Introduction to Mobile Robotics

Graph-Based SLAM

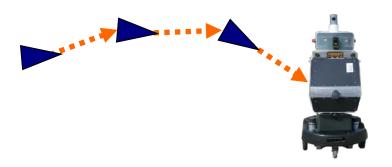
Wolfram Burgard

Particle Filter: Campus Map

- 30 particles
- 250x250m²
- 1.75 km (odometry)
- 20cm resolution during scan matching
- 30cm resolution in final map

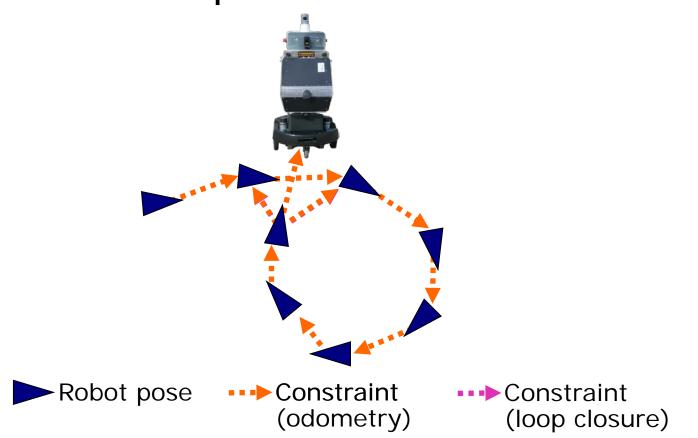
Graph-Based SLAM

- Constraints connect the poses of the robot while it is moving
- Constraints are inherently uncertain

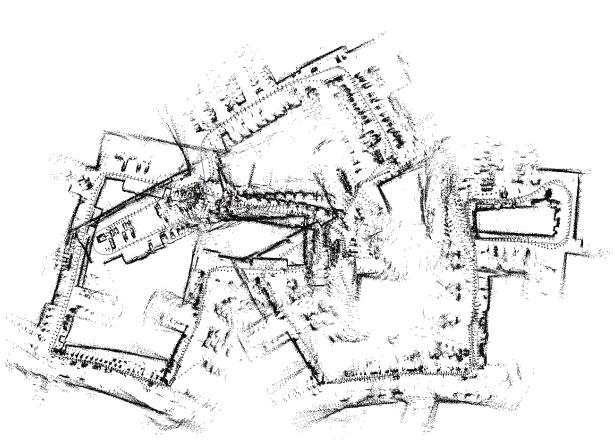


Graph-Based SLAM

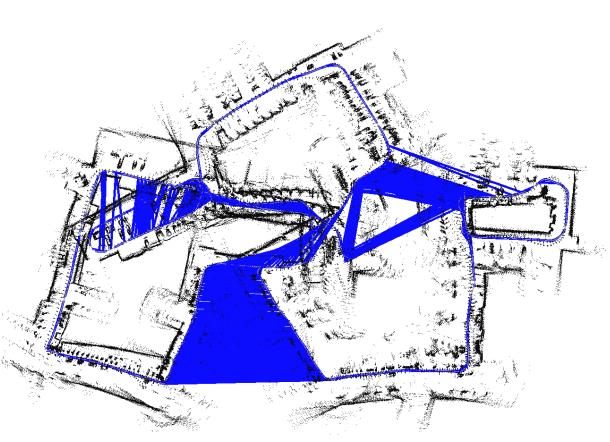
 Observing previously seen areas generates constraints between nonsuccessive poses



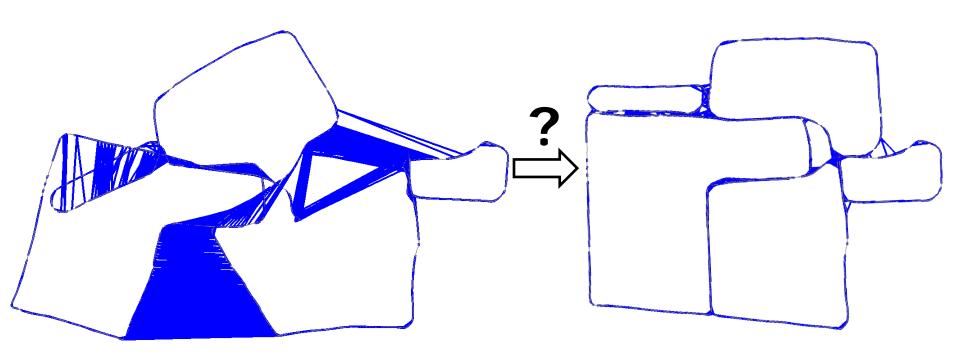
Example: Odometry Map



Example: Loop Closures



How to correct the trajectory?

