) = ŷ(xn,w)yn{1− ŷ(xn,w)}1−yn

Min. negative log likelihood of this distribution (aka cross entropy):

L(w) = −
N∑

n=1

{yn ln ŷn + (1− yn) ln(1− ŷn)}

Foundations of AI July 11, 2018 20



Loss function to be minimized

Consider binary classification task using a single output unit with
logistic sigmoid activation function:

ŷ(x,w) = hlogistic(a) =
1

1 + exp(−a)
This defines a (Bernoulli) probability distribution over the label of each
data point xn:

p(yn = 1 | xn,w) = ŷ(xn,w)

p(yn = 0 | xn,w) = 1− ŷ(xn,w)

Rewritten:

p(yn | xn,w) = ŷ(xn,w)yn{1− ŷ(xn,w)}1−yn

Min. negative log likelihood of this distribution (aka cross entropy):

L(w) = −
N∑

n=1

{yn ln ŷn + (1− yn) ln(1− ŷn)}

Foundations of AI July 11, 2018 20



Loss function to be minimized

For multiclass classification, use generalization of cross-entropy error:

L(w) = −
N∑

n=1

K∑
k=1

ykn ln ŷk(xn,w)

For regression, e.g., use squared error function:

L(w) =
1

2

N∑
n=1

{ŷ(xn,w)− yn}2

Foundations of AI July 11, 2018 21



Optimizing a loss / error function

Given training data D = 〈(xi, yi)〉Ni=1 and topology of an MLP

Task: adapt weights w to minimize the loss:

minimize
w

L(w;D)

Interpret L just as a mathematical function depending on w and forget
about its semantics, then we are faced with a problem of mathematical
optimization

Foundations of AI July 11, 2018 22



Lecture Overview

1 Representation Learning and Deep Learning

2 Multilayer Perceptrons

3 Optimization of Neural Networks in a Nutshell

4 Overview of Some Advanced Topics

5 Wrapup

Foundations of AI July 11, 2018 23



Optimization theory

Discusses mathematical problems of the form:

minimize
u

f(u),

where ~u is any vector of suitable size.

Simplification: here, we only consider functions f which are continuous
and differentiable

continuous, non differentiable
function

non continuous function differentiable function
(disrupted) (folded) (smooth)

x

y y y

x x

Foundations of AI July 11, 2018 24



Optimization theory

Discusses mathematical problems of the form:

minimize
u

f(u),

where ~u is any vector of suitable size.

Simplification: here, we only consider functions f which are continuous
and differentiable

continuous, non differentiable
function

non continuous function differentiable function
(disrupted) (folded) (smooth)

x

y y y

x x

Foundations of AI July 11, 2018 24



Optimization theory (cont.)

A global minimum ~u∗ is a point
such that:

f(u∗) ≤ f(u)

for all u.

A local minimum u+ is a point
such that exist r > 0 with

f(u+) ≤ f(u)

for all points ~u with ||~u− ~u+|| < r

y

x

global local
minima

Foundations of AI July 11, 2018 25



Optimization theory (cont.)

Analytical way to find a minimum:
For a local minimum u+, the gradient of f becomes zero:

∂f

∂ui
(u+) = 0 for all i

Hence, calculating all partial derivatives and looking for zeros is a good
idea

But: for neural networks, we can’t write down a solution for the
minimization problem in closed form

- even though ∂f
∂ui

= 0 holds at (local) solution points
→ need to resort to iterative methods

Foundations of AI July 11, 2018 26



Optimization theory (cont.)

Analytical way to find a minimum:
For a local minimum u+, the gradient of f becomes zero:

∂f

∂ui
(u+) = 0 for all i

Hence, calculating all partial derivatives and looking for zeros is a good
idea

But: for neural networks, we can’t write down a solution for the
minimization problem in closed form

- even though ∂f
∂ui

= 0 holds at (local) solution points
→ need to resort to iterative methods

Foundations of AI July 11, 2018 26



Optimization theory (cont.)

Numerical way to find a minimum,
searching:
assume we start at point u.

Which is the best direction to
search for a point v with
f(v) < f(u) ?

