Introduction to Mobile Robotics

Probabilistic Motion Models

Wolfram Burgard
Robot Motion

- Robot motion is inherently uncertain.
- How can we model this uncertainty?
Dynamic Bayesian Network for Controls, States, and Sensations
Probabilistic Motion Models

- To implement the Bayes Filter, we need the transition model \(p(x_t \mid x_{t-1}, u_t) \).

- The term \(p(x_t \mid x_{t-1}, u_t) \) specifies a posterior probability, that action \(u_t \) carries the robot from \(x_{t-1} \) to \(x_t \).

- In this section we will discuss, how \(p(x_t \mid x_{t-1}, u_t) \) can be modeled based on the motion equations and the uncertain outcome of the movements.
Coordinate Systems

- The configuration of a typical wheeled robot in 3D can be described by six parameters.
- This are the three-dimensional Cartesian coordinates plus the three Euler angles for roll, pitch, and yaw.
- For simplicity, throughout this section we consider robots operating on a planar surface.
- The state space of such systems is three-dimensional \((x, y, \theta)\).
Typical Motion Models

- In practice, one often finds two types of motion models:
 - Odometry-based
 - Velocity-based (dead reckoning)

- Odometry-based models are used when systems are equipped with wheel encoders.
- Velocity-based models have to be applied when no wheel encoders are given.
- They calculate the new pose based on the velocities and the time elapsed.
Example Wheel Encoders

These modules provide +5V output when they "see" white, and a 0V output when they "see" black.

These disks are manufactured out of high quality laminated color plastic to offer a very crisp black to white transition. This enables a wheel encoder sensor to easily see the transitions.

Source: http://www.active-robots.com/
Dead Reckoning

- Derived from “deduced reckoning.”
- Mathematical procedure for determining the present location of a vehicle.
- Achieved by calculating the current pose of the vehicle based on its velocities and the time elapsed.
- Historically used to log the position of ships.
Reasons for Motion Errors of Wheeled Robots

- ideal case
- bump
- different wheel diameters
- carpet

and many more ...
Odometry Model

• Robot moves from \(\langle x, y, \theta \rangle \) to \(\langle x', y', \theta' \rangle \).
• Odometry information \(u = \left\langle \delta_{\text{rot} \ 1}, \delta_{\text{rot} \ 2}, \delta_{\text{trans}} \right\rangle \).

\[
\begin{align*}
\delta_{\text{trans}} &= \sqrt{(x' - x)^2 + (y' - y)^2} \\
\delta_{\text{rot} \ 1} &= \text{atan2}(y' - y, x' - x) - \theta \\
\delta_{\text{rot} \ 2} &= \theta' - \theta - \delta_{\text{rot} \ 1}
\end{align*}
\]
The atan2 Function

- Extends the inverse tangent and correctly copes with the signs of \(x \) and \(y \).

\[
\text{atan2}(y, x) = \begin{cases}
\text{atan}(y/x) & \text{if } x > 0 \\
\text{sign}(y) \left(\pi - \text{atan}(|y/x|) \right) & \text{if } x < 0 \\
0 & \text{if } x = y = 0 \\
\text{sign}(y) \pi/2 & \text{if } x = 0, y \neq 0
\end{cases}
\]
Noise Model for Odometry

- The measured motion is given by the true motion corrupted with noise.

\[
\hat{\delta}_{rot\ 1} = \delta_{rot\ 1} + \varepsilon \alpha_1 |\delta_{rot\ 1}| + \alpha_2 |\delta_{trans}| \\
\hat{\delta}_{trans} = \delta_{trans} + \varepsilon \alpha_3 |\delta_{trans}| + \alpha_4 (|\delta_{rot\ 1}| + |\delta_{rot\ 2}|) \\
\hat{\delta}_{rot\ 2} = \delta_{rot\ 2} + \varepsilon \alpha_1 |\delta_{rot\ 2}| + \alpha_2 |\delta_{trans}|
\]
Typical Distributions for Probabilistic Motion Models

Normal distribution

\[\mathcal{N}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} \]

Triangular distribution

\[\mathcal{T}(x) = \begin{cases} 0 & \text{if } |x| > \sqrt{6\sigma^2} \\ \frac{\sqrt{6\sigma^2} - |x|}{6\sigma^2} & \text{if } 0 < |x| < \sqrt{6\sigma^2} \\ 0 & \text{if } |x| > \sqrt{6\sigma^2} \end{cases} \]
Calculating the Probability Density (zero-centered)

- For a normal distribution
 1. Algorithm `prob_normal_distribution(a,b)`:
 2. return \(\frac{1}{\sqrt{2\pi} b^2} \exp \left\{ -\frac{1}{2} \frac{a^2}{b^2} \right\} \)