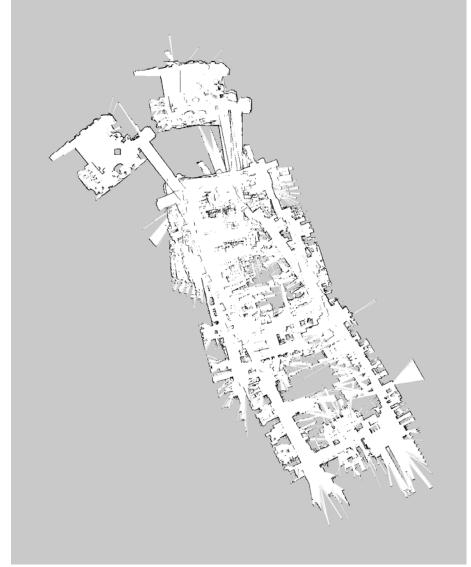


Imagine this to be a system of masses and springs!

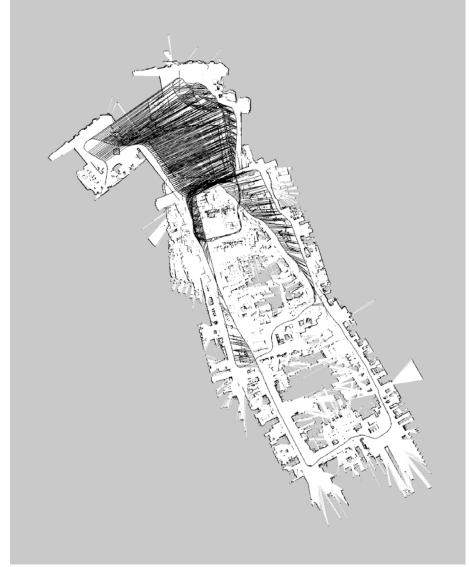
Idea of Graph-Based SLAM

- Use a graph to represent the problem
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial constraint between them
- Graph-Based SLAM: Build the graph and find a node configuration that minimize the error introduced by the constraints

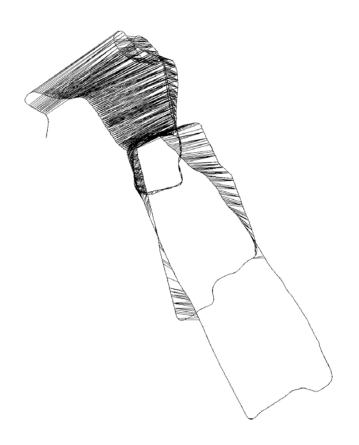
- Every node in the graph corresponds to a robot position and a laser measurement
- An edge between two nodes represents a spatial constraint between the nodes



- Every node in the graph corresponds to a robot position and a laser measurement
- An edge between two nodes represents a spatial constraint between the nodes

