Introduction to Mobile Robotics

Probabilistic Motion Models

Wolfram Burgard

Robot Motion

- Robot motion is inherently uncertain.
- How can we model this uncertainty?

Dynamic Bayesian Network for Controls, States, and Sensations

Probabilistic Motion Models

- To implement the Bayes Filter, we need the transition model $p\left(x_{t} \mid x_{t-1}, u_{t}\right)$.
- The term $p\left(x_{t} \mid x_{t-1}, u_{t}\right)$ specifies a posterior probability, that action u_{t} carries the robot from x_{t-1} to x_{t}.
- In this section we will discuss, how $p\left(x_{t} \mid x_{t-1}, u_{t}\right)$ can be modeled based on the motion equations and the uncertain outcome of the movements.

Coordinate Systems

- The configuration of a typical wheeled robot in 3D can be described by six parameters.
- This are the three-dimensional Cartesian coordinates plus the three Euler angles for roll, pitch, and yaw.
- For simplicity, throughout this section we consider robots operating on a planar surface.
- The state space of such systems is threedimensional (x, y, θ).

Typical Motion Models

- In practice, one often finds two types of motion models:
- Odometry-based
- Velocity-based (dead reckoning)
- Odometry-based models are used when systems are equipped with wheel encoders.
- Velocity-based models have to be applied when no wheel encoders are given.
- They calculate the new pose based on the velocities and the time elapsed.

Example Wheel Encoders

These modules provide +5 V output when they "see" white, and a OV output when they "see" black.

These disks are manufactured out of high quality laminated color plastic to offer a very crisp black to white transition. This enables a wheel encoder sensor to easily see the transitions.

Dead Reckoning

" Derived from "deduced reckoning."

- Mathematical procedure for determining the present location of a vehicle.
- Achieved by calculating the current pose of the vehicle based on its velocities and the time elapsed.
- Historically used to log the position of ships.

[Image source:
Wikipedia, LoKiLeCh]

Reasons for Motion Errors of Wheeled Robots

and many more ...

Odometry Model

- Robot moves from $\langle\bar{x}, \bar{y}, \bar{\theta}\rangle$ to $\left\langle\bar{x}^{\prime}, \bar{y}^{\prime}, \bar{\theta}^{\prime}\right\rangle$.
- Odometry information $u=\left\langle\delta_{\text {rot } 1}, \delta_{\text {rot } 2}, \delta_{\text {trans }}\right\rangle$.

$$
\begin{aligned}
& \delta_{\text {trans }}=\sqrt{\left(\bar{x}^{\prime}-\bar{x}\right)^{2}+\left(\bar{y}^{\prime}-\bar{y}\right)^{2}} \\
& \delta_{\text {rot } 1}=\operatorname{atan} 2\left(\bar{y}^{\prime}-\bar{y}, \bar{x}^{\prime}-\bar{x}\right)-\bar{\theta} \\
& \delta_{\text {rot } 2}=\bar{\theta}^{\prime}-\bar{\theta}-\delta_{\text {rot } 1}
\end{aligned}
$$

The atan2 Function

- Extends the inverse tangent and correctly copes with the signs of x and y.

$$
\operatorname{atan2}(y, x)= \begin{cases}\operatorname{atan}(y / x) & \text { if } x>0 \\ \operatorname{sign}(y)(\pi-\operatorname{atan}(|y / x|)) & \text { if } x<0 \\ 0 & \text { if } x=y=0 \\ \operatorname{sign}(y) \pi / 2 & \text { if } x=0, y \neq 0\end{cases}
$$

Noise Model for Odometry

- The measured motion is given by the true motion corrupted with noise.

$$
\begin{aligned}
& \hat{\delta}_{r o t 1}=\delta_{r o t 1}+\varepsilon_{\alpha_{1}\left|\delta_{r o t} 1+\alpha_{2}\right| \delta_{\text {trans }} \mid} \\
& \hat{\delta}_{\text {trans }}=\delta_{\text {trans }}+\varepsilon_{\alpha_{3}\left|\delta_{\text {trans }}\right|+\alpha_{4}\left(\left|\delta_{\text {rot } 1}\right|+\left|\delta_{\text {rot } 2}\right|\right)} \\
& \hat{\delta}_{r o t 2}=\delta_{r o t 2}+\varepsilon_{\alpha_{1}\left|\delta_{\text {rot } 2}\right|+\alpha_{2}\left|\delta_{\text {trans }}\right|}
\end{aligned}
$$

