Introduction to Mobile Robotics

Grid Maps and Mapping With Known Poses

Wolfram Burgard

1

Why Mapping?

- Learning maps is one of the fundamental problems in mobile robotics
- Maps allow robots to efficiently carry out their tasks, allow localization ...
- Successful robot systems rely on maps for localization, path planning, activity planning etc.

The General Problem of Mapping

What does the environment look like?

The General Problem of Mapping

Formally, mapping involves, given the sensor data

$$d = \{u_1, z_1, u_2, z_2, \dots, u_t, z_t\}$$

• to calculate the most likely map $m^{\star} = \mathrm{argmax}_m P(m \mid d)$

The General Problem of Mapping

Formally, mapping involves, given the sensor data

$$d = \{u_1, z_1, u_2, z_2, \dots, u_t, z_t\}$$

- to calculate the most likely map $m^{\star} = \mathrm{argmax}_m P(m \mid d)$
- Today we describe how to calculate a map given the robot's poses

The General Problem of Mapping with Known Poses

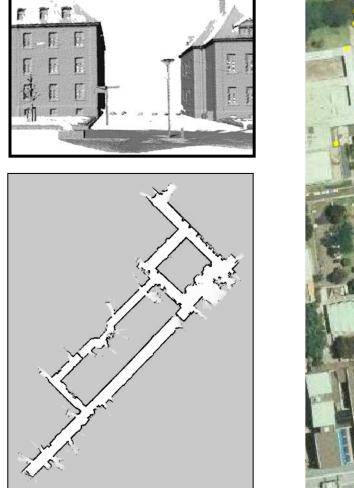
 Formally, mapping with known poses involves, given the measurements and the poses

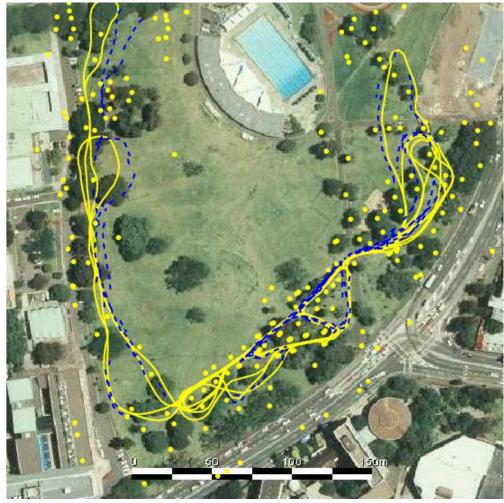
$$d = \{x_1, z_1, x_2, z_2, \dots, x_t, z_t\}$$

to calculate the most likely map

$$m^{\star} = \operatorname{argmax}_{m} P(m \mid d)$$

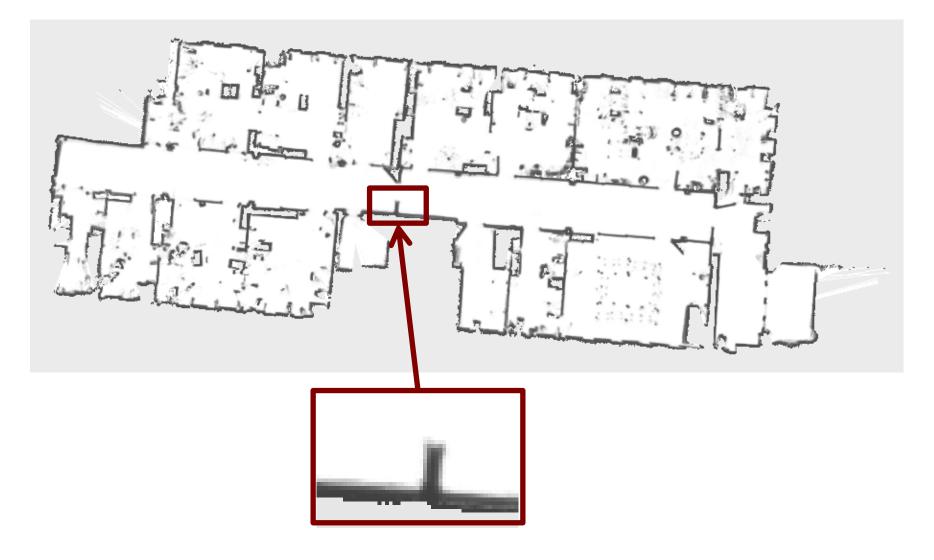
Features vs. Volumetric Maps





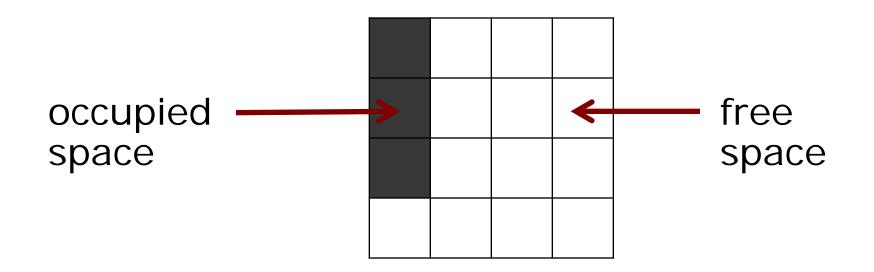
Grid Maps

- We discretize the world into cells
- The grid structure is rigid
- Each cell is assumed to be occupied or free
- It is a non-parametric model
- It requires substantial memory resources
- It does not rely on a feature detector