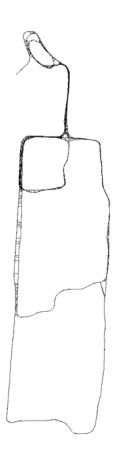


 Once we have the graph, we determine the most likely map by correcting the nodes



 Once we have the graph, we determine the most likely map by correcting the nodes

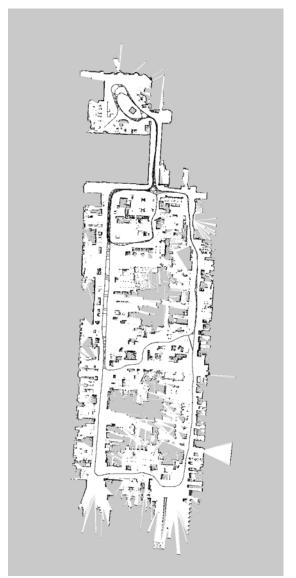
... like this



 Once we have the graph, we determine the most likely map by correcting the nodes

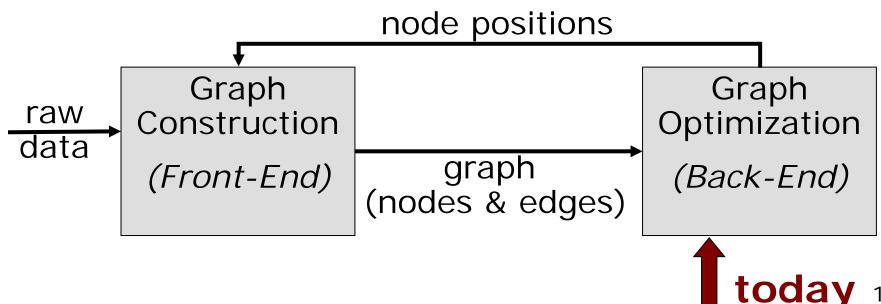
... like this

 Then, we can render a map based on the known poses



The Overall SLAM System

- Interplay of front-end and back-end
- A consistent map helps to determine new constraints by reducing the search space
- This lecture focuses only on the optimization



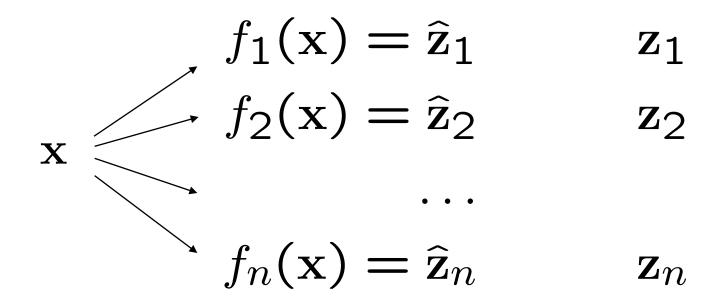
Least Squares in General

- Approach for computing a solution for an overdetermined system
- "More equations than unknowns"
- Minimizes the sum of the squared errors in the equations
- Standard approach to a large set of problems

Problem

- Given a system described by a set of n observation functions $\{f_i(\mathbf{x})\}_{i=1:n}$
- Let
 - X be the state vector
 - lacksquare lacksquare be a measurement of the state lacksquare
 - $\hat{\mathbf{z}}_i = f_i(\mathbf{x})$ be a function which maps \mathbf{x} to a predicted measurement $\hat{\mathbf{z}}_i$
- Given n noisy measurements $\mathbf{z}_{1:n}$ about the state \mathbf{x}
- Goal: Estimate the state x which bests explains the measurements $z_{1:n}$

Graphical Explanation



state (unknown) predicted measurements

real measurements

Error Function

 Error e_i is typically the difference between the predicted and actual measurement

$$\mathbf{e}_i(\mathbf{x}) = \mathbf{z}_i - f_i(\mathbf{x})$$

- We assume that the error has zero mean and is normally distributed
- Gaussian error with information matrix Ω_i
- The squared error of a measurement depends only on the state and is a scalar

$$e_i(\mathbf{x}) = \mathbf{e}_i(\mathbf{x})^T \mathbf{\Omega}_i \mathbf{e}_i(\mathbf{x})$$

Least Squares for SLAM

- Overdetermined system for estimating the robot's poses given observations
- "More observations than states"
- Minimizes the sum of the squared errors

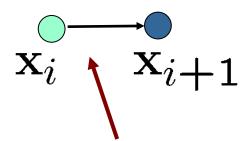
Today: Application to SLAM

The Graph

- It consists of n nodes $\mathbf{x} = \mathbf{x}_{1:n}$
- Each \mathbf{x}_i is a 2D or 3D transformation (the pose of the robot at time t_i)
- A constraint/edge exists between the nodes \mathbf{x}_i and \mathbf{x}_j if...

Create an Edge If... (1)

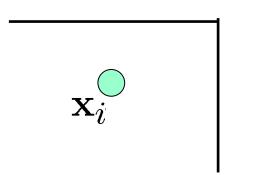
- ...the robot moves from x_i to x_{i+1}
- Edge corresponds to odometry

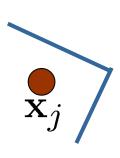


The edge represents the **odometry** measurement

Create an Edge If... (2)

- ...the robot observes the same part of the environment from \mathbf{x}_i and from \mathbf{x}_j
- Construct a **virtual measurement** about the position of \mathbf{x}_j seen from \mathbf{x}_i