Typical Distributions for Probabilistic Motion Models

Normal distribution

$$
\varepsilon_{\sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{x^{2}}{\sigma^{2}}}
$$

Triangular distribution

$$
\varepsilon_{\sigma^{2}}(x)=\left\{\begin{array}{c}
0 \text { if }|\mathrm{x}|>\sqrt{6 \sigma^{2}} \\
\frac{\sqrt{6 \sigma^{2}}-|x|}{6 \sigma^{2}}
\end{array}\right.
$$

Calculating the Probability Density (zero-centered)

- For a normal distribution

1. Algorithm prob_normal_distribution (a, b) :
2. return $\frac{1}{\sqrt{2 \pi b^{2}}} \exp \left\{-\frac{1}{2} \frac{a^{2}}{b^{2}}\right\}$

$\stackrel{\uparrow}{\text { std. deviation }}$

- For a triangular distribution

1. Algorithm prob_triangular_distribution (a, b) :
2. return $\max \left\{0, \frac{1}{\sqrt{6} b}-\frac{|a|}{6 b^{2}}\right\}$

Calculating the Posterior Given $\mathbf{x}^{\prime} \mathbf{X}^{\prime}$, and Odometry

hypotheses odometry

1. Algorithm motion_model_odometry $\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}, \overline{\boldsymbol{x}}, \overline{\boldsymbol{x}}^{\prime}\right.$
2. $\delta_{\text {trans }}=\sqrt{\left(\bar{x}^{\prime}-\bar{x}\right)^{2}+\left(\bar{y}^{\prime}-\bar{y}\right)^{2}}$
3. $\delta_{\text {rot } 1}=\operatorname{atan} 2\left(\bar{y}^{\prime}-\bar{y}, \bar{x}^{\prime}-\bar{x}\right)-\bar{\theta}$

4. $\delta_{\text {rot } 2}=\bar{\theta}^{\prime}-\bar{\theta}-\delta_{\text {rot } 1}$
5. $\hat{\delta}_{\text {trans }}=\sqrt{\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}}$
6. $\hat{\delta}_{\text {rot } 1}=\operatorname{atan2}\left(y^{\prime}-y, x^{\prime}-x\right)-\dot{\theta}$
7. $\hat{\delta}_{\text {rot } 2}=\theta^{\prime}-\theta-\hat{\delta}_{\text {rot } 1}$
8. $p_{1}=\operatorname{prob}\left(\delta_{\text {rot } 1}-\hat{\delta}_{\text {rot } 1}, \alpha_{1}\left|\delta_{\text {rot 1 }}\right|+\alpha_{2} \delta_{\text {trans }}\right)$
9. $p_{2}=\operatorname{prob}\left(\delta_{\text {trans }}-\hat{\delta}_{\text {trans }}, \alpha_{3} \delta_{\text {trans }}+\alpha_{4}\left(\left|\delta_{\text {rot1 }}\right|+\left|\delta_{\text {rot2 }}\right|\right)\right)$
10. $p_{3}=\operatorname{prob}\left(\delta_{\text {rot } 2}-\hat{\delta}_{\text {rot } 2}, \alpha_{1}\left|\delta_{\text {rot } 2}\right|+\alpha_{2} \delta_{\text {trans }}\right)$
11. return $p_{1} \cdot p_{2} \cdot p_{3}$

Application

- Repeated application of the motion model for short movements.
- Typical banana-shaped distributions obtained for the 2d-projection of the 3d posterior.

$$
p\left(\boldsymbol{x}^{\prime} \mid \boldsymbol{u}, \boldsymbol{x}\right)
$$

Sample-Based Density Representation

Sample-Based Density Representation

How to Sample from a Normal Distribution?

- Sampling from a normal distribution

1. Algorithm sample_normal_distribution(b):
2. return $\frac{1}{2} \sum_{i=1}^{12} \operatorname{rand}(-b, b)$

Normally Distributed Samples

10^{6} samples

How to Sample from Normal or Triangular Distributions?

