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Robot Mapping  

Grid Maps and Mapping With 
Known Poses 

Wolfram Burgard 

Introduction to 
Mobile Robotics 
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Why Mapping? 

 Learning maps is one of the 
fundamental problems in mobile 
robotics 

 Maps allow robots to efficiently carry 
out their tasks, allow localization … 

 Successful robot systems rely on maps 
for localization, path planning, activity 
planning etc. 
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The General Problem of 
Mapping 

What does the 
environment look like? 
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The General Problem of 
Mapping 
 Formally, mapping involves, given the 

sensor data  
 
 
 to calculate the most likely map 
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The General Problem of 
Mapping 
 Formally, mapping involves, given the 

sensor data  
 
 
 to calculate the most likely map 
 
 
 Today we describe how to calculate 

a map given the robot’s poses 
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The General Problem of 
Mapping with Known Poses 
 Formally, mapping with known poses 

involves, given the measurements and 
the poses  
 
 
 to calculate the most likely map 
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Features vs. Volumetric Maps 

Courtesy by E. Nebot 
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Grid Maps 

 We discretize the world into cells 
 The grid structure is rigid  
 Each cell is assumed to be occupied or 

free 
 It is a non-parametric model 
 It requires substantial memory 

resources 
 It does not rely on a feature detector 
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Example 
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Assumption 1 

 The area that corresponds to a cell is 
either completely free or occupied 

free  
space 

occupied 
space 
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Representation 

 Each cell is a binary random 
variable that models the occupancy 
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Occupancy Probability 

 Each cell is a binary random 
variable that models the occupancy 
 Cell is occupied 
 Cell is not occupied 
 No information 
 The environment is assumed to be 

static 
 



13 

Assumption 2 

 The cells (the random variables) are 
independent of each other 

no dependency 
between the cells 
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Representation 
 The probability distribution of the map is 

given by the product of the probability 
distributions of the individual cells 

cell map 
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Representation 
 The probability distribution of the map is 

given by the product of the probability 
distributions of the individual cells 

four-dimensional 
vector 

four independent 
cells 
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Estimating a Map From Data 

 Given sensor data      and the poses  
      of the sensor, estimate the map 

binary random variable 

Binary Bayes filter 
(for a static state) 
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Static State Binary Bayes Filter 
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Static State Binary Bayes Filter 



19 

Static State Binary Bayes Filter 
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Static State Binary Bayes Filter 
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Static State Binary Bayes Filter 
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Static State Binary Bayes Filter 

Do exactly the same for the opposite event:  
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Static State Binary Bayes Filter 

 By computing the ratio of both 
probabilities, we obtain: 
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Static State Binary Bayes Filter 

 By computing the ratio of both 
probabilities, we obtain: 
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Static State Binary Bayes Filter 

 By computing the ratio of both 
probabilities, we obtain: 
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Occupancy Update Rule 

 Recursive rule 
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Occupancy Update Rule 

 Recursive rule 
 
 
 
 
 Often written as 
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Log Odds Notation 

 Log odds ratio is defined as 
 
 
 and with the ability to retrieve  
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Occupancy Mapping  
in Log Odds Form 
 The product turns into a sum 

 
 
 
 
 or in short 
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Occupancy Mapping Algorithm 

highly efficient, only requires to compute sums 
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Occupancy Grid Mapping 

 Developed in the mid 80’s by Moravec 
and Elfes 
 Originally developed for noisy sonars 
 Also called “mapping with know poses” 
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Inverse Sensor Model for 
Sonars Range Sensors 

In the following, consider the cells  
along the optical axis (red line) 
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Occupancy Value Depending on 
the Measured Distance 

z+d1 z+d2 

z+d3 z 

z-d1 

measured dist. 

prior 

distance between the cell and the sensor 



34 

z+d1 z+d2 

z+d3 z 

z-d1 

Occupancy Value Depending on 
the Measured Distance 

measured dist. 

prior 
“free” 

distance between the cell and the sensor 
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z+d1 z+d2 

z+d3 z 

z-d1 

Occupancy Value Depending on 
the Measured Distance 

distance between the cell and the sensor 

measured dist. 

prior 

“occ” 
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Occupancy Value Depending on 
the Measured Distance 

z+d1 z+d2 

z+d3 z 

z-d1 

measured dist. 