Which is the best stepwidth?

general principle:

vi ← ui − ε
∂f

∂ui

ε > 0 is called learning rate

Optimization theory (cont.)

! numerical way to find a minimum,
searching:
assume we are starting at a point
u⃗.
Which is the best direction to
search for a point v⃗ with
f (v⃗) < f (u⃗) ?

u⃗

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (18)

slope is negative (descending), go right!

Foundations of AI July 11, 2018 27



Optimization theory (cont.)

Numerical way to find a minimum,
searching:
assume we start at point u.

Which is the best direction to
search for a point v with
f(v) < f(u) ?

Which is the best stepwidth?

general principle:

vi ← ui − ε
∂f

∂ui

ε > 0 is called learning rate

Optimization theory (cont.)

! numerical way to find a minimum,
searching:
assume we are starting at a point
u⃗.
Which is the best direction to
search for a point v⃗ with
f (v⃗) < f (u⃗) ?

slope is negative (descending),
go right!

u⃗

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (18)

slope is negative (descending), go right!

Foundations of AI July 11, 2018 27



Optimization theory (cont.)

Numerical way to find a minimum,
searching:
assume we start at point u.

Which is the best direction to
search for a point v with
f(v) < f(u) ?

Which is the best stepwidth?

general principle:

vi ← ui − ε
∂f

∂ui

ε > 0 is called learning rate

Optimization theory (cont.)

! numerical way to find a minimum,
searching:
assume we are starting at a point
u⃗.
Which is the best direction to
search for a point v⃗ with
f (v⃗) < f (u⃗) ?

u⃗

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (18)

slope is positive (ascending), go left!

Foundations of AI July 11, 2018 27



Optimization theory (cont.)

Numerical way to find a minimum,
searching:
assume we start at point u.

Which is the best direction to
search for a point v with
f(v) < f(u) ?

Which is the best stepwidth?

general principle:

vi ← ui − ε
∂f

∂ui

ε > 0 is called learning rate

Optimization theory (cont.)

! numerical way to find a minimum,
searching:
assume we are starting at a point
u⃗.
Which is the best direction to
search for a point v⃗ with
f (v⃗) < f (u⃗) ?

slope is positive (ascending),
go left!

u⃗

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (18)

slope is positive (ascending), go left!

Foundations of AI July 11, 2018 27



Optimization theory (cont.)

Numerical way to find a minimum,
searching:
assume we start at point u.

Which is the best direction to
search for a point v with
f(v) < f(u) ?

Which is the best stepwidth?

general principle:

vi ← ui − ε
∂f

∂ui

ε > 0 is called learning rate

Optimization theory (cont.)

! numerical way to find a minimum,
searching:
assume we are starting at a point
u⃗.
Which is the best direction to
search for a point v⃗ with
f (v⃗) < f (u⃗) ?

Which is the best stepwidth?

u⃗

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (18)

slope is small, small step!

Foundations of AI July 11, 2018 27



Optimization theory (cont.)

Numerical way to find a minimum,
searching:
assume we start at point u.

Which is the best direction to
search for a point v with
f(v) < f(u) ?

Which is the best stepwidth?

general principle:

vi ← ui − ε
∂f

∂ui

ε > 0 is called learning rate

Optimization theory (cont.)

! numerical way to find a minimum,
searching:
assume we are starting at a point
u⃗.
Which is the best direction to
search for a point v⃗ with
f (v⃗) < f (u⃗) ?

Which is the best stepwidth?

slope is small, small step!
u⃗

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (18)

slope is small, small step!

Foundations of AI July 11, 2018 27



Optimization theory (cont.)

Numerical way to find a minimum,
searching:
assume we start at point u.

Which is the best direction to
search for a point v with
f(v) < f(u) ?

Which is the best stepwidth?

general principle:

vi ← ui − ε
∂f

∂ui

ε > 0 is called learning rate

Optimization theory (cont.)

! numerical way to find a minimum,
searching:
assume we are starting at a point
u⃗.
Which is the best direction to
search for a point v⃗ with
f (v⃗) < f (u⃗) ?

Which is the best stepwidth?

u⃗

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (18)

slope is large, large step!