- Sampling from a normal distribution

1. Algorithm sample_normal_distribution(b):
2. return $\frac{1}{2} \sum_{i=1}^{12} \operatorname{rand}(-b, b)$

- Sampling from a triangular distribution

1. Algorithm sample_triangular_distribution(b):
2. return $\frac{\sqrt{6}}{2}[\operatorname{rand}(-b, b)+\operatorname{rand}(-b, b)]$

For Triangular Distribution

How to Obtain Samples from Arbitrary Functions?

Rejection Sampling

- Sampling from arbitrary distributions
- Sample x from a uniform distribution from $[-b, b]$
- Sample y from [0, maxf]
- if $f(x)>y$
keep the sample x
otherwise reject it

Rejection Sampling

Sampling from arbitrary distributions

1. Algorithm sample_distribution (f, b) :
2. repeat
3. $x=\operatorname{rand}(-b, b)$
4. $y=\operatorname{rand}(0, \max \{f(x) \mid x \in[-b, b]\})$
5. until $(y \leq f(x))$
6. return x

Example

- Sampling from

$$
f(x)= \begin{cases}\operatorname{abs}(x) & x \in[-1 ; 1] \\ 0 & \text { otherwise }\end{cases}
$$

Sample Odometry Motion Model

1. Algorithm sample_motion_model($u, x)$:
$u=\left\langle\delta_{\text {rot } 1}, \delta_{\text {rot } 2}, \delta_{\text {trans }}\right\rangle, x=\langle x, y, \theta\rangle$
2. $\hat{\delta}_{\text {rot } 1}=\delta_{\text {rot } 1}+\operatorname{sample}\left(\alpha_{1}\left|\delta_{\text {rot } 1}\right|+\alpha_{2} \delta_{\text {trans }}\right)$
3. $\hat{\delta}_{\text {trans }}=\delta_{\text {trans }}+\operatorname{sample}\left(\left\langle\delta_{\text {trans }}+\alpha_{4}\left(\left|\delta_{\text {rot } 1}\right|+\left|\delta_{\text {rot } 2}\right|\right)\right)\right.$
4. $\hat{\delta}_{\text {rot } 2}=\delta_{\text {rot } 2}+\operatorname{sample}\left(\alpha_{1} \delta_{\text {rot }} \geq+\alpha_{2} \delta_{\text {trans }}\right)$
5. $x^{\prime}=x+\hat{\delta}_{\text {trans }} \cos \left(\theta+\hat{\delta}_{\text {rot } 1}\right)$
6. $y^{\prime}=y+\hat{\delta}_{\text {trans }} \sin \left(\theta+\hat{\delta}_{\text {rot } 1}\right)$
sample_normal_distribution
7. $\theta^{\prime}=\theta+\hat{\delta}_{\text {rot } 1}+\hat{\delta}_{\text {rot } 2}$
8. Return $\left\langle x^{\prime}, y^{\prime}, \theta^{\prime}\right\rangle$

Examples (Odometry-Based)

Q
Q
©
Q
Q

Sampling from Our Motion Model

Velocity-Based Model

Noise Model for the VelocityBased Model

- The measured motion is given by the true motion corrupted with noise.

$$
\begin{aligned}
& \hat{v}=v+\varepsilon_{\alpha_{1}|v|+\alpha_{2}|\omega|} \\
& \hat{\omega}=\omega+\varepsilon_{\alpha_{3}|v|+\alpha_{4}|\omega|}
\end{aligned}
$$

- Discussion: What is the disadvantage of this noise model?

