Introduction to Mobile Robotics

Bayes Filter – Particle Filter and Monte Carlo Localization

Wolfram Burgard
Motivation

- Recall: Discrete filter
 - Discretize the continuous state space
 - High memory complexity
 - Fixed resolution (does not adapt to the belief)

- Particle filters are a way to efficiently represent non-Gaussian distribution

- Basic principle
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest
Sample-based Localization (sonar)
Mathematical Description

- Set of weighted samples

\[S = \left\{ \langle s[i], w[i] \rangle | i = 1, \ldots, N \right\} \]

State hypothesis Importance weight

- The samples represent the posterior

\[p(x) = \sum_{i=1}^{N} w_i \cdot \delta_{s[i]}(x) \]
Function Approximation

- Particle sets can be used to approximate functions

- The more particles fall into an interval, the higher the probability of that interval

- How to draw samples from a function/distribution?
Rejection Sampling

- Let us assume that $f(x) < 1$ for all x
- Sample x from a uniform distribution
- Sample c from $[0,1]$
- If $f(x) > c$ keep the sample
 otherwise reject the sample
Importance Sampling Principle

- We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the “differences between g and f”
 $$w = \frac{f}{g}$$
- f is called target
- g is called proposal
- Pre-condition:
 $$f(x) > 0 \rightarrow g(x) > 0$$
- Derivation: See webpage
Importance Sampling with Resampling: Landmark Detection Example
Distributions
Distributions

Wanted: samples distributed according to \(p(x| z_1, z_2, z_3) \)
This is Easy!

We can draw samples from $p(x|z_l)$ by adding noise to the detection parameters.
Importance Sampling

Target distribution f: $p(x \mid z_1, z_2, \ldots, z_n) = \frac{p(z_k \mid x) \ p(x)}{\sum_{k} p(z_1, z_2, \ldots, z_n)}$

Sampling distribution g: $p(x \mid z_l) = \frac{p(z_l \mid x)p(x)}{p(z_l)}$

Importance weights w: $\frac{f}{g} = \frac{p(x \mid z_1, z_2, \ldots, z_n)}{p(x \mid z_l)} = \frac{p(z_l) \ p(z_k \mid x)}{\sum_{k,l} p(z_1, z_2, \ldots, z_n)}$
Importance Sampling with Resampling

Weighted samples

After resampling
Particle Filters
Sensor Information: Importance Sampling

\[Bel (x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-} (x) \]

\[w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-} (x)}{Bel^{-} (x)} = \alpha \ p(z \mid x) \]
Robot Motion

\[Bel (x) \rightarrow p(x \mid u, x') \ Bel(x') \ dx' \]
Sensor Information: Importance Sampling

\[Bel(x) \sim p(z \mid x) Bel(x) \]

\[w \sim \frac{p(z \mid x) Bel(x)}{Bel(x)} = p(z \mid x) \]
Robot Motion

\[Bel (x) \quad \neg \quad p(x \mid u, x') \quad Bel(x') \quad dx' \]
Particle Filter Algorithm

- Sample the next generation for particles using the proposal distribution

- Compute the importance weights:
 \[\text{weight} = \frac{\text{target distribution}}{\text{proposition distribution}} \]

- Resampling: “Replace unlikely samples by more likely ones”
Particle Filter Algorithm

1. Algorithm `particle_filter(S_{t-1}, u_t, z_t)`:
2. \(S_t = \emptyset, \quad \eta = 0 \)
3. **For** \(i = 1, \ldots, n \) **Generate new samples**
4. Sample index \(j(i) \) from the discrete distribution given by \(w_{t-1} \)
5. Sample \(p(x_t \mid x_{t-1}, u_t) \) using \(u_t \) and \(x_{t-1}^{j(i)} \) **Compute importance weight**
6. \[w_t^i = p(z_t \mid x_t^i) \]
7. \[= + w_t^i \] **Update normalization factor**
8. \(S_t = S_t \cup \{< x_t^i, w_t^i >\} \) **Add to new particle set**
9. **For** \(i = 1, \ldots, n \)
10. \(w_t^i = w_t^i / h \) **Normalize weights**
Particle Filter Algorithm

\[Bel(x_t) = p(z_t \mid x_t) \ p(x_t \mid x_{t-1}, u_t) \ Bel(x_{t-1}) \ dx_{t-1} \]