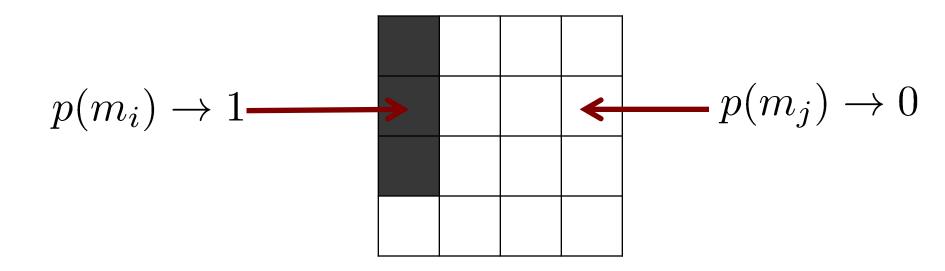
Assumption 1

The area that corresponds to a cell is either completely free or occupied



Representation

Each cell is a binary random variable that models the occupancy



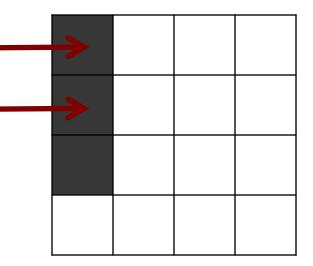
Occupancy Probability

- Each cell is a binary random variable that models the occupancy
- Cell is occupied $p(m_i) = 1$
- Cell is not occupied $p(m_i) = 0$
- No information $p(m_i) = 0.5$
- The environment is assumed to be static

Assumption 2

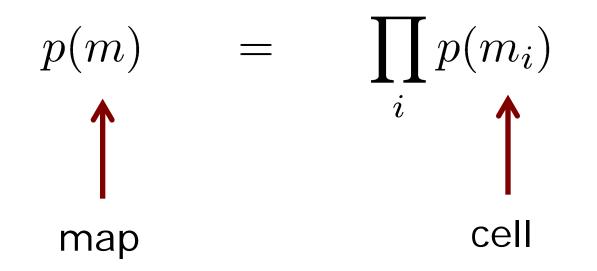
The cells (the random variables) are independent of each other

no dependency between the cells



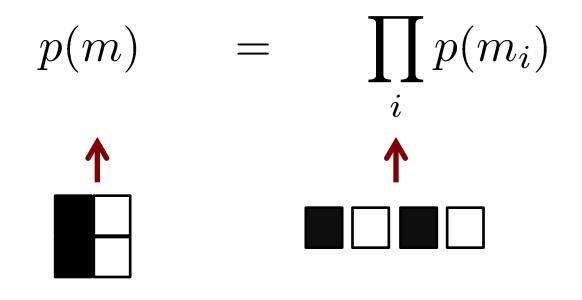
Representation

 The probability distribution of the map is given by the product of the probability distributions of the individual cells



Representation

 The probability distribution of the map is given by the product of the probability distributions of the individual cells



four-dimensional four independent vector cells

Estimating a Map From Data

Given sensor data z_{1:t} and the poses x_{1:t} of the sensor, estimate the map

$$p(m \mid z_{1:t}, x_{1:t}) = \prod_{i} p(m_i \mid z_{1:t}, x_{1:t})$$

binary random variable

 $p(m_i \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_t \mid m_i, z_{1:t-1}, x_{1:t}) \ p(m_i \mid z_{1:t-1}, x_{1:t})}{p(z_t \mid z_{1:t-1}, x_{1:t})}$

$$p(m_i \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_t \mid m_i, z_{1:t-1}, x_{1:t}) p(m_i \mid z_{1:t-1}, x_{1:t})}{p(z_t \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(z_t \mid m_i, x_t) p(m_i \mid z_{1:t-1}, x_{1:t-1})}{p(z_t \mid z_{1:t-1}, x_{1:t})}$$

$$p(m_{i} \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_{t} \mid m_{i}, z_{1:t-1}, x_{1:t}) p(m_{i} \mid z_{1:t-1}, x_{1:t})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(z_{t} \mid m_{i}, x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(z_{t} \mid z_{1:t-1}, x_{1:t-1})}$$

$$p(z_{t} \mid m_{i}, x_{t}) \stackrel{\text{Bayes rule}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}) p(z_{t} \mid x_{t})}{p(m_{i} \mid x_{t})}$$

$$p(m_i \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_t \mid m_i, z_{1:t-1}, x_{1:t}) \ p(m_i \mid z_{1:t-1}, x_{1:t})}{p(z_t \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(z_t \mid m_i, x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1})}{p(z_t \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Bayes rule}}{=} \frac{p(m_i \mid z_t, x_t) \ p(z_t \mid x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1})}{p(m_i \mid x_t) \ p(z_t \mid z_{1:t-1}, x_{1:t})}$$

$$p(m_{i} \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_{t} \mid m_{i}, z_{1:t-1}, x_{1:t}) \ p(m_{i} \mid z_{1:t-1}, x_{1:t})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(z_{t} \mid m_{i}, x_{t}) \ p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(z_{t} \mid z_{1:t-1}, x_{1:t-1})}$$

$$\stackrel{\text{Bayes rule}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}) \ p(z_{t} \mid x_{t}) \ p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(m_{i} \mid x_{t}) \ p(z_{t} \mid z_{1:t-1}, x_{1:t-1})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}, p(z_{t} \mid x_{t}) \ p(m_{i} \mid z_{1:t-1}, x_{1:t-1}))}{p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}$$

$$p(m_{i} \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_{t} \mid m_{i}, z_{1:t-1}, x_{1:t}) p(m_{i} \mid z_{1:t-1}, x_{1:t})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(z_{t} \mid m_{i}, x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Bayes rule}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}) p(z_{t} \mid x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(m_{i} \mid x_{t}) p(z_{t} \mid z_{1:t-1}, x_{1:t-1})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}) p(z_{t} \mid x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}$$