Foundations of AI July 11, 2018 27



Optimization theory (cont.)

Numerical way to find a minimum,
searching:
assume we start at point u.

Which is the best direction to
search for a point v with
f(v) < f(u) ?

Which is the best stepwidth?

general principle:

vi ← ui − ε
∂f

∂ui

ε > 0 is called learning rate

Optimization theory (cont.)

! numerical way to find a minimum,
searching:
assume we are starting at a point
u⃗.
Which is the best direction to
search for a point v⃗ with
f (v⃗) < f (u⃗) ?

Which is the best stepwidth?

slope is large, large step!
u⃗

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (18)

slope is large, large step!

Foundations of AI July 11, 2018 27



Optimization theory (cont.)

Numerical way to find a minimum,
searching:
assume we start at point u.

Which is the best direction to
search for a point v with
f(v) < f(u) ?

Which is the best stepwidth?

general principle:

vi ← ui − ε
∂f

∂ui

ε > 0 is called learning rate

slope is large, large step!

Foundations of AI July 11, 2018 27



Gradient descent

Gradient descent approach:

Require: mathematical function f , learning rate ε > 0
Ensure: returned vector is close to a local minimum of f
1: choose an initial point u
2: while ||∇uf(u)|| not close to 0 do
3: u← u− ε · ∇uf(u)
4: end while
5: return u

Note: ∇uf := [ ∂f∂u1
, . . . , ∂f

∂uK
] for K-dimensionsal u

Foundations of AI July 11, 2018 28



Calculating partial derivatives

Our typical loss functions are defined across data points:

L(w) =

N∑
n=1

Ln(w) = L(f(xn;w), yn)

We can compute their partial derivatives as a sum over data points:

∂L

∂wj
=

N∑
n=1

∂Ln

∂wj

The method of backpropagation makes consistent use of the chain rule
of calculus to compute the partial derivatives ∂Ln

∂wj
w.r.t. each network

weight wj , re-using previously computed results

- Backpropagation is not covered here, but, e.g., in ML lecture

Foundations of AI July 11, 2018 29



Calculating partial derivatives

Our typical loss functions are defined across data points:

L(w) =

N∑
n=1

Ln(w) = L(f(xn;w), yn)

We can compute their partial derivatives as a sum over data points:

∂L

∂wj
=

N∑
n=1

∂Ln

∂wj

The method of backpropagation makes consistent use of the chain rule
of calculus to compute the partial derivatives ∂Ln

∂wj
w.r.t. each network

weight wj , re-using previously computed results

- Backpropagation is not covered here, but, e.g., in ML lecture

Foundations of AI July 11, 2018 29



Calculating partial derivatives

Our typical loss functions are defined across data points:

L(w) =

N∑
n=1

Ln(w) = L(f(xn;w), yn)

We can compute their partial derivatives as a sum over data points:

∂L

∂wj
=

N∑
n=1

∂Ln

∂wj

The method of backpropagation makes consistent use of the chain rule
of calculus to compute the partial derivatives ∂Ln

∂wj
w.r.t. each network

weight wj , re-using previously computed results

- Backpropagation is not covered here, but, e.g., in ML lecture

Foundations of AI July 11, 2018 29



Do we need gradients based on the entire data set?

Using the entire set is referred to as batch gradient descent

Gradients get more accurate when based on more data points

- But using more data has diminishing returns w.r.t reduction in error
- Usually faster progress by updating more often based on cheaper, less

accurate estimates of the gradient

Common approach in practice: compute gradients over mini-batches

- Mini-batch: small subset of the training data
- Today, this is commonly called stochastic gradient descent (SGD)

Foundations of AI July 11, 2018 30



Do we need gradients based on the entire data set?

Using the entire set is referred to as batch gradient descent

Gradients get more accurate when based on more data points

- But using more data has diminishing returns w.r.t reduction in error
- Usually faster progress by updating more often based on cheaper, less

accurate estimates of the gradient

Common approach in practice: compute gradients over mini-batches

- Mini-batch: small subset of the training data
- Today, this is commonly called stochastic gradient descent (SGD)

Foundations of AI July 11, 2018 30



Do we need gradients based on the entire data set?