- For a triangular distribution
 1. Algorithm `prob_triangular_distribution(a,b)`:
 2. return \(\max \left\{ 0, \frac{1}{\sqrt{6} b} - \frac{|a|}{6 b^2} \right\} \)
Calculating the Posterior Given \(x, x', \) and Odometry

1. Algorithm \(\text{motion_model_odometry}(x, x', u) \)

2. \(\delta_{\text{trans}} = \sqrt{(x' - x)^2 + (y' - y)^2} \)

3. \(\delta_{\text{rot} 1} = \text{atan2} (y' - y, x' - x) - \bar{\theta} \)

4. \(\delta_{\text{rot} 2} = \bar{\theta}' - \bar{\theta} - \delta_{\text{rot} 1} \)

5. \(\hat{\delta}_{\text{trans}} = \sqrt{(x' - x)^2 + (y' - y)^2} \)

6. \(\hat{\delta}_{\text{rot} 1} = \text{atan2} (y' - y, x' - x) - \bar{\theta} \)

7. \(\hat{\delta}_{\text{rot} 2} = \bar{\theta}' - \bar{\theta} - \hat{\delta}_{\text{rot} 1} \)

8. \(p_1 = \text{prob} \left(\delta_{\text{rot} 1} - \hat{\delta}_{\text{rot} 1}, \alpha_1 \mid \delta_{\text{rot} 1} \right) + \alpha_2 \delta_{\text{trans}} \)

9. \(p_2 = \text{prob} \left(\delta_{\text{trans}} - \hat{\delta}_{\text{trans}}, \alpha_3 \delta_{\text{trans}} + \alpha_4 \left(\mid \delta_{\text{rot} 1} \mid + \mid \delta_{\text{rot} 2} \right) \right) \)

10. \(p_3 = \text{prob} \left(\delta_{\text{rot} 2} - \hat{\delta}_{\text{rot} 2}, \alpha_1 \mid \delta_{\text{rot} 2} \right) + \alpha_2 \delta_{\text{trans}} \)

11. return \(p_1 \cdot p_2 \cdot p_3 \)
Application

- Repeated application of the motion model for short movements.
- Typical banana-shaped distributions obtained for the 2d-projection of the 3d posterior.

\[
p(x'|u, x)
\]
Sample-Based Density Representation
Sample-Based Density Representation
How to Sample from a Normal Distribution?

- Sampling from a normal distribution

1. Algorithm `sample_normal_distribution(b)`:

2. return \(\frac{1}{2} \sum_{i=1}^{12} \text{rand}(-b, b) \)
Normally Distributed Samples

10^6 samples
How to Sample from Normal or Triangular Distributions?

- Sampling from a normal distribution

 1. Algorithm `sample_normal_distribution(b)`:

     ```
     return \frac{1}{2} \sum_{i=1}^{12} \text{rand}(-b, b)
     ```

- Sampling from a triangular distribution

 1. Algorithm `sample_triangular_distribution(b)`:

     ```
     return \frac{\sqrt{6}}{2} [\text{rand}(-b, b) + \text{rand}(-b, b)]
     ```
For Triangular Distribution

10^3 samples

10^4 samples

10^5 samples

10^6 samples
How to Obtain Samples from Arbitrary Functions?
Rejection Sampling

- Sampling from arbitrary distributions
- Sample x from a uniform distribution from $[-b,b]$ \downarrow
- Sample y from $[0, \max f]$ \downarrow
- if $f(x) > y$ keep the sample x \downarrow
- otherwise reject it \downarrow

![Diagram showing rejection sampling process](image)
Rejection Sampling

Sampling from arbitrary distributions

1. Algorithm \textbf{sample_distribution}(f; b):
2. \textbf{repeat}
3. \hspace{1cm} \textbf{x} = \textbf{rand}(-b, b)
4. \hspace{1cm} \textbf{y} = \textbf{rand}(0, \text{max}\{f(x) \mid x \in [-b, b]\})
5. \hspace{1cm} \textbf{until} (y \leq f(x))
6. \hspace{1cm} \textbf{return} \ x
Example

- Sampling from

\[f(x) = \begin{cases}
 \text{abs}(x) & x \in [-1; 1] \\
 0 & \text{otherwise}
\end{cases} \]
Sample Odometry Motion Model