Do exactly the same for the opposite event:

 $p(\neg m_i \mid z_{1:t}, x_{1:t}) \stackrel{\text{the same}}{=} \frac{p(\neg m_i \mid z_t, x_t) \ p(z_t \mid x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1})}{p(\neg m_i) \ p(z_t \mid z_{1:t-1}, x_{1:t})}$

 By computing the ratio of both probabilities, we obtain:

$$\frac{p(m_i \mid z_{1:t}, x_{1:t})}{p(\neg m_i \mid z_{1:t}, x_{1:t})} = \frac{\frac{p(m_i \mid z_t, x_t) \ p(z_t \mid x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1})}{p(m_i) \ p(z_t \mid z_{1:t-1}, x_{1:t})}}{\frac{p(\neg m_i \mid z_t, x_t) \ p(z_t \mid x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1})}{p(\neg m_i) \ p(z_t \mid z_{1:t-1}, x_{1:t-1})}}$$

 By computing the ratio of both probabilities, we obtain:

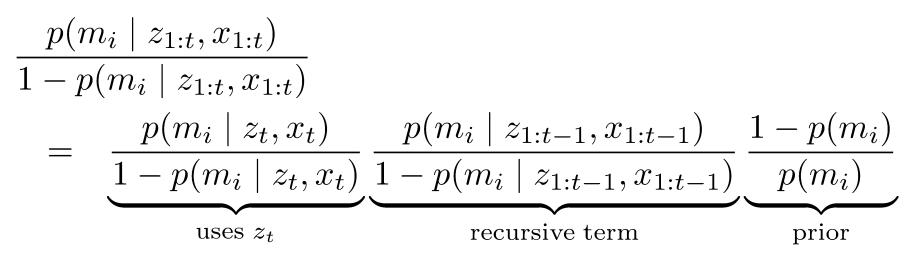
$$\frac{p(m_i \mid z_{1:t}, x_{1:t})}{p(\neg m_i \mid z_{1:t}, x_{1:t})} = \frac{p(m_i \mid z_t, x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(\neg m_i)}{p(\neg m_i \mid z_t, x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(m_i)} = \frac{p(m_i \mid z_t, x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(m_i)}{1 - p(m_i \mid z_t, x_t)} \frac{p(m_i \mid z_{1:t-1}, x_{1:t-1})}{1 - p(m_i \mid z_{1:t-1}, x_{1:t-1})} \frac{1 - p(m_i)}{p(m_i)}$$

 By computing the ratio of both probabilities, we obtain:

$$\frac{p(m_i \mid z_{1:t}, x_{1:t})}{1 - p(m_i \mid z_{1:t}, x_{1:t})} = \frac{p(m_i \mid z_t, x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(\neg m_i)}{p(\neg m_i \mid z_t, x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(m_i)} = \underbrace{\frac{p(m_i \mid z_t, x_t)}{1 - p(m_i \mid z_t, x_t)}}_{\text{uses } z_t} \underbrace{\frac{p(m_i \mid z_{1:t-1}, x_{1:t-1})}{p(m_i \mid z_{1:t-1}, x_{1:t-1})}}_{\text{recursive term}} \underbrace{\frac{1 - p(m_i)}{p(m_i)}}_{\text{prior}}$$

Occupancy Update Rule

Recursive rule



Occupancy Update Rule

Recursive rule

$$\frac{p(m_i \mid z_{1:t}, x_{1:t})}{1 - p(m_i \mid z_{1:t}, x_{1:t})} = \underbrace{\frac{p(m_i \mid z_t, x_t)}{1 - p(m_i \mid z_t, x_t)}}_{\text{uses } z_t} \underbrace{\frac{p(m_i \mid z_{1:t-1}, x_{1:t-1})}{1 - p(m_i \mid z_{1:t-1}, x_{1:t-1})}}_{\text{recursive term}} \underbrace{\frac{1 - p(m_i)}{p(m_i)}}_{\text{prior}}$$

Often written as

$$Bel(m_t^i) = \left[1 + \frac{1 - p(m_t^i \mid z_t, x_t)}{p(m_t^i \mid z_t, x_t)} \frac{p(m_t^i)}{1 - p(m_t^i)} \frac{1 - Bel(m_{t-1}^i)}{Bel(m_{t-1}^i)}\right]^{-1}$$