Using the entire set is referred to as batch gradient descent

Gradients get more accurate when based on more data points

- But using more data has diminishing returns w.r.t reduction in error
- Usually faster progress by updating more often based on cheaper, less

accurate estimates of the gradient

Common approach in practice: compute gradients over mini-batches

- Mini-batch: small subset of the training data
- Today, this is commonly called stochastic gradient descent (SGD)

Foundations of AI July 11, 2018 30



Stochastic gradient descent

Stochastic gradient descent (SGD)

Require: mathematical function f , learning rate ε > 0
Ensure: returned vector is close to a local minimum of f
1: choose an initial point w
2: while stopping criterion not met do
3: Sample a minibatch of m examples x(1), . . . ,x(m) with

corresponding targets y(i) from the training set
4: Compute gradient g← 1

m∇w
∑m

i=1 L(f(x
(i);w),y(i))

5: Update parameter: w← w − ε · g
6: end while
7: return w

Foundations of AI July 11, 2018 31



Problems with suboptimal choices for learning rate

choice of ε

1. case small ε: convergence

Gradient descent (cont.)

! choice of ϵ

1. case small ϵ: convergence

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (20)

Foundations of AI July 11, 2018 32



Problems with suboptimal choices for learning rate

choice of ε

2. case very small ε: convergence,
but it may take very long

Gradient descent (cont.)

! choice of ϵ

2. case very small ϵ: convergence,
but it may take very long

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (20)

Foundations of AI July 11, 2018 33



Problems with suboptimal choices for learning rate

choice of ε

3. case medium size ε:
convergence

Gradient descent (cont.)

! choice of ϵ

3. case medium size ϵ:
convergence

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (20)

Foundations of AI July 11, 2018 34



Problems with suboptimal choices for learning rate

choice of ε

4. case large ε: divergence

Gradient descent (cont.)

! choice of ϵ

4. case large ϵ: divergence

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (20)

Foundations of AI July 11, 2018 35



Other reasons for problems with gradient descent

flat spots and steep valleys:
need larger ε in ~u to jump over the
uninteresting flat area but need
smaller ε in ~v to meet the
minimum

Gradient descent (cont.)

! some more problems with
gradient descent:

! flat spots and steep valleys:
need larger ϵ in u⃗ to jump over
the uninteresting flat area but
need smaller ϵ in v⃗ to meet the
minimum

u⃗ v⃗

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (21)

zig-zagging:
in higher dimensions: ε is not
appropriate for all dimensions

Foundations of AI July 11, 2018 36



Other reasons for problems with gradient descent

flat spots and steep valleys:
need larger ε in ~u to jump over the
uninteresting flat area but need
smaller ε in ~v to meet the
minimum

Gradient descent (cont.)

! some more problems with
gradient descent:

! flat spots and steep valleys:
need larger ϵ in u⃗ to jump over
the uninteresting flat area but
need smaller ϵ in v⃗ to meet the
minimum

u⃗ v⃗

Dr. Joschka Boedecker Machine Learning Lab, University of Freiburg Multi Layer Perceptrons (21)

zig-zagging:
in higher dimensions: ε is not
appropriate for all dimensions

Foundations of AI July 11, 2018 36



Learning rate quizz

Which curve denotes low, high, very high, and good learning rate?

epoch

loss
a)

b)

c)

d)

Foundations of AI July 11, 2018 37



Gradient descent – Conclusion

Pure gradient descent is a nice framework

In practice, stochastic gradient descent is used

Finding the right learning rate ε is tedious

Heuristics to overcome problems of gradient descent:

Gradient descent with momentum

Individual learning rates for each dimension

Adaptive learning rates

Decoupling steplength from partial derivates

Foundations of AI July 11, 2018 38



Gradient descent – Conclusion

Pure gradient descent is a nice framework

In practice, stochastic gradient descent is used

Finding the right learning rate ε is tedious

Heuristics to overcome problems of gradient descent:

Gradient descent with momentum

Individual learning rates for each dimension

Adaptive learning rates

Decoupling steplength from partial derivates

Foundations of AI July 11, 2018 38



Lecture Overview

1 Representation Learning and Deep Learning

2 Multilayer Perceptrons

3 Optimization of Neural Networks in a Nutshell

4 Overview of Some Advanced Topics

5 Wrapup

Foundations of AI July 11, 2018 39



Lecture Overview

1 Representation Learning and Deep Learning

2 Multilayer Perceptrons

3 Optimization of Neural Networks in a Nutshell

4 Overview of Some Advanced Topics

5 Wrapup

Foundations of AI July 11, 2018 40



Historical context and inspiration from Neuroscience

Hubel & Wiesel (Nobel prize 1981) found in several studies in the 1950s
and 1960s:

Visual cortex has feature detectors
(e.g., cells with preference for
edges with specific orientation)

- edge location did not matter

Simple cells as local feature
detectors

Complex cells pool responses of
simple cells

There is a feature hierarchy

Foundations of AI July 11, 2018 41



Learned feature hierarchy

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201619

Preview [From recent Yann 
LeCun slides]

[slide credit: Andrej Karpathy]

Foundations of AI July 11, 2018 42



Convolutions illustrated

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201612

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume

[slide credit: Andrej Karpathy]

Foundations of AI July 11, 2018 43



Convolutions illustrated (cont.)

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201613

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

[slide credit: Andrej Karpathy]

Foundations of AI July 11, 2018 44



Convolutions illustrated (cont.)

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201614

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

[slide credit: Andrej Karpathy]

Foundations of AI July 11, 2018 45



Convolutions – several filters

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201615

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter

[slide credit: Andrej Karpathy]

Foundations of AI July 11, 2018 46



Convolutions – several filters

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201616

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

[slide credit: Andrej Karpathy]

Foundations of AI July 11, 2018 47



Stacking several convolutional layers

Convolutional layers stacked in a ConvNet

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201618

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24

[slide credit: Andrej Karpathy]

Foundations of AI July 11, 2018 48



Learned feature hierarchy

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201619

Preview [From recent Yann 
LeCun slides]

[slide credit: Andrej Karpathy]

Foundations of AI July 11, 2018 49



Lecture Overview

1 Representation Learning and Deep Learning

2 Multilayer Perceptrons

3 Optimization of Neural Networks in a Nutshell

4 Overview of Some Advanced Topics

5 Wrapup

Foundations of AI July 11, 2018 50



Feedforward vs Recurrent Neural NetworksRecurrent vs Feedforward networks

1. Recurrent neural networks 
 

1.1 First impression 
 
There are two major types of neural networks, feedforward and recurrent. In 
feedforward networks, activation is "piped" through the network from input units to 
output units (from left to right in left drawing in Fig. 1.1):  
 
 
  

...
...

 
 
 
  
 
 
 
 
Figure 1.1: Typical structure of a feedforward network (left) and a recurrent network 
(right). 
 
Short characterization of feedforward networks: 
 

!" typically, activation is fed forward from input to output through "hidden layers" 
("Multi-Layer Perceptrons" MLP), though many other architectures exist 

!" mathematically, they implement static input-output mappings (functions)  
!" basic theoretical result: MLPs can approximate arbitrary (term needs some 

qualification) nonlinear maps with arbitrary precision ("universal approximation 
property") 

!" most popular supervised training algorithm: backpropagation algorithm 
!" huge literature, 95 % of neural network publications concern feedforward nets 

(my estimate)  
!" have proven useful in many practical applications as approximators of 

nonlinear functions and as pattern classificators 
!" are not the topic considered in this tutorial 

 
By contrast, a recurrent neural network (RNN) has (at least one) cyclic path of 
synaptic connections. Basic characteristics:  
 

!" all biological neural networks are recurrent 
!" mathematically, RNNs implement dynamical systems 
!" basic theoretical result: RNNs can approximate arbitrary (term needs some 

qualification) dynamical systems with arbitrary precision ("universal 
approximation property") 

!" several types of training algorithms are known, no clear winner 
!" theoretical and practical difficulties by and large have prevented practical 

applications so far 

 3

1. Recurrent neural networks 
 

1.1 First impression 
 
There are two major types of neural networks, feedforward and recurrent. In 
feedforward networks, activation is "piped" through the network from input units to 
output units (from left to right in left drawing in Fig. 1.1):  
 
 
  

...
...