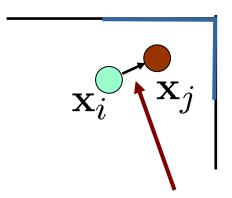


Measurement from \mathbf{x}_i

Measurement from \mathbf{x}_{j}

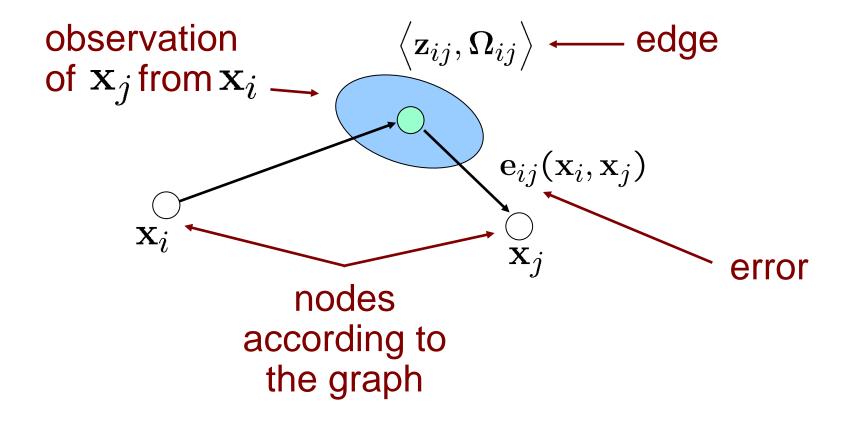
Create an Edge If... (2)

- ...the robot observes the same part of the environment from \mathbf{x}_i and from \mathbf{x}_j
- Construct a **virtual measurement** about the position of \mathbf{x}_j seen from \mathbf{x}_i

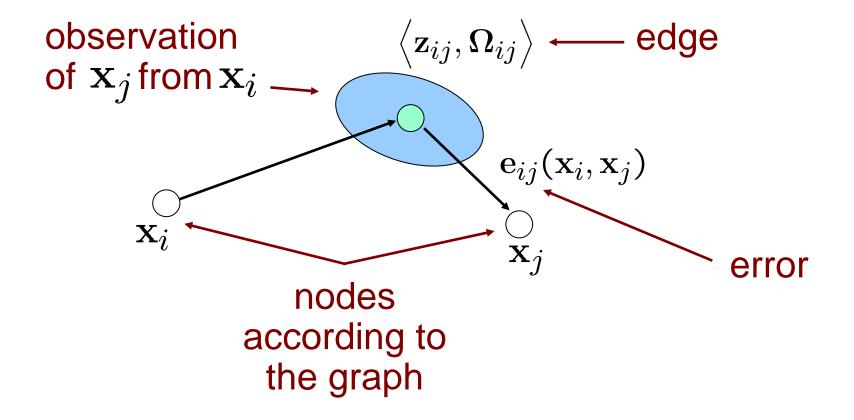


Edge represents the position of x_j seen from x_i based on the **observation**

Pose Graph



Pose Graph

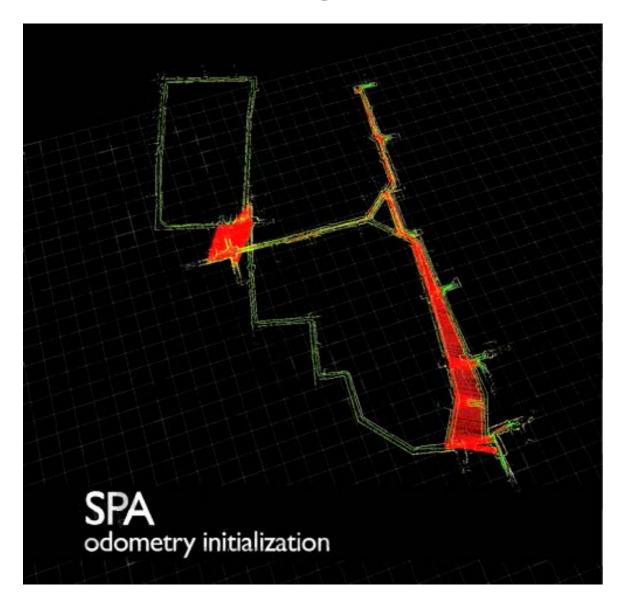


Goal:
$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{ij} \mathbf{e}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{e}_{ij}$$