- Draw \(x^i_{t-1} \) from \(Bel(x_{t-1}) \)
- Draw \(x^i_t \) from \(p(x_t \mid x^i_{t-1}, u_t) \)

Importance factor for \(x^i_t \):

\[
\mu \ p(z_t \mid x_t) \ p(x_t \mid x_{t-1}, u_t) \ Bel(x_{t-1})
\]

\[
= \frac{p(z_t \mid x^i_t) \ p(x^i_t \mid x_{t-1}, u_t) \ Bel(x_{t-1})}{p(x_t \mid x^i_{t-1}, u_t) \ Bel(x_{t-1})}
\]

\[
= w^i_t = \text{target distribution} \over \text{proposal distribution}
\]
Resampling

- **Given**: Set S of weighted samples.

- **Wanted**: Random sample, where the probability of drawing x_i is given by w_i.

- Typically done n times with replacement to generate new sample set S'.
Resampling

- Roulette wheel
- Binary search, $n \log n$

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance
Resampling Algorithm

1. Algorithm **systematic_resampling**(S,n):

2. $S' = \emptyset$, $c_1 = w^1$

3. **For** $i = 2K \ n$

4. $c_i = c_{i-1} + w^i$

5. $u_1 \sim U \ [0, n^{-1}]$, $i = 1$

6. **For** $j = 1K \ n$

7. **While** ($u_j > c_i$)

8. $i = i + 1$

9. $S' = S' \cup \{< x^i, n^{-1} >\}$

10. $u_{j+1} = u_j + n^{-1}$

11. **Return** S'

Also called **stochastic universal sampling**
Mobile Robot Localization

- Each particle is a potential pose of the robot
- Proposal distribution is the motion model of the robot (prediction step)
- The observation model is used to compute the importance weight (correction step)

[For details, see PDF file on the lecture web page]
Motion Model Reminder

According to the estimated motion
- Decompose the motion into
 - Traveled distance
 - Start rotation
 - End rotation
Motion Model Reminder

- Uncertainty in the translation of the robot: Gaussian over the traveled distance
- Uncertainty in the rotation of the robot: Gaussians over start and end rotation
- For each particle, draw a new pose by sampling from these three individual normal distributions
Motion Model Reminder

Start

10 meters
Proximity Sensor Model Reminder

Laser sensor

Sonar sensor
Mobile Robot Localization Using Particle Filters (1)

- Each particle is a potential pose of the robot
- The set of weighted particles approximates the posterior belief about the robot’s pose (target distribution)
Mobile Robot Localization Using Particle Filters (2)

- Particles are drawn from the motion model (proposal distribution)
- Particles are weighted according to the observation model (sensor model)
- Particles are resampled according to the particle weights
Why is resampling needed?

- We only have a finite number of particles
- Without resampling: The filter is likely to lose track of the “good” hypotheses
- Resampling ensures that particles stay in the meaningful area of the state space
Sample-based Localization (sonar)
Initial Distribution
After Incorporating Ten Ultrasound Scans
After Incorporating 65 Ultrasound Scans
Estimated Path
Using Ceiling Maps for Localization

[Dellaert et al. 99]
Vision-based Localization
Under a Light

Measurement z:

$P(z|x)$:
Next to a Light

Measurement z: $P(z|x)$:
Elsewhere

Measurement z: $P(z|x)$:
Global Localization Using Vision
Limitations

- The approach described so far is able
 - to track the pose of a mobile robot and
 - to globally localize the robot

- How can we deal with localization errors (i.e., the kidnapped robot problem)?
Approaches

- Randomly insert a fixed number of samples
- This assumes that the robot can be teleported at any point in time
- Alternatively, insert random samples proportional to the average likelihood of the particles
Summary – Particle Filters

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples
- They can model non-Gaussian distributions
- Proposal to draw new samples
- Weight to account for the differences between the proposal and the target
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter
Summary – PF Localization

- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.