prior 
“no info” 

distance between the cell and the sensor 
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Update depends on the 
Measured Distance and 
Deviation from the Optical Axis  

cell l 

 Linear in  
 Gaussian in  
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Intensity of the Update 
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Resulting Model  
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Example: Incremental Updating  
of Occupancy Grids  
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Resulting Map Obtained with 
Ultrasound Sensors 
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Resulting Occupancy and 
Maximum Likelihood Map 

The maximum likelihood map is obtained by 
rounding the probability for each cell to 0 or 
1.  
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Inverse Sensor Model for Laser 
Range Finders 
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Occupancy Grids 
From Laser Scans to Maps  
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Example: MIT CSAIL 3rd Floor 
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Uni Freiburg Building 106 
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Alternative: Counting Model 

 For every cell count 
 hits(x,y): number of cases where a beam 

ended at <x,y> 
 misses(x,y): number of cases where a 

beam passed through <x,y> 
 
 
 

 Value of interest: P(reflects(x,y))  
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The Measurement Model 

 Pose at time t: 
 Beam n of scan at time t: 
 Maximum range reading: 
 Beam reflected by an object:  

0 1 

measured  
dist. in #cells 
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The Measurement Model 

 Pose at time t: 
 Beam n of scan at time t: 
 Maximum range reading: 
 Beam reflected by an object:  

0 1 

max range: “first zt,n-1 cells covered by the beam must be free” 
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The Measurement Model 

 Pose at time t: 
 Beam n of scan at time t: 
 Maximum range reading: 
 Beam reflected by an object:  

0 1 

otherwise: “last cell reflected beam, all others free” 

max range: “first zt,n-1 cells covered by the beam must be free” 
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Computing the Most Likely Map 
 Compute values for m that maximize 

 
 Assuming a uniform prior probability for 

P(m), this is equivalent to maximizing: 

since     independent 
and only depend on  
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Computing the Most Likely Map 
cells beams 
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Computing the Most Likely Map 
“beam n ends in cell j” 
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Computing the Most Likely Map 
“beam n ends in cell j” 

“beam n traversed cell j” 
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Computing the Most Likely Map 

Define 

“beam n ends in cell j” 

“beam n traversed cell j” 
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Meaning of αj and βj 

Corresponds to the number of times a 
beam that is not a maximum range 
beam ended in cell j (           ) 

Corresponds to the number of times a 
beam traversed cell j without ending in 
it (                   ) 
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Computing the Most Likely Map 
Accordingly, we get  

If we set 

Computing the most likely map reduces to counting 
how often a cell has reflected a measurement and 
how often the cell was traversed by a beam. 

we obtain 

As the mj’s are independent we can maximize 
this sum by maximizing it for every j 
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Difference between Occupancy 
Grid Maps and Counting 
 The counting model determines how 

often a cell reflects a beam. 

 The occupancy model represents 
whether or not a cell is occupied by an 
object. 

 Although a cell might be occupied by 
an object, the reflection probability of 
this object might be very small. 
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Example Occupancy Map 
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Example Reflection Map 

glass panes 
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Example 
 Out of n beams only 60% are reflected from a cell 

and 40% intercept it without ending in it. 
 Accordingly, the reflection probability will be 0.6. 
 Suppose p(occ | z) = 0.55 when a beam ends in a 

cell and p(occ | z) = 0.45 when a beam traverses a 
cell without ending in it. 

 Accordingly, after n measurements we will have  
 
 
 

 The reflection map yields a value of 0.6, while the 
occupancy grid value converges to 1 as n increases. 
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Summary (1) 
 Grid maps are a popular model for 

representing the environment  
 Occupancy grid maps discretize the 

space into independent cells 
 Each cell is a binary random variable 

estimating if the cell is occupied 
 We estimate the state of every cell using 

a binary Bayes filter 
 This leads to an efficient algorithm for 

mapping with known poses 
 The log odds model is fast to compute 
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Summary (2) 
 Reflection probability maps are an 

alternative representation 
 The key idea of the sensor model is to 

calculate for every cell the probability 
that it reflects a sensor beam 

 Given the this sensor model, counting 
the number of times how often a 
measurement intercepts or ends in a cell 
yields the maximum likelihood model 

 This approach has a consistent sensor 
model for mapping and localization 
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