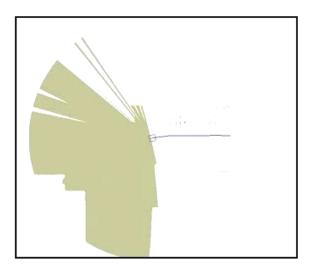
Gauss-Newton: The Overall Error Minimization Procedure

- Define the error function
- Linearize the error function
- Compute its derivative
- Set the derivative to zero
- Solve the linear system
- Iterate this procedure until convergence

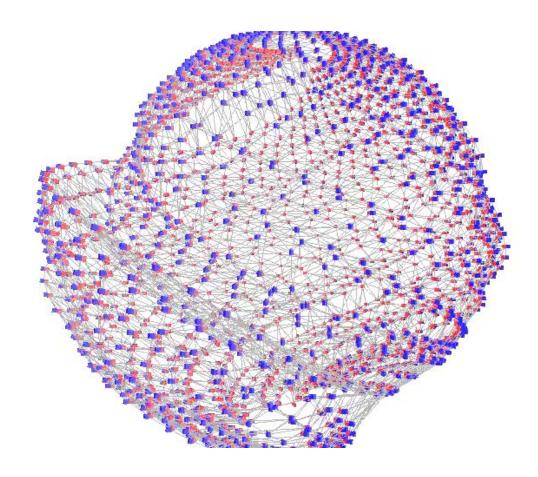
Sparse Pose Adjustment



Example: CS Campus Freiburg



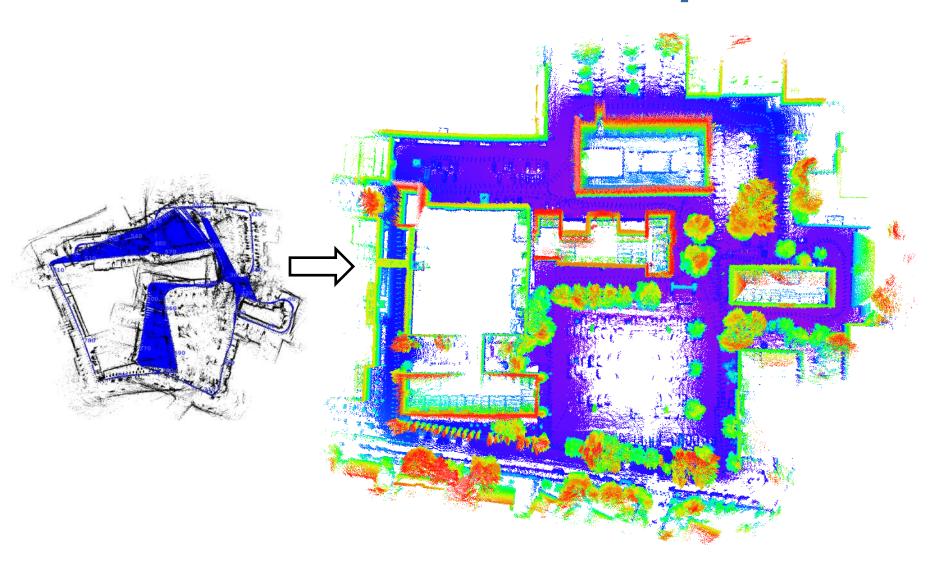
There are Variants for 3D



- Highly connected graph
- Poor initial guess
- LU & variants fail
- 2200 nodes
- 8600 constraints

