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Path and Motion Planning 
 

Introduction to 
Mobile Robotics 

Wolfram Burgard 
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Motion Planning 

Latombe (1991):  
 

“… eminently necessary since, by 
definition, a robot accomplishes tasks by 
moving in the real world.” 

Goals: 
 Collision-free trajectories. 
 Robot should reach the goal location as 

quickly as possible. 
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 … in Dynamic Environments 
 How to react to unforeseen obstacles? 
 efficiency 
 reliability 

 Dynamic Window Approaches 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Grid-map-based planning 
[Konolige, 00] 

 Nearness-Diagram-Navigation 
[Minguez at al., 2001, 2002] 

 Vector-Field-Histogram+ 
 [Ulrich & Borenstein, 98]  

 A*, D*, D* Lite, ARA*, … 
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Two Challenges 
 Calculate the optimal path taking potential 

uncertainties in the actions into account 
 

 Quickly generate actions in the case of 
unforeseen objects 
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Classic Two-layered Architecture 

Planning 

Collision 
Avoidance 

sensor data 

map 

robot 

low frequency 

high frequency 

sub-goal 

motion command 
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Dynamic Window Approach 

 Collision avoidance: Determine collision-
free trajectories using geometric operations 

 Here: Robot moves on circular arcs 
 Motion commands (v,ω) 
 Which (v,ω) are admissible and reachable? 
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Admissible Velocities 
 Speeds are admissible if the robot would be 

able to stop before reaching the obstacle 
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Reachable Velocities 
 Speeds that are reachable by acceleration 
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DWA Search Space 

 Vs = all possible speeds of the robot. 
 Va = obstacle free area. 
 Vd = speeds reachable within a certain time frame based on  

  possible accelerations. 
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Dynamic Window Approach 

 How to choose <v,ω>? 
 Steering commands are chosen by a 

heuristic navigation function. 
 This function tries to minimize the travel-

time by “driving fast into the right 
direction.” 
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Dynamic Window Approach 
 Heuristic navigation function. 
 Planning restricted to <x,y>-space. 
 No planning in the velocity space. 

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα
Navigation Function: [Brock & Khatib, 99] 
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goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα
Navigation Function: [Brock & Khatib, 99] 

Maximizes 
velocity. 

 Heuristic navigation function. 
 Planning restricted to <x,y>-space. 
 No planning in the velocity space. 

Dynamic Window Approach 
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goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα
Navigation Function: [Brock & Khatib, 99] 

Considers cost to 
reach the goal. 

Maximizes 
velocity. 

 Heuristic navigation function. 
 Planning restricted to <x,y>-space. 
 No planning in the velocity space. 

Dynamic Window Approach 
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goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα
Navigation Function: [Brock & Khatib, 99] 

Maximizes 
velocity. 

Considers cost to 
reach the goal. 

Follows grid based path 
computed by A*. 

 Heuristic navigation function. 
 Planning restricted to <x,y>-space. 
 No planning in the velocity space. 

Dynamic Window Approach 
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Navigation Function: [Brock & Khatib, 99] Goal nearness 

Follows grid based path 
computed by A* 

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα
Maximizes 

velocity 

 Heuristic navigation function. 
 Planning restricted to <x,y>-space. 
 No planning in the velocity space. 

Considers cost to 
reach the goal 

Dynamic Window Approach 
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Dynamic Window Approach 
 Reacts quickly. 
 Low computational requirements. 
 Guides a robot along a collision-free path. 
 Successfully used in a lot of real-world 

scenarios. 
 Resulting trajectories sometimes sub-

optimal. 
 Local minima might prevent the robot from 

reaching the goal location. 
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Problems of DWAs 

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα
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Problems of DWAs 

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα

Robot’s 
velocity.  
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Problems of DWAs  

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα

Preferred 
direction of NF. 

Robot’s 
velocity.  
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Problems of DWAs  

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα
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Problems of DWAs  

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα
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Problems of DWAs  

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα

The robot drives too fast at c0 to enter 
corridor facing south. 
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Problems of DWAs  

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα
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Problems of DWAs  

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα
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Problems of DWAs  

Same situation as in the beginning. 
 

  DWAs have problems to reach the goal. 
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Problems of DWAs  
 Typical problem in a real world situation: 

 

 Robot does not slow down early enough to 
enter the doorway. 
 