 
 
 
  
 
 
 
 
Figure 1.1: Typical structure of a feedforward network (left) and a recurrent network 
(right). 
 
Short characterization of feedforward networks: 
 

!" typically, activation is fed forward from input to output through "hidden layers" 
("Multi-Layer Perceptrons" MLP), though many other architectures exist 

!" mathematically, they implement static input-output mappings (functions)  
!" basic theoretical result: MLPs can approximate arbitrary (term needs some 

qualification) nonlinear maps with arbitrary precision ("universal approximation 
property") 

!" most popular supervised training algorithm: backpropagation algorithm 
!" huge literature, 95 % of neural network publications concern feedforward nets 

(my estimate)  
!" have proven useful in many practical applications as approximators of 

nonlinear functions and as pattern classificators 
!" are not the topic considered in this tutorial 

 
By contrast, a recurrent neural network (RNN) has (at least one) cyclic path of 
synaptic connections. Basic characteristics:  
 

!" all biological neural networks are recurrent 
!" mathematically, RNNs implement dynamical systems 
!" basic theoretical result: RNNs can approximate arbitrary (term needs some 

qualification) dynamical systems with arbitrary precision ("universal 
approximation property") 

!" several types of training algorithms are known, no clear winner 
!" theoretical and practical difficulties by and large have prevented practical 

applications so far 

 3

Source:
Jaeger, 2001

[Source: Jaeger, 2001]

Foundations of AI July 11, 2018 51



Recurrent Neural Networks (RNNs)

Neural Networks that allow for cycles in the connectivity graph

Cycles let information persist in the network for some time (state), and
provide a time-context or (fading) memory

Very powerful for processing sequences

Implement dynamical systems rather than function mappings, and can
approximate any dynamical system with arbitrary precision

They are Turing-complete [Siegelmann and Sontag, 1991]

Foundations of AI July 11, 2018 52



Recurrent Neural Networks (RNNs)

Neural Networks that allow for cycles in the connectivity graph

Cycles let information persist in the network for some time (state), and
provide a time-context or (fading) memory

Very powerful for processing sequences

Implement dynamical systems rather than function mappings, and can
approximate any dynamical system with arbitrary precision

They are Turing-complete [Siegelmann and Sontag, 1991]

Foundations of AI July 11, 2018 52



Recurrent Neural Networks (RNNs)

Neural Networks that allow for cycles in the connectivity graph

Cycles let information persist in the network for some time (state), and
provide a time-context or (fading) memory

Very powerful for processing sequences

Implement dynamical systems rather than function mappings, and can
approximate any dynamical system with arbitrary precision

They are Turing-complete [Siegelmann and Sontag, 1991]

Foundations of AI July 11, 2018 52



Recurrent Neural Networks (RNNs)

Neural Networks that allow for cycles in the connectivity graph

Cycles let information persist in the network for some time (state), and
provide a time-context or (fading) memory

Very powerful for processing sequences

Implement dynamical systems rather than function mappings, and can
approximate any dynamical system with arbitrary precision

They are Turing-complete [Siegelmann and Sontag, 1991]

Foundations of AI July 11, 2018 52



Recurrent Neural Networks (RNNs)

Neural Networks that allow for cycles in the connectivity graph

Cycles let information persist in the network for some time (state), and
provide a time-context or (fading) memory

Very powerful for processing sequences

Implement dynamical systems rather than function mappings, and can
approximate any dynamical system with arbitrary precision

They are Turing-complete [Siegelmann and Sontag, 1991]

Foundations of AI July 11, 2018 52



Abstract schematic

With fully connected hidden layer:

