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Exercise 1: Locomotion

A robot equipped with a differential drive starts at position x = 1.0m, y = 2.0m and with
heading θ = π

2
. It has to move to the position x = 1.5m, y = 2.0m, θ = π

2
(all angles in

radians). The movement of the vehicle is described by steering commands (vl = speed of
left wheel, vr = speed of right wheel, t = driving time).

(a) What is the minimal number of steering commands (vl, vr, t) needed to guide the
vehicle to the desired target location?

Each command of a differential drive only allows us to follow a portion of a circular
trajectory (or to go straight, which is in the limit of infinite radius). While it is
possible to reach the second location (x, y) with a single half-circle, it is impossible
to do so with the correct orientation. We thus require at least two commands to
reach it.

One of the possible ways to do so is to follow two half-circles, one with diameter
u, the other with diameter v, such that their sum equals the distance between the
poses, i.e. u+ v = d = 0.5m.

(
1, 2, π

2

) (
1.5, 2, π

2

)
u v

d

Do note that this is valid even when setting u = 0 or v = 0 (rotation on the spot).

(b) What is the length of the shortest trajectory under this constraint?

The robot performs two half-circles, one with diameter u and arc length s1 and one
with diameter v and arc length s2. The diameters u and v can be arbitrarily chosen,
as long as they add up to d.

s1 =
πu

2
s2 =

πv

2
u+ v = d

1



The length of the trajectory is the sum of the arc lengths of both half-circles:
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The trajectory length is independent of the particular u and v chosen.

(c) Which sequence of steering commands guides the robot on the shortest trajectory
to the desired location if an arbitrary number of steering commands can be used?
The maximum velocity of each wheel is v and the distance between both wheels is
l.

The traveled distance cannot be smaller than the Euclidean distance between the
two poses. We can achieve this lower bound by rotating the robot right by π

2
, going

forward for 0.5m and rotating left by π
2
, for a total of three commands. For the

turning commands on the spot, both wheels need to turn at opposite speeds (to the
right: vl = v and vr = −v. To the left, vl = −v and vr = v). To go straight, both
wheels need to turn at the same speed.

From the differential drive kinematics, we know that the translational and rotational
speeds vrob and ωrob of the robot depend on the wheel speeds vl and vr and the
distance l between both wheels:

vrob =

√
∆x2 + ∆y2

t
=
vr + vl

2
ωrob =

∆θ

t
=
vr − vl
l

We can use the equations above to calculate the required time t to travel a certain
rotation ∆θ or distance

√
∆x2 + ∆y2.

The shortest trajectory can be achieved by the following steering commands (vl, vr, t):

(1)
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)
(3)

(
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4v

)
(d) What is the length of this trajectory?

It’s the Euclidean distance between the two poses, 0.5m.

Exercise 2: Differential Drive Implementation

Write a function in Python that implements the forward kinematics for the differential
drive as explained in the lecture.

(a) The function header should look like
function [x_n y_n theta_n]=diffdrive(x, y, theta, v_l, v_r, t, l)

where x, y, and θ is the pose of the robot, vl and vr are the speed of the left and
right wheel, t is the driving time, and l is the distance between the wheels of the
robot. The output of the function is the new pose of the robot xn, yn, and θn.
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import numpy as np

def diffdrive(x, y, theta, v_l, v_r, t, l):

# straight line

if (v_l == v_r):

theta_n = theta

x_n = x + v_l * t * np.cos(theta)

y_n = y + v_l * t * np.sin(theta)

# circular motion

else:

# Calculate the radius

R = l/2.0 * ((v_l + v_r) / (v_r - v_l))

# computing center of curvature

ICC_x = x - R * np.sin(theta)

ICC_y = y + R * np.cos(theta)

# compute the angular velocity

omega = (v_r - v_l) / l

# computing angle change

dtheta = omega * t

# forward kinematics for differential drive

x_n = np.cos(dtheta)*(x-ICC_x) - np.sin(dtheta)*(y-ICC_y) + ICC_x

y_n = np.sin(dtheta)*(x-ICC_x) + np.cos(dtheta)*(y-ICC_y) + ICC_y

theta_n = theta + dtheta

return x_n, y_n, theta_n

(b) After reaching position x = 1.5m, y = 2.0m, and θ = π
2

the robot executes the
following sequence of steering commands:

(a) c1 = (vl = 0.3m/s, vr = 0.3m/s, t = 3s)

(b) c2 = (vl = 0.1m/s, vr = −0.1m/s, t = 1s)

(c) c3 = (vl = 0.2m/s, vr = 0m/s, t = 2s)

Use the function to compute the position of the robot after the execution of each
command in the sequence (the distance l between the wheels of the robot is 0.5m).

#!/usr/bin/env python

import numpy as np

import matplotlib.pyplot as plt

from diffdrive import diffdrive

3



plt.gca().set_aspect(’equal’)

# set the distance between the wheels and the initial robot position

l = 0.5

x, y, theta = 1.5, 2.0, (np.pi)/2.0

# plot the starting position

plt.quiver(x, y, np.cos(theta), np.sin(theta))

print "starting pose: x: %f, y: %f, theta: %f" % (x, y, theta)

# first motion

v_l = 0.3

v_r = 0.3

t = 3

x, y, theta = diffdrive(x, y, theta, v_l, v_r, t, l)

plt.quiver(x, y, np.cos(theta), np.sin(theta))

print "after motion 1: x: %f, y: %f, theta: %f" % (x, y, theta)

# second motion

v_l = 0.1

v_r = -0.1

t = 1

x, y, theta = diffdrive(x, y, theta, v_l, v_r, t, l)

plt.quiver(x, y, np.cos(theta), np.sin(theta))

print "after motion 2: x: %f, y: %f, theta: %f" % (x, y, theta)

# third motion

v_l = 0.2

v_r = 0.0

t = 2

x, y, theta = diffdrive(x, y, theta, v_l, v_r, t, l)

plt.quiver(x, y, np.cos(theta), np.sin(theta))

print "after motion 3: x: %f, y: %f, theta: %f" % (x, y, theta)

plt.xlim([0.5, 2.5])

plt.ylim([1.5, 3.5])

plt.savefig("poses.png")

plt.show()

The resulting poses are:

(1.500000,2.900000,1.570796)

(1.500000,2.900000,1.170796)

(1.639676,3.035655,0.370796)

Represented as a set of vectors, together with the initial pose:
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