Motion Planning Formulation 
 The problem of motion planning can be 

stated as follows. Given: 
 A start pose of the robot 
 A desired goal pose 
 A geometric description of the robot 
 A geometric representation of the 

environment 

 Find a path that moves the robot 
gradually from start to goal while 
never touching any obstacle 
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Configuration Space 
 Although the motion planning problem is 

defined in the regular world, it lives in 
another space: the configuration space 

 
 A robot configuration q is a specification of 

the positions of all robot points relative to 
a fixed coordinate system 
 

 Usually a configuration is expressed as a 
vector of positions and orientations 
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Configuration Space 
 Free space and obstacle region 
 With            being the work space,            

the set of obstacles,       the robot in 
configuration 
 
 
 

 We further define 
 : start configuration 
 : goal configuration  
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Then, motion planning amounts to 

 Finding a continuous path 

  
 with 
 
 Given this setting, 

we can do planning 
with the robot being 
a point in C-space! 

Configuration Space 
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C-Space Discretizations 
 Continuous terrain needs to be discretized 

for path planning 
 There are two general approaches to 

discretize C-spaces: 
 Combinatorial planning 
 Characterizes Cfree explicitly by capturing the 

connectivity of Cfree into a graph and finds 
solutions using search 

 Sampling-based planning 
 Uses collision-detection to probe and 

incrementally search the C-space for a solution 
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Search 
The problem of search: finding a sequence 
of actions (a path) that leads to desirable 
states (a goal) 

 Uninformed search: besides the problem 
definition, no further information about the 
domain (“blind search”) 

 The only thing one can do is to expand 
nodes differently 

 Example algorithms: breadth-first, 
uniform-cost, depth-first, bidirectional, etc. 
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Search 
The problem of search: finding a sequence 
of actions (a path) that leads to desirable 
states (a goal) 

 Informed search: further information 
about the domain through heuristics 

 Capability to say that a node is “more 
promising” than another node 

 Example algorithms: greedy best-first 
search, A*, many variants of A*, D*, etc. 
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Search 
The performance of a search algorithm is 
measured in four different ways: 

 Completeness: does the algorithm find a 
solution when there is one? 

 Optimality: is the solution the best one of 
all possible solutions in terms of path cost? 

 Time complexity: how long does it take 
to find a solution? 

 Space complexity: how much memory is 
needed to perform the search? 
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Discretized Configuration Space 

35 






Uninformed Search 
 Breadth-first 
 Complete 
 Optimal if action costs equal 
 Time and space: O(bd) 

 Depth-first 
 Not complete in infinite spaces 
 Not optimal 
 Time: O(bm) 
 Space: O(bm) (can forget 

explored subtrees) 

(b: branching factor, d: goal depth, m: max. tree depth) 
36 
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Informed Search: A* 

 What about using A* to plan 
the path of a robot? 

 Finds the shortest path 

 Requires a graph structure  

 Limited number of edges 

 In robotics: planning on a 2d 
occupancy grid map 
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A*: Minimize the Estimated 
Path Costs 
 g(n) = actual cost from the initial state to n. 

 h(n) = estimated cost from n to the next goal. 

 f(n) = g(n) + h(n), the estimated cost of the 
cheapest solution through n. 

 Let h*(n) be the actual cost of the optimal path 
from n to the next goal. 

 h is admissible if the following holds for all n : 

h(n) ≤ h*(n) 

 We require that for A*, h is admissible (the 
straight-line distance is admissible in the 
Euclidean Space). 



Example: PathPlanning for 
Robots in a Grid-World 
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Deterministic Value Iteration 
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 To compute the shortest path from 
every state to one goal state, use 
(deterministic) value iteration. 

 Very similar to Dijkstra’s Algorithm. 

 Such a cost distribution is the optimal 
heuristic for A*. 



Typical Assumption in Robotics 
for A* Path Planning 

41 

1. The robot is assumed to be localized. 
2. The robot computes its path based on 

an occupancy grid. 
3. The correct motion commands are 

executed. 
 

Are 1. and 3. always true? 
 
 



Problems 
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 What if the robot is (slightly) delocalized? 
 

 Moving on the shortest path often guides  
the robot along a trajectory close to 
obstacles. 
 

