Introduction to Mobile Robotics

SLAM – Grid-based FastSLAM

Lukas Luft, Wolfram Burgard
The SLAM Problem

- SLAM stands for simultaneous localization and mapping
- The task of building a map while estimating the pose of the robot relative to this map
- SLAM has for a long time considered being a chicken and egg problem:
 - a map is needed to localize the robot and
 - a pose estimate is needed to build a map
Mapping using Raw Odometry
Grid-based SLAM

- Can we solve the SLAM problem if no pre-defined landmarks are available?
- Can we use the ideas of FastSLAM to build grid maps?
- As with landmarks, the map depends on the poses of the robot during data acquisition
- If the poses are known, grid-based mapping is easy (“mapping with known poses”)
Rao-Blackwellization

\[p(x_{1:t}, m \mid z_{1:t}, u_{0:t-1}) = p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(m \mid x_{1:t}, z_{1:t}) \]

Factorization first introduced by Murphy in 1999
Rao-Blackwellization

SLAM posterior

Robot path posterior

Mapping with known poses

Factorization first introduced by Murphy in 1999
Rao-Blackwellization

\[
p(x_{1:t}, m \mid z_{1:t}, u_{0:t-1}) = \]
\[
p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(m \mid x_{1:t}, z_{1:t})
\]

This is localization, use MCL

Use the pose estimate from the MCL and apply mapping with known poses
A Graphical Model of Mapping with Rao-Blackwellized PFs

\[\begin{align*}
 &u_0 & \quad x_0 & \quad m & \quad Z_1 \\
 & & \quad x_1 & \quad Z_2 \\
 & & & \quad x_2 & \quad Z_t \\
 & & & \quad \ldots & \quad \vdots \\
 & & & \quad x_t \\
\end{align*} \]
Mapping with Rao-Blackwellized Particle Filters

- Each particle represents a possible trajectory of the robot

- Each particle
 - maintains its own map and
 - updates it upon “mapping with known poses”

- Each particle survives with a probability proportional to the likelihood of the observations relative to its own map
Particle Filter Example

map of particle 1

3 particles

map of particle 2

map of particle 3
Problem

- Each map is quite big in case of grid maps
- Each particle maintains its own map, therefore, one needs to keep the number of particles small

Solution:
Compute better proposal distributions!

Idea:
Improve the pose estimate before applying the particle filter
Pose Correction Using Scan Matching

Maximize the likelihood of the i-th pose and map relative to the (i-1)-th pose and map

\[\hat{x}_t = \underset{x_t}{\operatorname{argmax}} \{ p(z_t \mid x_t, \hat{m}_{t-1}) \cdot p(x_t \mid u_{t-1}, \hat{x}_{t-1}) \} \]

current measurement

robot motion

map constructed so far
Scan-Matching Example
Motion Model for Scan Matching

Raw Odometry
Scan Matching
Mapping using Scan Matching
FastSLAM with Improved Odometry

- Scan-matching provides a **locally consistent** pose correction

- Pre-correct short odometry sequences using scan-matching and use them as input to FastSLAM

- Fewer particles are needed, since the error in the input is smaller
Graphical Model for Mapping with Improved Odometry

\[u_0 \ldots u_{k-1} \]
\[Z_1 \ldots Z_{k-1} \]

\[u_k \ldots u_{2k-1} \]
\[Z_{k+1} \ldots Z_{2k-1} \]

\[\ldots \]

\[u_{n\cdot k} \ldots u_{(n+1)\cdot k-1} \]
\[Z_{n\cdot k+1} \ldots Z_{(n+1)\cdot k-1} \]

\[x_0 \]
\[\ldots \]

\[x_{k} \]
\[x_{2k} \]
\[\ldots \]

\[x_{n\cdot k} \]

\[m \]
\[z_k \]
\[z_{2k} \]
\[\ldots \]

\[z_{n\cdot k} \]
FastSLAM with Scan-Matching
FastSLAM with Scan-Matching
FastSLAM with Scan-Matching
Comparison to Standard FastSLAM

- Same model for observations
- Odometry instead of scan matching as input
- Number of particles varying from 500 to 2,000
- Typical result:
Conclusion (thus far …)

- The presented approach is a highly efficient algorithm for SLAM combining ideas of scan matching and FastSLAM.
- Scan matching is used to transform sequences of laser measurements into odometry measurements.
- This version of grid-based FastSLAM can handle larger environments than before in “real time.”
What’s Next?

- Further reduce the number of particles
- Improved proposals will lead to more accurate maps
- Use the properties of our sensor when drawing the next generation of particles
The Optimal Proposal Distribution

Probability for pose given collected data

\[p(x_t|x_{t-1}^{(i)}, m(i), z_t, u_t) = \frac{p(z_t|x_t, m(i))p(x_t|x_{t-1}^{(i)}, u_t)}{\int p(z_t|x_t, m(i))p(x_t|x_{t-1}^{(i)}, u_t) \, dx_t} \]

[Arulampalam et al., 01]

observation model
motion model
normalization
The Optimal Proposal Distribution

\[p(x_t|x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) = \frac{p(z_t|x_t, m^{(i)})p(x_t|x_{t-1}^{(i)}, u_t)}{\int p(z_t|x_t, m^{(i)})p(x_t|x_{t-1}^{(i)}, u_t)dx_t} \]

For lasers \(p(z_t|x_t, m^{(i)}) \) is extremely peaked and dominates the product.