Foundations of AI July 11, 2018 53



Sequence to sequence mappingSequence-to-sequence Mapping

one to many many to one

image caption
generation

temporal
classification

Foundations of AI July 11, 2018 54



Sequence to sequence mapping (cont.)Sequence-to-sequence Mapping

many to many many to many

video
frame labeling

automatic
translation

Foundations of AI July 11, 2018 55



Lecture Overview

1 Representation Learning and Deep Learning

2 Multilayer Perceptrons

3 Optimization of Neural Networks in a Nutshell

4 Overview of Some Advanced Topics

5 Wrapup

Foundations of AI July 11, 2018 56



Reinforcement Learning

Finding optimal policies for MDPs

Reminder: states s ∈ S, actions a ∈ A, transition model T , rewards r

Policy: complete mapping π : S → A that specifies for each state s
which action π(s) to take

Foundations of AI July 11, 2018 57



Deep Reinforcement Learning

Policy-based deep RL
- Represent policy π : S → A as a deep neural network with weights w
- Evaluate w by “rolling out” the policy defined by w
- Optimize weights to obtain higher rewards (using approx. gradients)
- Examples: AlphaGo & modern Atari agents

Value-based deep RL
- Basically value iteration, but using a deep neural network (= function

approximator) to generalize across many states and actions
- Approximate optimal state-value function U(s)

or state-action value function Q(s, a)

Model-based deep RL
- If transition model T is not known
- Approximate T with a deep neural network (learned from data)
- Plan using this approximate transition model

→ Use deep neural networks to represent policy / value function / model

Foundations of AI July 11, 2018 58



Deep Reinforcement Learning

Policy-based deep RL
- Represent policy π : S → A as a deep neural network with weights w
- Evaluate w by “rolling out” the policy defined by w
- Optimize weights to obtain higher rewards (using approx. gradients)
- Examples: AlphaGo & modern Atari agents

Value-based deep RL
- Basically value iteration, but using a deep neural network (= function

approximator) to generalize across many states and actions
- Approximate optimal state-value function U(s)

or state-action value function Q(s, a)

Model-based deep RL
- If transition model T is not known
- Approximate T with a deep neural network (learned from data)
- Plan using this approximate transition model

→ Use deep neural networks to represent policy / value function / model

Foundations of AI July 11, 2018 58



Deep Reinforcement Learning

Policy-based deep RL
- Represent policy π : S → A as a deep neural network with weights w
- Evaluate w by “rolling out” the policy defined by w
- Optimize weights to obtain higher rewards (using approx. gradients)
- Examples: AlphaGo & modern Atari agents

Value-based deep RL
- Basically value iteration, but using a deep neural network (= function

approximator) to generalize across many states and actions
- Approximate optimal state-value function U(s)

or state-action value function Q(s, a)

Model-based deep RL
- If transition model T is not known
- Approximate T with a deep neural network (learned from data)
- Plan using this approximate transition model

→ Use deep neural networks to represent policy / value function / model

Foundations of AI July 11, 2018 58



Deep Reinforcement Learning

Policy-based deep RL
- Represent policy π : S → A as a deep neural network with weights w
- Evaluate w by “rolling out” the policy defined by w
- Optimize weights to obtain higher rewards (using approx. gradients)
- Examples: AlphaGo & modern Atari agents

Value-based deep RL
- Basically value iteration, but using a deep neural network (= function

approximator) to generalize across many states and actions
- Approximate optimal state-value function U(s)

or state-action value function Q(s, a)

Model-based deep RL
- If transition model T is not known
- Approximate T with a deep neural network (learned from data)
- Plan using this approximate transition model

→ Use deep neural networks to represent policy / value function / model

Foundations of AI July 11, 2018 58



Lecture Overview

1 Representation Learning and Deep Learning

2 Multilayer Perceptrons

3 Optimization of Neural Networks in a Nutshell

4 Overview of Some Advanced Topics

5 Wrapup

Foundations of AI July 11, 2018 59



An Exciting Approach to AI:
Learning as an Alternative to Traditional Programming

We don’t understand how the human brain solves certain problems

- Face recognition
- Speech recognition
- Playing Atari games
- Picking the next move in the game of Go

We can nevertheless learn these tasks from data/experience

If the task changes, we simply re-train

We can construct computer systems that are too complex for us to
understand anymore ourselves. . .

- E.g., deep neural networks have millions of weights.
- E.g., AlphaGo, the system that beat world champion Lee Sedol

+ David Silver, lead author of AlphaGo cannot say why a move is good
+ Paraphrased: “You would have to ask a Go expert.”