 Trajectory aligned to the grid structure. 
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Convolution of the Grid Map 

 Convolution blurs the map. 
 Obstacles are assumed to be bigger 

than in reality. 
 Perform an A* search in such a 

convolved map (using occupancy as 
traversal cost). 

 Robot increases distance to obstacles  
and moves on a short path! 
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Example: Map Convolution 

 one-dimensional environment, cells 
c0, …, c5 

 Cells before and after 2 convolution runs. 
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Convolution 
 Consider an occupancy map. Than the 

convolution is defined as: 

 This is done for each row and each 
column of the map. 

 “Gaussian blur” 
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A* in Convolved Maps 

 The costs are a product of path length 
and occupancy probability of the cells. 
 

 Cells with higher probability (e.g., 
caused by convolution) are avoided by 
the robot. 
 

 Thus, it keeps distance to obstacles. 
 

 This technique is fast and quite reliable. 



5D-Planning – an Alternative to 
the Two-layered Architecture  
 Plans in the full <x,y,θ,v,ω>-configuration 

space using A*. 
 Considers the robot's kinematic constraints. 
 

 Generates a sequence of steering 
commands to reach the goal location. 

 

 Maximizes trade-off between driving time 
and distance to obstacles. 
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The Search Space (1) 
 What is a state in this space? 

<x,y,θ,v,ω> = current position and 
                      speed of the robot 
 

 How does a state transition look like? 
<x1,y1,θ1,v1,ω1>     <x2,y2,θ2,v2,ω2>  
  with motion command (v2,ω2) and 

 |v1-v2| < av, |ω1-ω2| < aω. 
  The new pose of the Robot <x2,y2,θ2> is a 

result of the motion equations.   
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The Search Space (2) 
Idea: search in the discretized 

      <x,y,θ,v,ω>-space.  
 
Problem: the search space is too huge to be 

explored within the time constraints  
(5+ Hz for online motion planning). 

 
Solution: restrict the full search space. 
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The Main Steps of the Algorithm 
1. Update (static) grid map based on sensory 

input. 
 

2. Use A* to find a trajectory in the <x,y>-
space using the updated grid map. 
 

3. Determine a restricted 5d-configuration 
space based on step 2. 
 

4. Find a trajectory by planning in the 
restricted <x,y,θ,v,ω>-space. 
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Updating the Grid Map 
 The environment is represented as a 2d-

occupency grid map. 
 Convolution of the map increases security 

distance.  
 Detected obstacles are added. 
 Cells discovered free are cleared. 
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Find a Path in the 2d-Space 
 Use A* to search for the optimal path in 

the 2d-grid map. 
 

 Use heuristic based on a deterministic 
value iteration within the static map. 
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Restricting the Search Space 

Assumption: the projection of the 5d-path 
onto the <x,y>-space lies close to the 
optimal 2d-path. 

 
Therefore: construct a restricted search 

space (channel) based on the 2d-path. 



Space Restriction 
 Resulting search space =  
 <x, y, θ, v, ω> with (x,y) Є channel. 
 Choose a sub-goal lying on the 2d-path 

within the channel. 
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Find a Path in the 5d-Space 
 
 Use A* in the restricted 5d-space to find a 

sequence of steering commands to reach 
the sub-goal. 

 
 To estimate cell costs: perform a 

deterministic 2d-value iteration within the 
channel. 
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Examples 
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Timeouts 
 Steering a robot online requires to set  new 
steering commands frequently. 
E.g., every 0.2 secs. 
 
  Abort search after 0.2 secs.  
  
How to find an admissible steering 
command? 
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Alternative Steering Command 
 Previous trajectory still admissible? 
 OK 

 
 If not, drive on the 2d-path or use DWA to 

find new command. 
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Timeout Avoidance 
 
 
 
 
 
 
 
 
 
 Reduce the size of the channel if the 2d-

path has high cost. 
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Example 

Robot Albert Planning state 



Comparison to the DWA (1) 
 DWAs often have problems entering narrow 

passages. 
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DWA planned path. 5D approach. 



