
Sheet 13 solutions

July 23, 2018

Global (Path-) Planning

Graph-search algorithms like Dijkstra or A∗ can be used to plan paths in graphs from
a start to a goal. If the cells of a grid map are represented as vertices of a graph with
edges between the neighboring cells, graph-search algorithms can be used for robot path
planning. For this exercise sheet we consider the 8-neighborhood of a cell 〈x, y〉, which
is defined as the set of cells that are adjacent to 〈x, y〉 either horizontally, vertically or
diagonally.
You can find an implementation of graph-based 2D path planning in the planning_ frame-
work tarball provided on the website. Complete the missing pieces following the instruc-
tions below.

Exercise 1: Dijkstra Algorithm

The Dijkstra algorithm can be used to calculate minimum cost paths in a graph. During
search, it always chooses the vertex from the graph with the lowest cost from the start and
adds its neighboring vertices to the search graph.

(a) Let M(x, y) denote an occupancy grid map. During search, the grid cells are con-
nected to their neighboring cells to construct the search graph. Complete the func-
tion get_neighborhood in the provided planning framework. The function takes
the coordinates of a cell and returns a n × 2 vector with the cell coordinates of its
neighbors, considering the boundaries of the map.

def get_neighborhood(cell, occ_map_shape):

’’’

Arguments:

cell -- cell coordinates as [x, y]

occ_map_shape -- shape of the occupancy map (nx, ny)

Output:

neighbors -- list of up to eight neighbor coordinate tuples [(x1, y1), (x2, y2), ...]

’’’

neighbors = []

1

for i in [-1, 0, 1]:

for j in [-1, 0, 1]:

x = cell[0] + i

y = cell[1] + j

if x < 0 or x >= occ_map_shape[0]: continue

if y < 0 or y >= occ_map_shape[1]: continue

if i == 0 and j == 0: continue

neighbors.append((x, y))

return neighbors

(b) Formulate a function for the edge costs between two cells that allows for planning
of the shortest collision free path on the grid. Include occupancy information in
your edge cost function to prefer cells with low occupancy probability over cells
with higher probability. Regard a cell as an obstacle if its occupancy probability
exceeds a certain threshold. Which threshold would you choose? Implement this
function in get_edge_cost.

An obvious threshold for defining obstacles would be an occupancy probability of
p ≥ 0.5, which is the prior for unobserved cells. However, a more conservative
value might be a better choice in practice.

def get_edge_cost(parent, child, occ_map):

’’’

Calculate cost for moving from parent to child.

Arguments:

parent, child -- cell coordinates as [x, y]

occ_map -- occupancy probability map

Output:

edge_cost -- calculated cost

’’’

occ = occ_map[child[0], child[1]]

edge_cost = np.linalg.norm(parent - child)

edge_cost += 10 * occ

if occ >= 0.5:

edge_cost = np.inf

return edge_cost

(c) Implement the update step of the Dijkstra algorithm in run_path_planning. For
the current parent node, consider all of its neighbors and calculate their tentative
distances from the start location (cost) and their predecessor in the grid. Under
which condition should the update be done? You are now ready to run the Dijkstra
algorithm with python planning_framework.py.

update costs and predecessor for neighbors

neighbors = get_neighborhood(parent, occ_map.shape)

for child in neighbors:

child_cost = costs[x, y] + get_edge_cost(parent, child, occ_map)

2

if child_cost < costs[child]:

costs[child] = child_cost

predecessors[child] = parent

Exercise 2: A∗ Algorithm

The A∗ algorithm employs a heuristic to perform an informed search with higher effi-
ciency than the Dijkstra algorithm.

(a) What properties of the heuristic are required to ensure that A∗ is optimal?

To find the optimal path, the heuristic function must be admissible, meaning that it
never overestimates the actual cost to get to the goal. Also, it must be consistent,
meaning that for every node, the estimated cost of reaching the goal from that node
must be no greater than the estimated cost of reaching its successor, plus the edge
cost between node and successor.

(b) Define a heuristic for optimal 2D mobile robot path planning. Complete the func-
tion get_heuristic in the planning framework. The function takes the coordinates
of a cell and the goal and returns the estimated costs to the goal. You are now ready
to run the A∗ algorithm with python planning_framework.py.

The Euclidean distance gives a lower bound for the cost and therefore is a good
heuristic. It is equivalent to the actual cost in case of a straight path along cells with
zero cost.

def get_heuristic(cell, goal):

’’’

Estimate cost for moving from cell to goal based on heuristic.

Arguments:

cell, goal -- cell coordinates as [x, y]

Output:

cost -- estimated cost

’’’

heuristic = 1 * np.linalg.norm(cell-goal)

return heuristic

(c) What happens if you inflate your heuristic by using h2, which is a multiple of your
defined heuristic h? Try different multiples: h2 = {1, 2, 5, 10} · h
The larger the heuristic, the more the algorithm is forced to choose a path as close
as possible to the goal. Less exploration is done, which leads to a faster termination
of the algorithm. However, the algorithm is not guaranteed to find the shortest path
anymore. This is the case with a multiple of 5 or 10 in the example.

3

