
Albert-Ludwigs-Universität Freiburg Institut für Informatik
Lecture: Introduction to Mobile Robotics
Summer term 2018 Prof. Dr. Wolfram Burgard

Marina Kollmitz
Chau Do

mobilerobotics@informatik.uni-freiburg.de Lukas Luft

Sheet 7
Topic: Discrete Filter, Particle Filter

Due date: 08.06.2018

Exercise 1: Discrete Filter

In this exercise you will be implementing a discrete Bayes filter accounting for the motion of a
robot on a 1-D constrained world.

Assume that the robot lives in a world with 20 cells and is positioned on the 10th cell. The
world is bounded, so the robot cannot move to outside of the specified area. Assume further that
at each time step the robot can execute either a move forward or a move backward command.
Unfortunately, the motion of the robot is subject to error, so if the robot executes an action it will
sometimes fail. When the robot moves forward we know that the following might happen:

1. With a 25% chance the robot will not move

2. With a 50% chance the robot will move to the next cell

3. With a 25% chance the robot will move two cells forward

4. There is a 0% chance of the robot either moving in the wrong direction or more than two
cells forwards

Assume the same model also when moving backward, just in the opposite direction.

Since the robot is living on a bounded world it is constrained by its limits, this changes the motion
probabilities on the boundary cells, namely:

1. If the robot is located at the last cell and tries to move forward, it will stay at the same cell
with a chance of 100%

2. If the robot is located at the second to last cell and tries to move forward, it will stay at the
same cell with a chance of 25%, while it will move to the next cell with a chance of 75%

Again, assume the same model when moving backward, just in the opposite direction.

Implement in Python a discrete Bayes filter and estimate the final belief on the position of the robot
after having executed 9 consecutive move forward commands and 3 consecutive move backward
commands. Plot the resulting belief on the position of the robot.

Hints: Start from an initial belief of:

bel = numpy.hstack ((numpy.zeros(10), 1, numpy.zeros(9)))

You can check your implementation by noting that the belief needs to sum to one (within a very
small error, due to the limited precision of the computer). Be careful about the bounds in the
world, those need to be handled ad-hoc.

1



Exercise 2: Particle Filter

In the following you will implement a complete particle filter. A code skeleton with the particle
filter work flow is provided for you. A visualization of the particle filter state is also provided by
the framework.

The following folders are contained in the pf framework.tar.gz tarball:

data This folder contains files representing the world definition and sensor readings used by the
filter.

code This folder contains the particle filter framework with stubs for you to complete.

You can run the particle filter in the terminal: python particle filter.py. It will only work
properly once you filled in the blanks in the code.

(a) Complete the code blank in the sample motion model function by implementing the odom-
etry motion model and sampling from it. The function samples new particle positions based
on the old positions, the odometry measurements δrot1, δtrans and δrot2 and the motion noise.
The motion noise parameters are:

[α1, α2, α3, α4] = [0.1, 0.1, 0.05, 0.05]

The function returns the new set of parameters, after the motion update.

(b) Complete the function eval sensor model. This function implements the measurement up-
date step of a particle filter, using a range-only sensor. It takes as input landmarks positions
and landmark observations. It returns a list of weights for the particle set. See slide 15 of the
particle filter lecture for the definition of the weight w. Instead of computing a probability,
it is sufficient to compute the likelihood p(z|x, l). The standard deviation of the Gaussian
zero-mean measurement noise is σr = 0.2.

(c) Complete the function resample particles by implementing stochastic universal sampling.
The function takes as an input a set of particles and the corresponding weights, and returns
a sampled set of particles.

Some implementation tips:

• To read in the sensor and landmark data, we have used dictionaries. Dictionaries pro-
vide an easier way to access data structs based on single or multiple keys. The functions
read sensor data and read world data in the read data.py file read in the data from the
files and build a dictionary for each of them with time stamps as the primary keys.

To access the sensor data from the sensor readings dictionary, you can use

sensor readings[timestamp,’sensor’][’id’]

sensor readings[timestamp,’sensor’][’range’]

sensor readings[timestamp,’sensor’][’bearing’]

and for odometry you can access the dictionary as

sensor readings[timestamp,’odometry’][’r1’]

sensor readings[timestamp,’odometry’][’t’]

sensor readings[timestamp,’odometry’][’r2’]

To access the positions of the landmarks from landmarks dictionary , you can use

position x = landmarks[id][0]

position y = landmarks[id][1]

2