1. Algorithm \textbf{sample_motion_model}(u, x):
 \begin{align*}
 u &= \langle \delta_{\text{rot}_1}, \delta_{\text{rot}_2}, \delta_{\text{trans}} \rangle, \quad x = \langle x, y, \theta \rangle \\
1. \quad \hat{\delta}_{\text{rot}_1} &= \delta_{\text{rot}_1} + \text{sample}(\alpha_1 | \delta_{\text{rot}_1}| + \alpha_2 \delta_{\text{trans}}) \\
2. \quad \hat{\delta}_{\text{trans}} &= \delta_{\text{trans}} + \text{sample}(\alpha_2 \delta_{\text{trans}} + \alpha_4 (| \delta_{\text{rot}_1} | + | \delta_{\text{rot}_2} |)) \\
3. \quad \hat{\delta}_{\text{rot}_2} &= \delta_{\text{rot}_2} + \text{sample}(\alpha_1 | \delta_{\text{rot}_2}| + \alpha_2 \delta_{\text{trans}}) \\
4. \quad x' &= x + \hat{\delta}_{\text{trans}} \cos(\theta + \hat{\delta}_{\text{rot}_1}) \\
5. \quad y' &= y + \hat{\delta}_{\text{trans}} \sin(\theta + \hat{\delta}_{\text{rot}_1}) \\
6. \quad \theta' &= \theta + \hat{\delta}_{\text{rot}_1} + \hat{\delta}_{\text{rot}_2} \\
7. \quad \text{Return} \quad \langle x', y', \theta' \rangle
 \end{align*}
Examples (Odometry-Based)
Sampling from Our Motion Model

Start

10 meters
Velocity-Based Model

\[u = (v, \omega)^T \]
Noise Model for the Velocity-Based Model

- The measured motion is given by the true motion corrupted with noise.

\[\hat{v} = v + \mathcal{E}_{\alpha_1 |v| + \alpha_2 |\omega|} \]

\[\hat{\omega} = \omega + \mathcal{E}_{\alpha_3 |v| + \alpha_4 |\omega|} \]

- Discussion: What is the disadvantage of this noise model?
Noise Model for the Velocity-Based Model

- The $\mathbf{(\hat{v}, \hat{\omega})}$-circle constrains the final orientation (2D manifold in a 3D space)

- Better approach:

$$
\hat{v} = v + \mathcal{E}_{\alpha_1|v|+\alpha_2|\omega|}
$$

$$
\hat{\omega} = \omega + \mathcal{E}_{\alpha_3|v|+\alpha_4|\omega|}
$$

$$
\hat{\gamma} = \mathcal{E}_{\alpha_5|v|+\alpha_6|\omega|}
$$

Term to account for the final rotation
Motion Including 3rd Parameter

\begin{align*}
x' &= x - \frac{\hat{v}}{\hat{\omega}} \sin \theta + \frac{\hat{v}}{\hat{\omega}} \sin(\theta + \hat{\omega} \Delta t) \\
y' &= y + \frac{\hat{v}}{\hat{\omega}} \cos \theta - \frac{\hat{v}}{\hat{\omega}} \cos(\theta + \hat{\omega} \Delta t) \\
\theta' &= \theta + \hat{\omega} \Delta t + \hat{\gamma} \Delta t
\end{align*}

Term to account for the final rotation
Equation for the Velocity Model

\[x_{t-1} = (x, y, \theta)^T \]
\[x_t = (x', y', \theta')^T \]

Center of circle:

\[
\begin{pmatrix}
 x^*
 \\
 y^*
\end{pmatrix} = \begin{pmatrix}
 x \\
 y
\end{pmatrix} + \begin{pmatrix}
 -\lambda \sin \theta \\
 \lambda \cos \theta
\end{pmatrix}
\]

some constant (distance to ICC)

(center of circle is orthogonal to the initial heading)
Equation for the Velocity Model

$$x_{t-1} = (x, y, \theta)^T$$
$$x_t = (x', y', \theta')^T$$

Center of circle:

$$\begin{pmatrix} x^* \\ y^* \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -\lambda \sin \theta \\ \lambda \cos \theta \end{pmatrix} = \begin{pmatrix} \frac{x + x'}{2} + \mu(y - y') \\ \frac{y + y'}{2} + \mu(x' - x) \end{pmatrix}$$

some constant (the center of the circle lies on a ray half way between x and x' and is orthogonal to the line between x and x')
Equation for the Velocity Model

\[x_{t-1} = (x, y, \theta)^T \]
\[x_t = (x', y', \theta')^T \]

Some constant

Center of circle:

\[
\begin{pmatrix} x^* \\ y^* \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -\lambda \sin \theta \\ \lambda \cos \theta \end{pmatrix} = \begin{pmatrix} \frac{x + x'}{2} + \mu(y - y') \\ \frac{y + y'}{2} + \mu(x' - x) \end{pmatrix}
\]