Foundations of AI July 11, 2018 60



An Exciting Approach to AI:
Learning as an Alternative to Traditional Programming

We don’t understand how the human brain solves certain problems

- Face recognition
- Speech recognition
- Playing Atari games
- Picking the next move in the game of Go

We can nevertheless learn these tasks from data/experience

If the task changes, we simply re-train

We can construct computer systems that are too complex for us to
understand anymore ourselves. . .

- E.g., deep neural networks have millions of weights.
- E.g., AlphaGo, the system that beat world champion Lee Sedol

+ David Silver, lead author of AlphaGo cannot say why a move is good
+ Paraphrased: “You would have to ask a Go expert.”

Foundations of AI July 11, 2018 60



An Exciting Approach to AI:
Learning as an Alternative to Traditional Programming

We don’t understand how the human brain solves certain problems

- Face recognition
- Speech recognition
- Playing Atari games
- Picking the next move in the game of Go

We can nevertheless learn these tasks from data/experience

If the task changes, we simply re-train

We can construct computer systems that are too complex for us to
understand anymore ourselves. . .

- E.g., deep neural networks have millions of weights.
- E.g., AlphaGo, the system that beat world champion Lee Sedol

+ David Silver, lead author of AlphaGo cannot say why a move is good
+ Paraphrased: “You would have to ask a Go expert.”

Foundations of AI July 11, 2018 60



Summary: Why is Deep Learning so Popular?

Excellent empirical results in many domains

- very scalable to big data
- but beware: not a silver bullet

Analogy to the ways humans process information

- mostly tangential

Allows end-to-end learning

- no more need for many complicated subsystems
- e.g., dramatically simplified Google’s translation

Very versatile/flexible

- easy to combine building blocks
- allows supervised, unsupervised, and reinforcement learning

Foundations of AI July 11, 2018 61



Summary: Why is Deep Learning so Popular?

Excellent empirical results in many domains

- very scalable to big data
- but beware: not a silver bullet

Analogy to the ways humans process information

- mostly tangential

Allows end-to-end learning

- no more need for many complicated subsystems
- e.g., dramatically simplified Google’s translation

Very versatile/flexible

- easy to combine building blocks
- allows supervised, unsupervised, and reinforcement learning

Foundations of AI July 11, 2018 61



Summary: Why is Deep Learning so Popular?

Excellent empirical results in many domains

- very scalable to big data
- but beware: not a silver bullet

Analogy to the ways humans process information

- mostly tangential

Allows end-to-end learning

- no more need for many complicated subsystems
- e.g., dramatically simplified Google’s translation

Very versatile/flexible

- easy to combine building blocks
- allows supervised, unsupervised, and reinforcement learning

Foundations of AI July 11, 2018 61



Summary: Why is Deep Learning so Popular?

Excellent empirical results in many domains

- very scalable to big data
- but beware: not a silver bullet

Analogy to the ways humans process information

- mostly tangential

Allows end-to-end learning

- no more need for many complicated subsystems
- e.g., dramatically simplified Google’s translation

Very versatile/flexible

- easy to combine building blocks
- allows supervised, unsupervised, and reinforcement learning

Foundations of AI July 11, 2018 61



Lots of Work on Deep Learning in Freiburg

Computer Vision (Thomas Brox)

- Images, video

Robotics (Wolfram Burgard)

- Navigation, grasping, object recognition

Neurorobotics (Joschka Boedecker)

- Robotic control

Machine Learning (Frank Hutter)

- Optimization of deep nets, learning to learn

Neuroscience (Tonio Ball, Michael Tangermann, and others )

- EEG data and other applications from BrainLinks-BrainTools

→ Details when the individual groups present their research

Foundations of AI July 11, 2018 62



Summary by learning goals

Having heard this lecture, you can now . . .

Explain the terms representation learning and deep learning

Describe the main principles behind MLPs

Describe how neural networks are optimized in practice

On a high level, describe

- Convolutional Neural Networks
- Recurrent Neural Networks
- Deep Reinforcement Learning

Foundations of AI July 11, 2018 63