Log Odds Notation

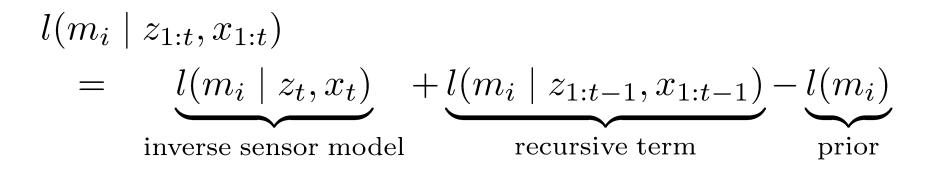
Log odds ratio is defined as

$$l(x) = \log \frac{p(x)}{1 - p(x)}$$

• and with the ability to retrieve p(x) $p(x) = 1 - \frac{1}{1 + \exp l(x)}$

Occupancy Mapping in Log Odds Form

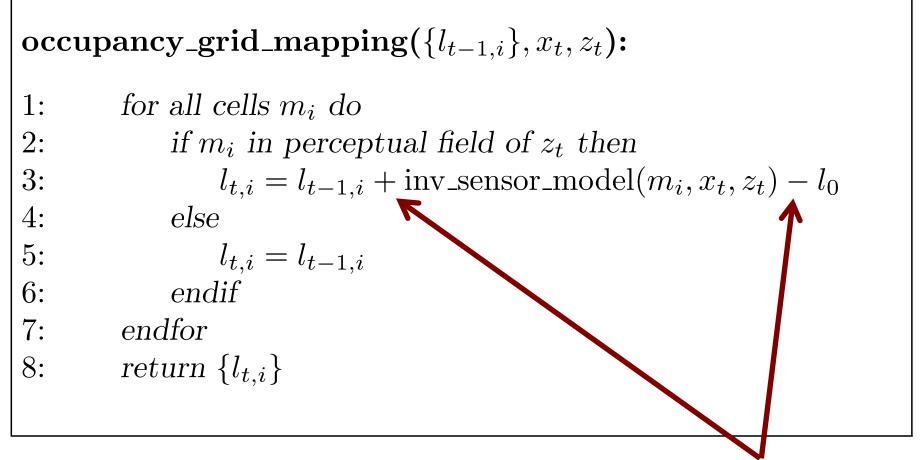
The product turns into a sum



or in short

 $l_{t,i} = \text{inv_sensor_model}(m_i, x_t, z_t) + l_{t-1,i} - l_0$

Occupancy Mapping Algorithm

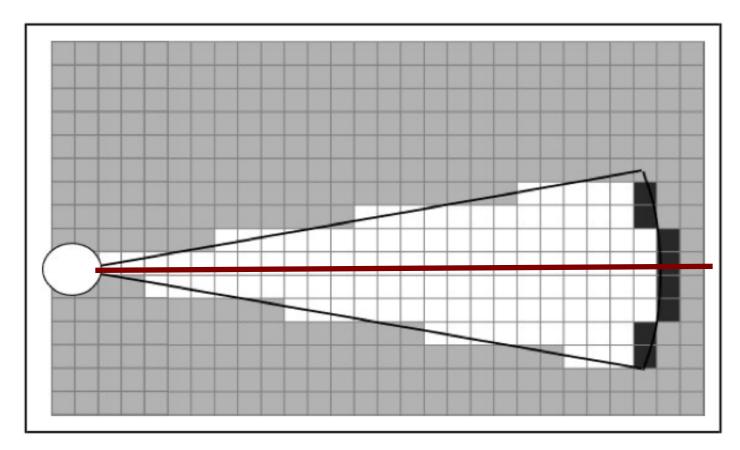


highly efficient, only requires to compute sums

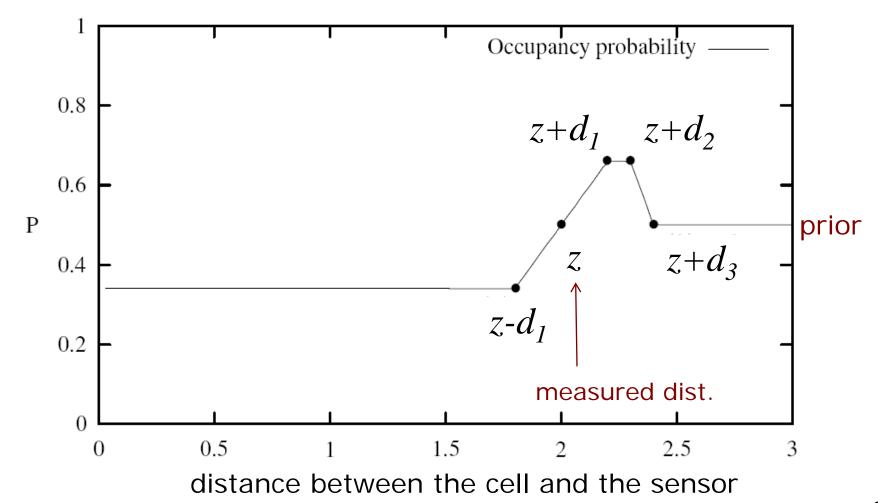
Occupancy Grid Mapping

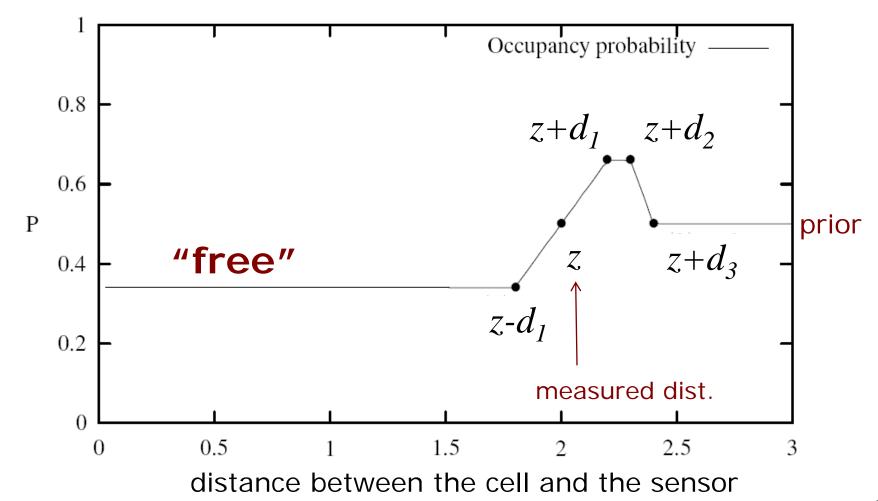
- Developed in the mid 80's by Moravec and Elfes
- Originally developed for noisy sonars
- Also called "mapping with know poses"