Comparison to the DWA (2)  
 
 
 
 
 
 
 
 
 
The 5D approach results in significantly faster 
motion when driving through narrow passages! 
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Comparison to the Optimum 
 
 
 
 
 
 
 
 
 
 
 
Channel: with length=5m, width=1.1m 
Resulting actions are close to the optimal solution. 
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Rapidly Exploring Random Trees 
 Idea: aggressively probe and explore the 

C-space by expanding incrementally 
from an initial configuration q0 

 The explored territory is marked by a 
tree rooted at q0 
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45 
iterations 

2,345 
iterations 



RRTs 
The algorithm: Given C and q0  
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Sample from a 
bounded region 
centered around q0  

 

E.g. an axis-aligned 
relative random 

translation or random 
rotation 

 
 



RRTs 
 The algorithm 
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Finds closest vertex in G  
using a distance 

function 
 

formally a metric 
defined on C  



RRTs 
 The algorithm 
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Several stategies to find 
qnear given the closest 

vertex on G: 

• Take closest vertex 

• Check intermediate 
points at regular 

intervals and split edge 
at qnear 



RRTs 
 The algorithm 
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Connect nearest point 
with random point 

using a local planner 
that travels from qnear 

to qrand 

• No collision: add 
edge 



RRTs 
 The algorithm 
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Connect nearest point 
with random point 

using a local planner 
that travels from qnear 

to qrand 

• No collision: add 
edge 

• Collision: new vertex 
is qs, as close as 
possible to Cobs 



RRTs 
 How to perform path planning with RRTs? 

1. Start RRT at qI 

2. At every, say, 100th iteration, force qrand = qG  
3. If qG is reached, problem is solved 
 

 Why not picking qG every time? 
 This will fail and waste much effort in 

running into CObs instead of exploring the 
space 
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RRTs 
 However, some problems require more 

effective methods: bidirectional search 
 Grow two RRTs, one from qI, one from qG 

 In every other 
step, try to 
extend each 
tree towards 
the newest 
vertex of the 
other tree 
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Filling a 
well 

A bug 
trap 



RRTs 
 RRTs are popular, many extensions exist: 

real-time RRTs, anytime 
RRTs, for dynamic 
environments etc. 

 Pros: 
 Balance between greedy 

search and exploration 
 Easy to implement 

 Cons: 
 Metric sensivity 
 Unknown rate of convergence 
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Alpha 1.0 
puzzle. 

Solved with 
bidirectional 

RRT 



Road Map Planning 
 A road map is a graph in Cfree in which each 

vertex is a configuration in Cfree and each 
edge is a collision-free path through Cfree 
 

 Several planning techniques  
 Visibility graphs 
 Voronoi diagrams 
 Exact cell decomposition 
 Approximate cell decomposition 
 Randomized road maps 
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Road Map Planning 
 A road map is a graph in Cfree in which each 

vertex is a configuration in Cfree and each 
edge is a collision-free path through Cfree 
 

 Several planning techniques  
 Visibility graphs 
 Voronoi diagrams 
 Exact cell decomposition 
 Approximate cell decomposition 
 Randomized road maps 
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 Defined to be the set of points q whose 
cardinality of the set of boundary points of 
Cobs with the same distance to q is greater 
than 1 

 Let us decipher 
this definition... 

 Informally: 
the place with the 
same maximal 
clearance from 
all nearest obstacles 
 
 

Generalized Voronoi Diagram 
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qI 
qG 

qI' qG' 



 Formally: 
Let                 be the boundary of Cfree, and d(p,q) 
the Euclidian distance between p and q. Then, for 
all q in Cfree, let 
 

be the clearance of q, and 
 
the set of "base" points on β with the same 
clearance to q. The Voronoi diagram is then the 
set of q's with more than one base point p 
 
 

Generalized Voronoi Diagram 
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 Geometrically: 
 
 
 
 
 
 

 For a polygonal Cobs, the Voronoi diagram 
consists of (n) lines and parabolic segments 

 Naive algorithm: O(n4), best: O(n log n) 

Generalized Voronoi Diagram 
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p 

clearance(q) 

one closest point 
q 

q 
q 

p 
p 

two closest points 

p p 



Voronoi Diagram 
 Voronoi diagrams have been well studied 

for (reactive) mobile robot path planning 
 Fast methods exist to compute and 

update the diagram in real-time for low-
dim. C's 

 Pros: maximize clear- 
ance is a good idea for 
an uncertain robot 

 Cons: unnatural at- 
traction to open space, 
suboptimal paths 

 Needs extensions 78 



Randomized Road Maps 
 

 Idea: Take random samples from C, 
declare them as vertices if in Cfree, try to 
connect nearby vertices with local planner 