Allows us to solve the equations to:

\[
\mu = \frac{1}{2} \frac{(x - x') \cos \theta + (y - y') \sin \theta}{(y - y') \cos \theta - (x - x') \sin \theta}
\]
Equation for the Velocity Model

\[x_{t-1} = (x, y, \theta)^T \]
\[x_t = (x', y', \theta')^T \]

\[
\begin{pmatrix}
 x^* \\
 y^*
\end{pmatrix}
= \begin{pmatrix}
 \frac{x + x'}{2} + \mu(y - y') \\
 \frac{y + y'}{2} + \mu(x' - x)
\end{pmatrix}
\]
\[\mu = \frac{1}{2} \frac{(x - x') \cos \theta + (y - y') \sin \theta}{(y - y') \cos \theta - (x - x') \sin \theta} \]

and

\[r^* = \sqrt{(x' - x)^2 + (y' - y)^2} \]
\[\Delta \theta = \text{atan2}(y' - y^*, x' - x^*) - \text{atan2}(y - y^*, x - x^*) \]
Equation for the Velocity Model

- The parameters of the circle:

 \[r^* = \sqrt{(x' - x)^2 + (y' - y)^2} \]
 \[\Delta \theta = \text{atan2}(y' - y^*, x' - x^*) - \text{atan2}(y - y^*, x - x^*) \]

- allow for computing the velocities as

 \[v = \frac{\Delta \theta}{\Delta t} r^* \]
 \[\omega = \frac{\Delta \theta}{\Delta t} \]
Posterior Probability for Velocity Model

1: \textbf{Algorithm motion_model_velocity}(x_t, u_t, x_{t-1}): \ p(x_t \mid x_{t-1}, u_t)

2: \mu = \frac{1}{2} \frac{(x - x') \cos \theta + (y - y') \sin \theta}{(y - y') \cos \theta - (x - x') \sin \theta}

3: x^* = \frac{x + x'}{2} + \mu(y - y')

4: y^* = \frac{y + y'}{2} + \mu(x' - x)

5: r^* = \sqrt{(x - x^*)^2 + (y - y^*)^2}

6: \Delta \theta = \text{atan2}(y' - y^*, x' - x^*) - \text{atan2}(y - y^*, x - x^*)

7: \hat{v} = \frac{\Delta \theta}{\Delta t} \ r^*

8: \hat{\omega} = \frac{\Delta \theta}{\Delta t}

9: \hat{\gamma} = \frac{\theta' - \theta}{\Delta t} - \hat{\omega}

10: \text{return} \ \ \text{prob}(v - \hat{v}, \alpha_1 v^2 + \alpha_2 \omega^2) \cdot \text{prob}(\omega - \hat{\omega}, \alpha_3 v^2 + \alpha_4 \omega^2) \cdot \text{prob}(\hat{\gamma}, \alpha_5 v^2 + \alpha_6 \omega^2)
Sampling from Velocity Model

1: Algorithm sample_motion_model_velocity(u_t, x_{t-1}):

2: $\hat{v} = v + \text{sample} (\alpha_1 v^2 + \alpha_2 \omega^2)$

3: $\hat{\omega} = \omega + \text{sample} (\alpha_3 v^2 + \alpha_4 \omega^2)$

4: $\hat{\gamma} = \text{sample} (\alpha_5 v^2 + \alpha_6 \omega^2)$

5: $x' = x - \frac{\hat{v}}{\hat{\omega}} \sin \theta + \frac{\hat{v}}{\hat{\omega}} \sin (\theta + \hat{\omega} \Delta t)$

6: $y' = y + \frac{\hat{v}}{\hat{\omega}} \cos \theta - \frac{\hat{v}}{\hat{\omega}} \cos (\theta + \hat{\omega} \Delta t)$

7: $\theta' = \theta + \hat{\omega} \Delta t + \hat{\gamma} \Delta t$

8: return $x_t = (x', y', \theta')^T$
Examples (Velocity-Based)
Map-Consistent Motion Model

\[p(x'|u, x) \neq p(x'|u, x, m) \]

Approximation: \[p(x'|u, x, m) = \eta p(x'|m) p(x'|u, x) \]
Summary

- We discussed motion models for odometry-based and velocity-based systems.
- We discussed ways to calculate the posterior probability $p(x' \mid x, u)$.
- We also described how to sample from $p(x' \mid x, u)$.
- Typically the calculations are done in fixed time intervals Δt.
- In practice, the parameters of the models have to be learned.
- We also discussed how to improve this motion model to take the map into account.