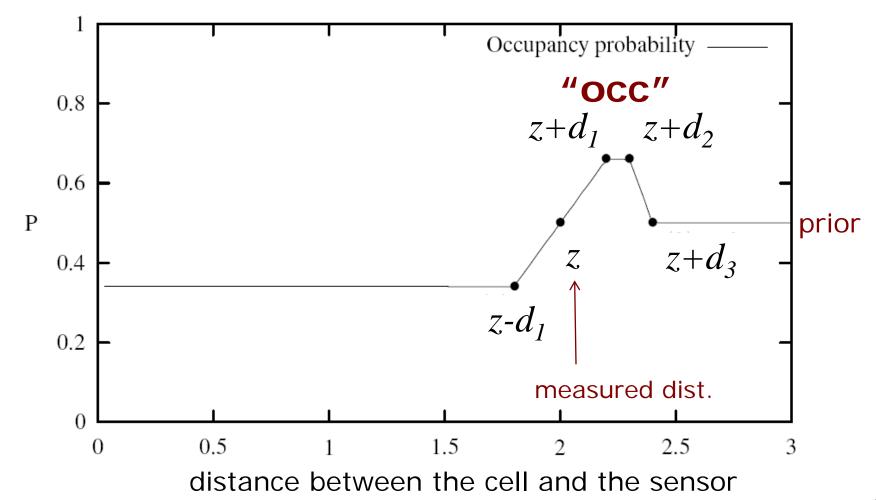
Inverse Sensor Model for Sonars Range Sensors

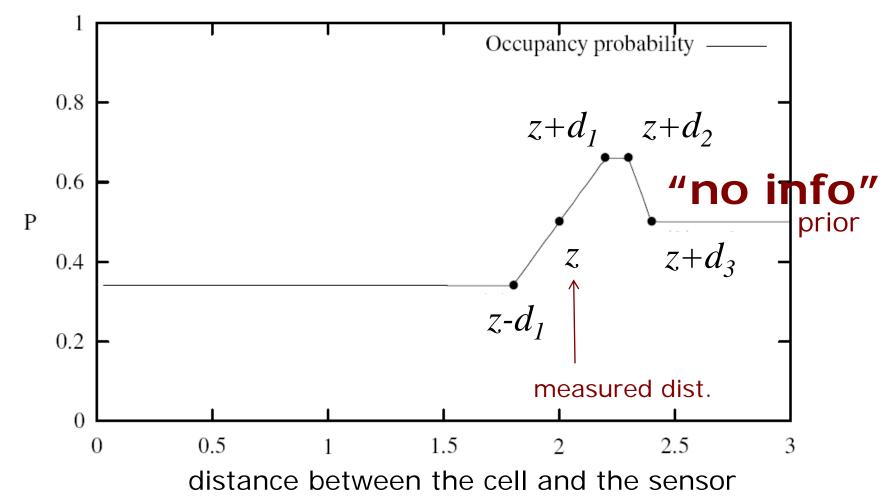


In the following, consider the cells along the optical axis (red line)