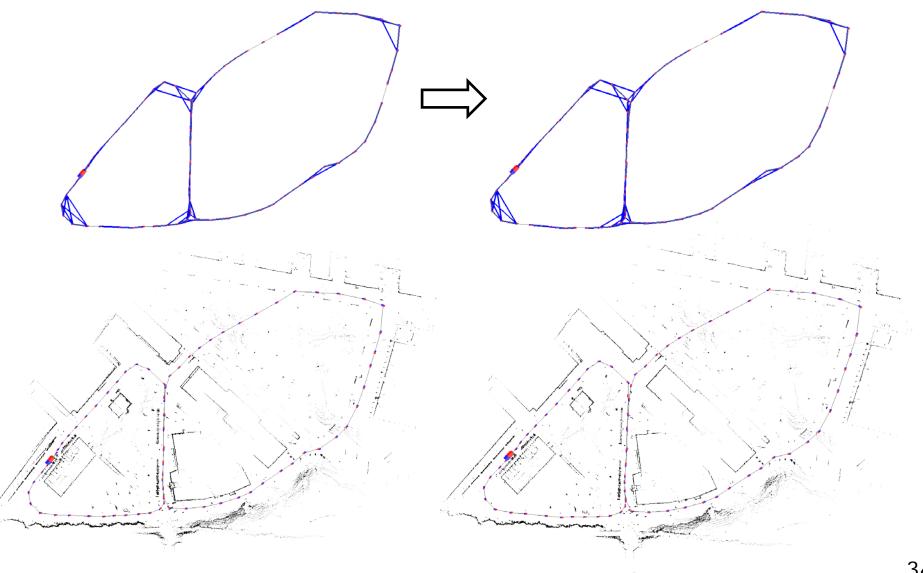


Hanover2: 3D SLAM Map



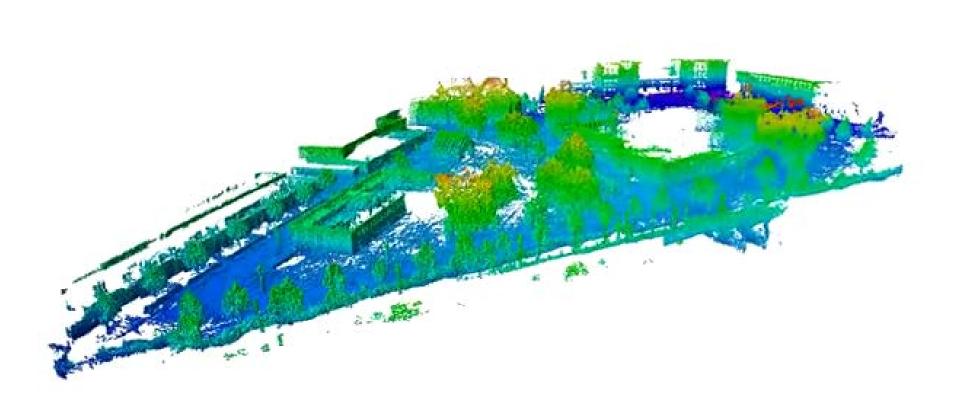
Campus: Scan Matching Map

Campus: Graph Optimization

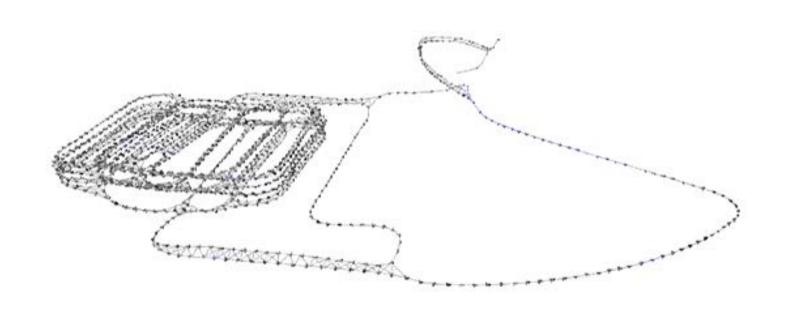


Campus: SLAM Map

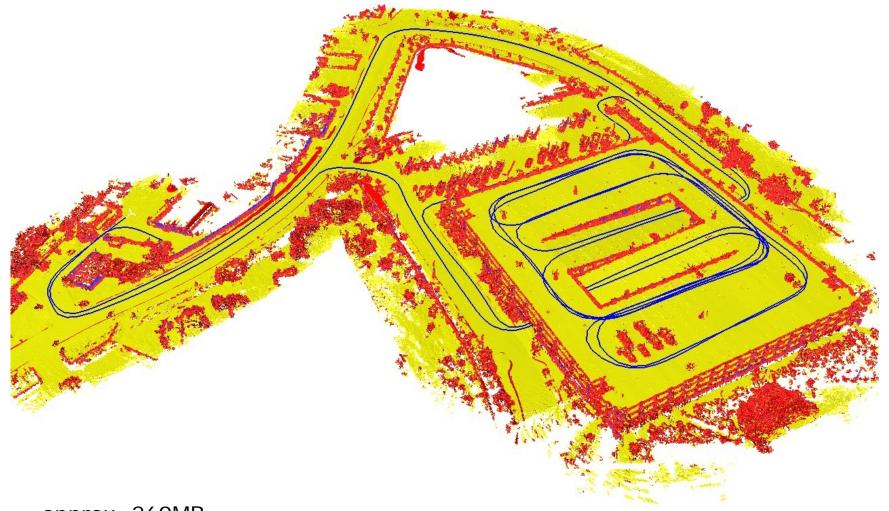
Freiburg Campus Octomap



Example: Stanford Garage



3D Map of the Stanford Parking Garage

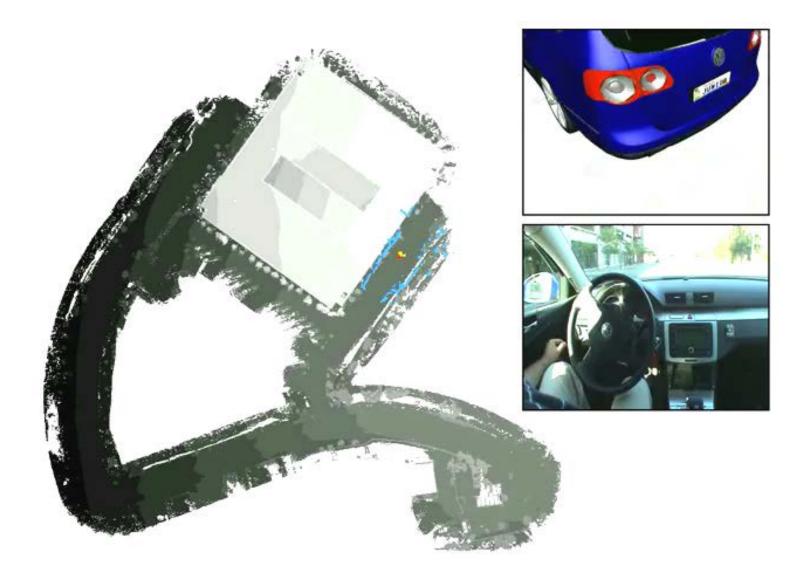


approx. 260MB

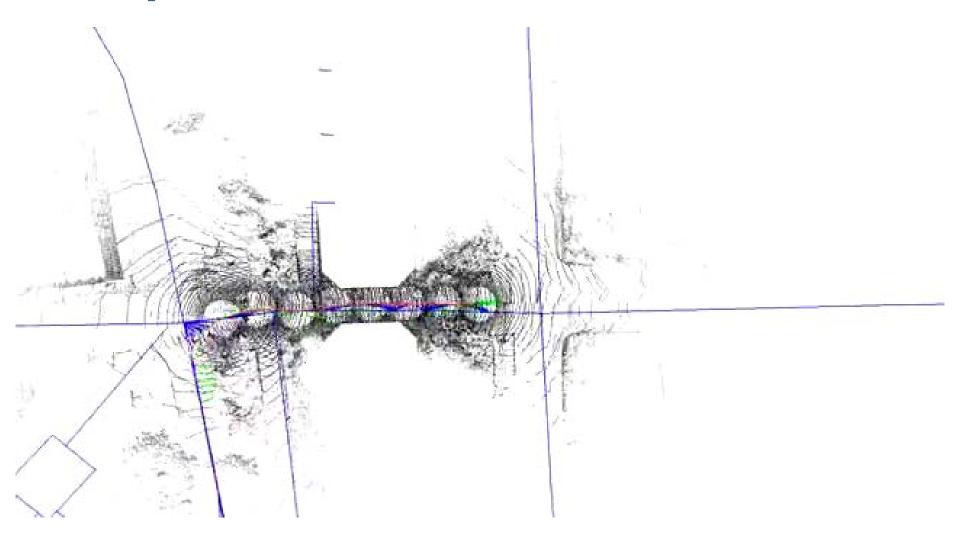
Application: Navigation with the Autonomous Car Junior

 Task: reach a parking spot on the upper level of the garage.

Autonomous Parking



Graph-SLAM with more Sensors



Graph SLAM is flexible regarding additional information (GPS, IMU, road network matches, ...)

Conclusions

- The back-end part of the SLAM problem can be effectively solved with Gauss-Newton error minimization
- Error functions compute the mismatch between the state and the observations
- Currently one of the state-of-the-art solutions for SLAM