Noise Model for the VelocityBased Model

- The $(\hat{v}, \hat{\omega})$-circle constrains the final orientation (2D manifold in a 3D space)
- Better approach:

Term to account for the final rotation

Motion Including 3rd Parameter

$$
\begin{aligned}
x^{\prime} & =x-\frac{\hat{v}}{\hat{\omega}} \sin \theta+\frac{\hat{v}}{\hat{\omega}} \sin (\theta+\hat{\omega} \Delta t) \\
y^{\prime} & =y+\frac{\hat{v}}{\hat{\omega}} \cos \theta-\frac{\hat{v}}{\hat{\omega}} \cos (\theta+\hat{\omega} \Delta t) \\
\theta^{\prime} & =\theta+\hat{\omega} \Delta t+\hat{\gamma} \Delta t
\end{aligned}
$$

Term to account for the final rotation

Equation for the Velocity Model

$$
\begin{aligned}
& x_{t-1}=(x, y, \theta)^{T} \\
& x_{t}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)^{T}
\end{aligned}
$$

Center of circle:
$\binom{x^{*}}{y^{*}}=\binom{x}{y}+\binom{-\lambda \sin \theta}{\lambda \cos \theta}$
$\uparrow_{\text {some constant (distance to ICC) }}$
(center of circle is orthogonal to the initial heading)

Equation for the Velocity Model

$$
\begin{aligned}
& x_{t-1}=(x, y, \theta)^{T} \\
& x_{t}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)^{T}
\end{aligned}
$$

some constant

Center of circle:

$$
\binom{x^{*}}{y^{*}}=\binom{x}{y}+\binom{-\lambda \sin \theta}{\lambda \cos \theta}=\binom{\frac{x+x^{\prime}}{2}+\mu\left(y-y^{\prime}\right)}{\frac{y+y^{\prime}}{2}+\mu\left(x^{\prime}-x\right)}
$$

some constant (the center of the circle lies on a ray half way between x and x^{\prime} and is orthogonal to the line between x and x^{\prime})

Equation for the Velocity Model

$$
\begin{aligned}
& x_{t-1}=(x, y, \theta)^{T} \\
& x_{t}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)^{T}
\end{aligned}
$$

some constant

Center of circle:
$\binom{x^{*}}{y^{*}}=\binom{x}{y}+\binom{-\lambda \sin \theta}{\lambda \cos \theta}=\binom{\frac{x+x^{\prime}}{2}+\mu\left(y-y^{\prime}\right)}{\frac{y+y^{\prime}}{2}+\mu\left(x^{\prime}-x\right)}$
Allows us to solve the equations to:

$$
\mu=\frac{1}{2} \frac{\left(x-x^{\prime}\right) \cos \theta+\left(y-y^{\prime}\right) \sin \theta}{\left(y-y^{\prime}\right) \cos \theta-\left(x-x^{\prime}\right) \sin \theta}
$$

Equation for the Velocity Model

$$
\begin{aligned}
& x_{t-1}=(x, y, \theta)^{T} \\
& x_{t}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)^{T} \\
& \binom{x^{*}}{y^{*}}=\binom{\frac{x+x^{\prime}}{2}+\mu\left(y-y^{\prime}\right)}{\frac{y+y^{\prime}}{2}+\mu\left(x^{\prime}-x\right)} \quad \mu=\frac{1}{2} \frac{\left(x-x^{\prime}\right) \cos \theta+\left(y-y^{\prime}\right) \sin \theta}{\left(y-y^{\prime}\right) \cos \theta-\left(x-x^{\prime}\right) \sin \theta}
\end{aligned}
$$

and
$r^{*}=\sqrt{\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}}$
$\Delta \theta=\operatorname{atan} 2\left(y^{\prime}-y^{*}, x^{\prime}-x^{*}\right)-\operatorname{atan} 2\left(y-y^{*}, x-x^{*}\right)$

Equation for the Velocity Model

- The parameters of the circle:

$$
\begin{aligned}
& r^{*}=\sqrt{\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}} \\
& \Delta \theta=\operatorname{atan} 2\left(y^{\prime}-y^{*}, x^{\prime}-x^{*}\right)-\operatorname{atan} 2\left(y-y^{*}, x-x^{*}\right)
\end{aligned}
$$

- allow for computing the velocities as

$$
\begin{aligned}
& v=\frac{\Delta \theta}{\Delta t} r^{*} \\
& \omega=\frac{\Delta \theta}{\Delta t}
\end{aligned}
$$