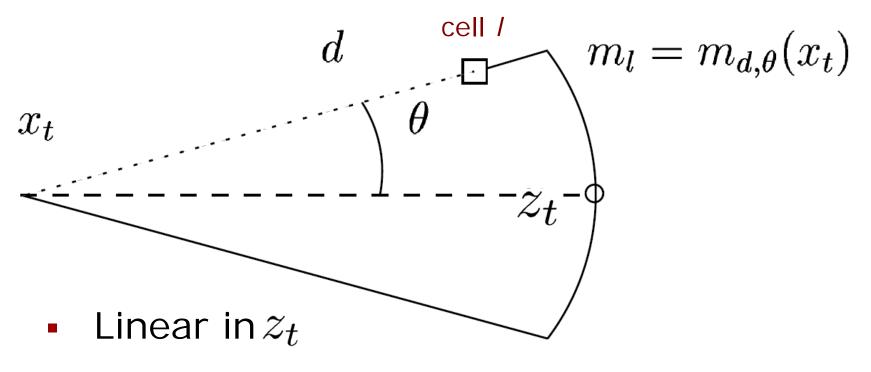






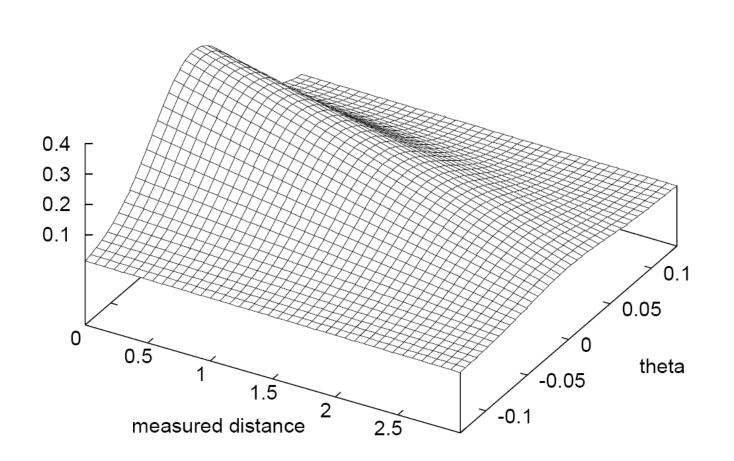


Update depends on the Measured Distance and Deviation from the Optical Axis



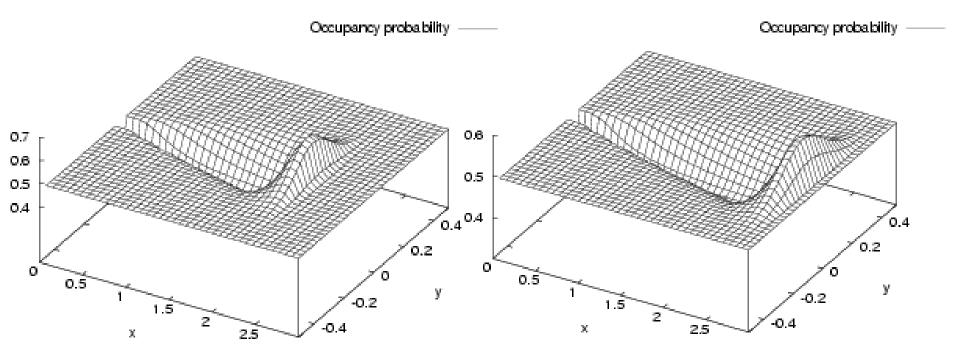
• Gaussian in θ

Intensity of the Update



s

Resulting Model $p(m_i | z_t, x_t)$

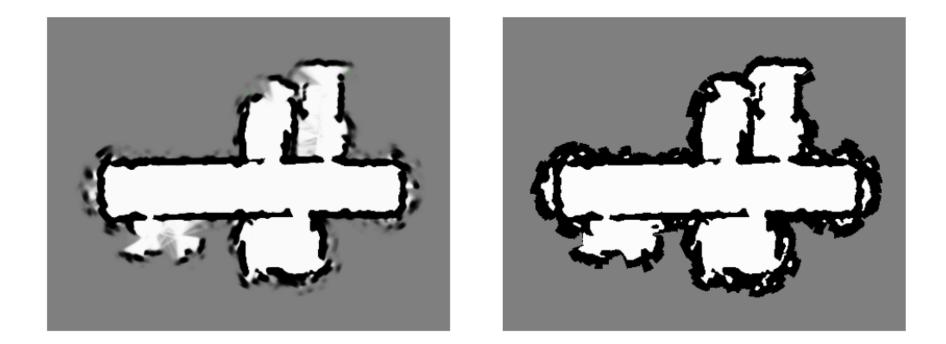


Example: Incremental Updating of Occupancy Grids

+	X	+	X)	+			
+		+	<u>)</u>	+	X		
+		+		+			
+		+	2)	+	.2)		
+	. 2	+	. 2	+	. 🔊		
+	. 1)	+	2)	+	20	\rightarrow	ĩ

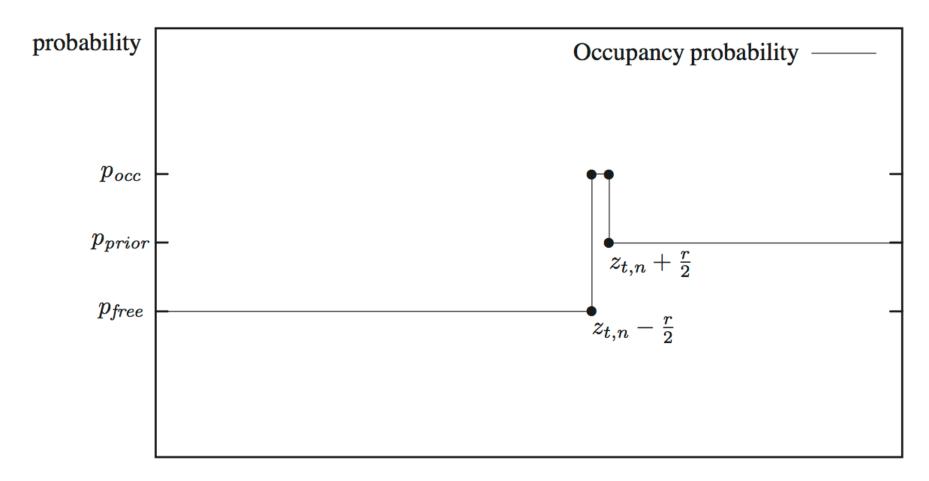
Resulting Map Obtained with Ultrasound Sensors

Resulting Occupancy and Maximum Likelihood Map



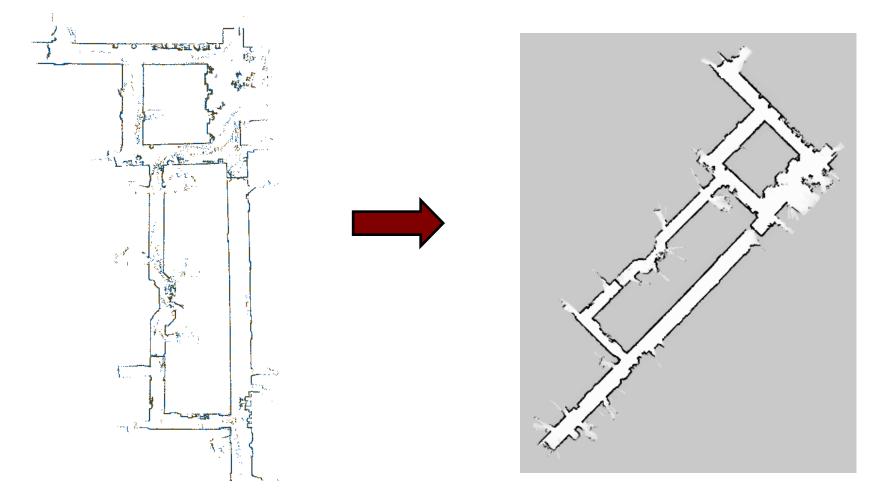
The maximum likelihood map is obtained by rounding the probability for each cell to 0 or 1.