We can safely approximate \(p(x_t|x_{t-1}^{(i)}, u_t) \) by a constant: \(p(x_t|x_{t-1}^{(i)}, u_t) \mid_{x_t: p(z_t|x_t, m^{(i)}) > \epsilon} = c \)
Resulting Proposal Distribution

\[p(x_t|x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) \sim \frac{p(z_t|x_t, m^{(i)})}{\int_{x_t \in \{x | p(z_t|x, m^{(i)}) > \epsilon\}} p(z_t|x_t, m^{(i)}) \, dx_t} \]

Approximate this equation by a Gaussian:

\[p(x_t|x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) \sim \mathcal{N}(\mu^{(i)}, \Sigma^{(i)}) \]

maximum reported by a scan matcher

Gaussian approximation

Sampled points around the maximum

Draw next generation of samples
Estimating the Parameters of the Gaussian for each Particle

\[\mu^{(i)} = \frac{1}{\eta} \sum_{j=1}^{K} x_j \ p(z_t|x_j, m^{(i)}) \]

\[\Sigma^{(i)} = \frac{1}{\eta} \sum_{j=1}^{K} (x_j - \mu^{(i)})(x_j - \mu^{(i)})^T \ p(z_t|x_j, m^{(i)}) \]

- \(x_j \) are a set of sample points around the point \(x^* \) the scan matching has converged to.
- \(\eta \) is a normalizing constant
Computing the Importance Weight

\[w_t^{(i)} = w_{t-1}^{(i)} p(z_t | x_{t-1}^{(i)}, m^{(i)}, u_t) \]

\[\approx w_{t-1}^{(i)} \int p(z_t | x_t, m^{(i)}) p(x_t | x_{t-1}^{(i)}, u_t) \, dx_t \]

\[\approx w_{t-1}^{(i)} c \int_{x_t \in \{ x | p(z_t | x, m^{(i)}) > \epsilon \}} p(z_t | x_t, m^{(i)}) \, dx_t \]

\[\approx w_{t-1}^{(i)} c \sum_{j=1}^{K} p(z_t | x_j, m^{(i)}) \]

Sampled points around the maximum of the observation likelihood
Improved Proposal

- The proposal adapts to the structure of the environment
Resampling

- Sampling from an improved proposal reduces the effects of resampling
- However, resampling at each step limits the “memory” of our filter
- Supposed we loose at each frame 25% of the particles, in the worst case we have a memory of only 4 steps.

Goal: reduce the number of resampling actions
Selective Re-sampling

- Re-sampling is dangerous, since important samples might get lost (particle depletion problem)

- In case of suboptimal proposal distributions re-sampling is necessary to achieve convergence.

- Key question: When should we re-sample?
Number of Effective Particles

\[n_{\text{eff}} = \frac{1}{\sum_i (w_t^{(i)})^2} \]

- Assuming normalized particle weights that sum up to 1.0: \(\sum_{i=1}^{n} w_t^{(i)} = 1 \Rightarrow n_{\text{eff}} \in [1, n] \)
- Empirical measure of how well the goal distribution is approximated by samples drawn from the proposal
- It describes “the variance of the particle weights”
- It is maximal for equal weights. In this case the distribution is close to the proposal
Resampling with n_{eff}

- If our approximation is close to the proposal, no resampling is needed

- We only re-sample when n_{eff} drops below a given threshold, typically $\frac{n}{2}$

- See [Doucet, ’98; Arulampalam, ’01]
Typical Evolution of n_{eff}

- Visiting new areas
- Closing the first loop
- Visiting known areas
- Second loop closure
Intel Lab

- 15 particles
- four times faster than real-time P4, 2.8GHz
- 5cm resolution during scan matching
- 1cm resolution in final map
Intel Lab

- **15 particles**
- Compared to FastSLAM with Scan-Matching, the particles are propagated closer to the true distribution
Outdoor Campus Map

- 30 particles
- 250x250m²
- 1.088 miles (odometry)
- 20cm resolution during scan matching
- 30cm resolution in final map
MIT Killian Court

- The “infinite-corridor-dataset” at MIT
MIT Killian Court - Video
Conclusion

- The ideas of FastSLAM can also be applied in the context of grid maps
- Utilizing accurate sensor observation leads to good proposals and highly efficient filters
- It is similar to scan-matching on a per-particle base
- The number of necessary particles and re-sampling steps can seriously be reduced
- Improved versions of grid-based FastSLAM can handle larger environments than naïve implementations in “real time” since they need one order of magnitude fewer samples
More Details on FastSLAM

- M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution to simultaneous localization and mapping, AAAI02 (*The classic FastSLAM paper with landmarks*)

- D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements, IROS03 (*FastSLAM on grid-maps using scan-matched input*)

- A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultaneous localization and mapping without predetermined landmarks, IJCAI03 (*An approach to handle big particle sets*)