Posterior Probability for Velocity Model

1: \quad Algorithm motion_model_velocity $\left(x_{t}, u_{t}, x_{t-1}\right): p\left(x_{t} \mid x_{t-1}, u_{t}\right)$
2 :

$$
x^{*}=\frac{x+x^{\prime}}{2}+\mu\left(y-y^{\prime}\right)
$$

3: $\quad x^{*}=\frac{x+x^{\prime}}{2}+\mu\left(y-y^{\prime}\right)$
4:
$y^{*}=\frac{y+y^{\prime}}{2}+\mu\left(x^{\prime}-x\right)$

$$
y^{*}=\frac{y+y^{\prime}}{2}+\mu\left(x^{\prime}-x\right)
$$

5: $\quad r^{*}=\sqrt{\left(x-x^{*}\right)^{2}+\left(y-y^{*}\right)^{2}}$
6: $\quad \Delta \theta=\operatorname{atan2}\left(y^{\prime}-y^{*}, x^{\prime}-x^{*}\right)-\operatorname{atan2}\left(y-y^{*}, x-x^{*}\right)$
7: $\quad \hat{v}=\frac{\Delta \theta}{\Delta t} r^{*}$
8: $\quad \hat{\omega}=\frac{\Delta \theta}{\Delta t}$
9:
10:

$$
\mu=\frac{1}{2} \frac{\left(x-x^{\prime}\right) \cos \theta+\left(y-y^{\prime}\right) \sin \theta}{\left(y-y^{\prime}\right) \cos \theta-\left(x-x^{\prime}\right) \sin \theta}
$$

$$
: \hat{\gamma}=\underline{\underline{\theta^{\prime}-\theta}}
$$

0:

$$
\hat{\gamma}=\frac{\theta^{\prime}-\theta}{\Delta t}-\hat{\omega}
$$

$$
\text { return } \operatorname{prob}\left(v-\hat{v}, \alpha_{1} v^{2}+\alpha_{2} \omega^{2}\right) \cdot \operatorname{prob}\left(\omega-\hat{\omega}, \alpha_{3} v^{2}+\alpha_{4} \omega^{2}\right)
$$

$$
\cdot \operatorname{prob}\left(\hat{\gamma}, \alpha_{5} v^{2}+\alpha_{6} \omega^{2}\right)
$$

Sampling from Velocity Model

1: \quad Algorithm sample_motion_model_velocity $\left(u_{t}, x_{t-1}\right)$:

2:
3:
4:
5:
6:
$\hat{v}=v+\operatorname{sample}\left(\alpha_{1} v^{2}+\alpha_{2} \omega^{2}\right)$
$\hat{\omega}=\omega+\operatorname{sample}\left(\alpha_{3} v^{2}+\alpha_{4} \omega^{2}\right)$
$\hat{\gamma}=\operatorname{sample}\left(\alpha_{5} v^{2}+\alpha_{6} \omega^{2}\right)$
$x^{\prime}=x-\frac{\hat{v}}{\hat{\omega}} \sin \theta+\frac{\hat{v}}{\hat{\omega}} \sin (\theta+\hat{\omega} \Delta t)$
$y^{\prime}=y+\frac{\hat{v}}{\hat{\omega}} \cos \theta-\frac{\hat{v}}{\hat{\omega}} \cos (\theta+\hat{\omega} \Delta t)$
7:
8:
$\theta^{\prime}=\theta+\hat{\omega} \Delta t+\hat{\gamma} \Delta t$
return $x_{t}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)^{T}$

Examples (Velocity-Based)

θ

Q

Map-Consistent Motion Model

$$
p\left(x^{\prime} \mid u, x\right) \quad \neq \quad p\left(x^{\prime} \mid u, x, m\right)
$$

Approximation: $\quad p\left(x^{\prime} \mid u, x, m\right)=\eta p\left(x^{\prime} \mid m\right) p\left(x^{\prime} \mid u, x\right)$

Summary

- We discussed motion models for odometry-based and velocity-based systems
- We discussed ways to calculate the posterior probability $p\left(x^{\prime} \mid x, u\right)$.
- We also described how to sample from $p\left(x^{\prime} \mid x, u\right)$.
- Typically the calculations are done in fixed time intervals Δt.
- In practice, the parameters of the models have to be learned.
- We also discussed how to improve this motion model to take the map into account.