Inverse Sensor Model for Laser Range Finders

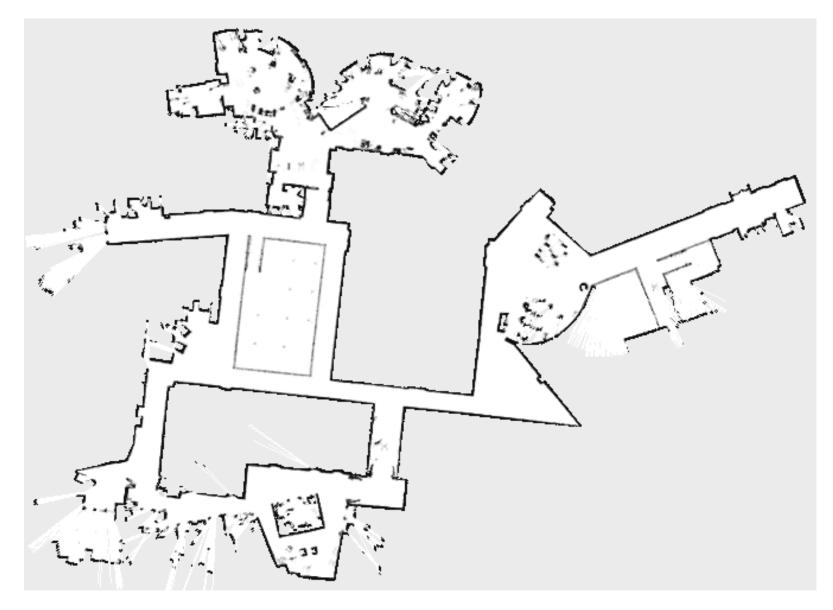


distance between sensor and cell under consideration

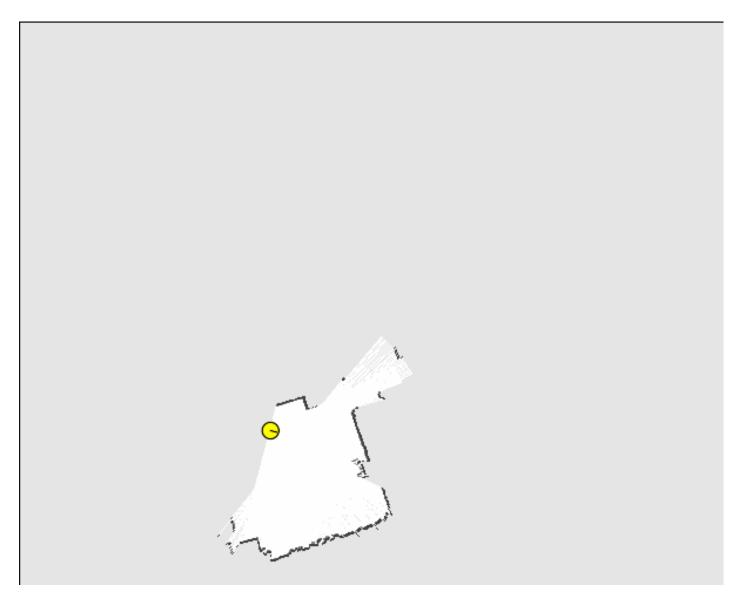
Occupancy Grids From Laser Scans to Maps



Example: MIT CSAIL 3rd Floor



Uni Freiburg Building 106



Alternative: Counting Model

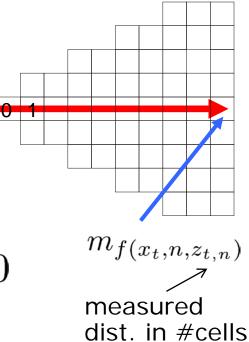
- For every cell count
 - hits(x,y): number of cases where a beam ended at <x,y>
 - misses(x,y): number of cases where a beam passed through <x,y>

$$Bel(m^{[xy]}) = \frac{\operatorname{hits}(x,y)}{\operatorname{hits}(x,y) + \operatorname{misses}(x,y)}$$

Value of interest: P(reflects(x,y))

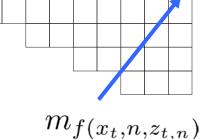
The Measurement Model

- Pose at time $t: x_t$
- Beam n of scan at time t: z_{t,n}
- Maximum range reading: $\zeta_{t,n} = 1$
- Beam reflected by an object: $\zeta_{t,n} = 0$



The Measurement Model

- Pose at time $t: x_t$
- Beam n of scan at time t: z_{t,n}
- Maximum range reading: $\zeta_{t,n} = 1$
- Beam reflected by an object: $\zeta_{t,n} = 0$

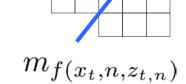


max range: "first z_{t,n}-1 cells covered by the beam must be free"

$$p(z_{t,n}|x_t,m) = \begin{cases} \prod_{k=0}^{z_{t,n}-1} (1 - m_{f(x_t,n,k)}) & \text{if } \zeta_{t,n} = 1 \end{cases}$$

The Measurement Model

- Pose at time $t: x_t$
- Beam n of scan at time t: z_{t,n}
- Maximum range reading: $\zeta_{t,n} = 1$
- Beam reflected by an object: $\zeta_{t,n} = 0$



max range: "first z_{t,n}-1 cells covered by the beam must be free"

$$p(z_{t,n}|x_t,m) = \begin{cases} \prod_{k=0}^{z_{t,n}-1} (1-m_{f(x_t,n,k)}) & \text{if } \zeta_{t,n} = 1\\ m_{f(x_t,n,z_{t,n})} \prod_{k=0}^{z_{t,n}-1} (1-m_{f(x_t,n,k)}) & \zeta_{t,n} = 0 \end{cases}$$

otherwise: "last cell reflected beam, all others free"

- Compute values for m that maximize $m^* = \operatorname{argmax}_m P(m \mid z_1, \cdots, z_t, x_1, \cdots, x_t)$
- Assuming a uniform prior probability for P(m), this is equivalent to maximizing:

$$m^{\star} = \operatorname{argmax}_{m} P(z_{1}, \dots, z_{t} \mid m, x_{1}, \dots, x_{t})$$

=
$$\operatorname{argmax}_{m} \prod_{t=1}^{T} P(z_{t} \mid m, x_{t}) \underset{\text{and only depend on } x_{t}}{\text{since } z_{t}}$$

=
$$\operatorname{argmax}_{m} \sum_{t=1}^{T} \ln P(z_{t} \mid m, x_{t})$$

Computing the Most Likely Map

$$m^{\star} = \operatorname{argmax}_{m} \sum_{j=1}^{J} \sum_{t=1}^{T} \sum_{n=1}^{N} \left(I(f(x_{t}, n, z_{t,n}) = j) \cdot (1 - \zeta_{t,n}) \cdot \ln m_{j} + \sum_{k=0}^{z_{t,n}-1} I(f(x_{t}, n, k) = j) \cdot \ln(1 - m_{j}) \right)$$

 $m^{\star} = \arg \max_{m} \sum_{j=1}^{J} \sum_{t=1}^{T} \sum_{n=1}^{N} \left(I(f(x_{t}, n, z_{t,n}) = j) \cdot (1 - \zeta_{t,n}) \cdot \ln m_{j} + \sum_{k=0}^{z_{t,n}-1} I(f(x_{t}, n, k) = j) \cdot \ln(1 - m_{j}) \right)$

 $m^{\star} = \operatorname{argmax}_{m} \sum_{j=1}^{J} \sum_{t=1}^{T} \sum_{n=1}^{N} \left(I(f(x_{t}, n, z_{t,n}) = j) \cdot (1 - \zeta_{t,n}) \cdot \ln m_{j} + \sum_{k=0}^{z_{t,n}-1} I(f(x_{t}, n, k) = j) \cdot \ln(1 - m_{j}) \right)$

$$m^{\star} = \operatorname{argmax}_{m} \sum_{j=1}^{J} \sum_{t=1}^{T} \sum_{n=1}^{N} \left(I(f(x_{t}, n, z_{t,n}) = j) \cdot (1 - \zeta_{t,n}) \cdot \ln m_{j} + \sum_{k=0}^{z_{t,n}-1} I(f(x_{t}, n, k) = j) \cdot \ln(1 - m_{j}) \right)$$

Define

$$\alpha_j = \sum_{t=1}^T \sum_{n=1}^N I(f(x_t, n, z_{t,n}) = j) \cdot (1 - \zeta_{t,n})$$
$$\beta_j = \sum_{t=1}^T \sum_{n=1}^N \sum_{k=0}^{z_{t,n}-1} I(f(x_t, n, k) = j)$$

Meaning of α_j and β_j

$$\alpha_j = \sum_{t=1}^T \sum_{n=1}^N I(f(x_t, n, z_{t,n}) = j) \cdot (1 - \zeta_{t,n})$$

Corresponds to the number of times a beam that is not a maximum range beam ended in cell j (hits(j))

$$\beta_j = \sum_{t=1}^T \sum_{n=1}^N \sum_{k=0}^{z_{t,n}-1} I(f(x_t, n, k) = j)$$

Corresponds to the number of times a beam traversed cell j without ending in it (misses(j))

Accordingly, we get

$$\mathbf{m}^{\star} = \operatorname{argmax}_{m} \sum_{j=1}^{J} \left(\alpha_{j} \ln m_{j} + \beta_{j} \ln(1 - m_{j}) \right)$$

As the m_j 's are independent we can maximize this sum by maximizing it for every j

If we set

we obtain

$$\frac{\partial}{\partial m_j} = \frac{\alpha_j}{m_j} - \frac{\beta_j}{1 - m_j} = 0 \qquad m_j = \frac{\alpha_j}{\alpha_j + \beta_j}$$

Computing the most likely map reduces to counting how often a cell has reflected a measurement and how often the cell was traversed by a beam.

Difference between Occupancy Grid Maps and Counting

- The counting model determines how often a cell reflects a beam.
- The occupancy model represents whether or not a cell is occupied by an object.
- Although a cell might be occupied by an object, the reflection probability of this object might be very small.

Example Occupancy Map

Example Reflection Map



Example

- Out of *n* beams only 60% are reflected from a cell and 40% intercept it without ending in it.
- Accordingly, the reflection probability will be 0.6.
- Suppose p(occ | z) = 0.55 when a beam ends in a cell and p(occ | z) = 0.45 when a beam traverses a cell without ending in it.
- Accordingly, after *n* measurements we will have

$$\left(\frac{0.55}{0.45}\right)^{n^{*}0.6} * \left(\frac{0.45}{0.55}\right)^{n^{*}0.4} = \left(\frac{11}{9}\right)^{n^{*}0.6} * \left(\frac{11}{9}\right)^{-n^{*}0.4} = \left(\frac{11}{9}\right)^{n^{*}0.2}$$

The reflection map yields a value of 0.6, while the occupancy grid value converges to 1 as n increases.

Summary (1)

- Grid maps are a popular model for representing the environment
- Occupancy grid maps discretize the space into independent cells
- Each cell is a binary random variable estimating if the cell is occupied
- We estimate the state of every cell using a binary Bayes filter
- This leads to an efficient algorithm for mapping with known poses
- The log odds model is fast to compute

Summary (2)

- Reflection probability maps are an alternative representation
- The key idea of the sensor model is to calculate for every cell the probability that it reflects a sensor beam
- Given the this sensor model, counting the number of times how often a measurement intercepts or ends in a cell yields the maximum likelihood model
- This approach has a consistent sensor model for mapping and localization