 The local planner checks if line-of-sight is 
collision-free (powerful or simple methods) 

 Options for nearby: k-nearest neighbors 
or all neighbors within specified radius 

 Configurations and connections are added 
to graph until roadmap is dense enough 
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Also called Probabilistic Road Maps 



Randomized Road Maps 
 Example 

80 

specified 
radius 

Example local 
planner 

What does “nearby” mean  
on a manifold? Defining a 
good metric on C is crucial 



Randomized Road Maps 
 Pros: 
 Probabilistically complete 
 Do not construct C-space 
 Apply easily to high 

dimensional C-spaces 
 Randomized road maps have 

solved previously unsolved 
problems 

 Cons: 
 Do not work well for some 

problems, narrow passages 
 Not optimal, not complete 
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Cobs 

Cobs 

Cobs 

Cobs Cobs 

Cobs Cobs 

qI 

qG 

qI 

qG 



Randomized Road Maps 
 How to uniformly sample C ? This is not at all 

trivial given its topology 

 For example over spaces of rotations: Sampling 
Euler angles gives more samples near poles, not 
uniform over SO(3). Use quaternions! 

 However, Randomized Road Maps are powerful, 
popular and many extensions exist: advanced 
sampling strategies (e.g. near obstacles), PRMs 
for deformable objects, closed-chain systems, 
etc. 
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From Road Maps to Paths 
 All methods discussed so far construct a 

road map (without considering the query 
pair qI and qG) 

 Once the investment is made, the same  
road map can be reused for all queries 
(provided world and robot do not change)  

1. Find the cell/vertex that contain/is close to qI 
and qG (not needed for visibility graphs) 

2. Connect qI and qG to the road map 

3. Search the road map for a path from qI to qG 
83 



 Consider an agent acting in this 
environment 
 
 

 
 
 
 

 Its mission is to reach the goal marked 
by +1 avoiding the cell labelled -1 

Markov Decision Process 
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 Consider an agent acting in this 
environment 
 
 

 
 
 
 

 Its mission is to reach the goal marked 
by +1 avoiding the cell labelled -1 

Markov Decision Process 
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Markov Decision Process 
 Easy! Use a search algorithm such as A* 

 
 
 
 
 
 

 
 Best solution (shortest path) is the action 

sequence [Right, Up, Up, Right] 
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What is the problem? 
 Consider a non-perfect system 

in which actions are performed with a 
probability less than 1 

 What are the best actions for an agent 
under this constraint? 
 

 Example: a mobile robot does not 
exactly perform a desired motion 

 Example: human navigation 
 

 
 

 

Uncertainty about performing actions! 
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MDP Example 
 Consider the non-deterministic 

transition model (N / E / S / W): 
 
 

 

 
 

 Intended action is executed with p=0.8 
 With p=0.1, the agent moves left or right 
 Bumping into a wall “reflects” the robot 

desired action 

p=0.8 

p=0.1 p=0.1 
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MDP Example 
 Executing the A* plan in this environment 
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MDP Example 
 Executing the A* plan in this environment 

 
 
 
 
 
 
 
 
 

 But: transitions are non-deterministic! 90 



MDP Example 
 Executing the A* plan in this environment 

 
 
 
 
 
 
 
 
 

 This will happen sooner or later... 91 



MDP Example 
 Use a longer path with lower probability 

to end up in cell labelled -1 
 
 
 
 
 

 

 This path has the highest overall utility 
 Probability 0.86 = 0.2621 
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Transition Model 
 The probability to reach the next state s' 

from state s  by choosing action a  

   

 is called transition model 

93 

Markov Property: 
The transition probabilities from s to s' 
depend only on the current state s 
and not on the history of earlier states 



Reward 
 In each state s, the agent receives a 

reward R(s) 
 

 The reward may be positive or negative 
but must be bounded 
 

 This can be generalized to be a function 
R(s,a,s'). 
Here: considering only R(s), does not 
change the problem 
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Reward 
 In our example, the reward is -0.04 in all 

states (e.g. the cost of motion) except the 
terminal states (that have rewards +1/-1) 

 A negative reward 
gives agents an in- 
centive to reach 
the goal quickly 

 Or: “living in this 
environment is 
not enjoyable” 
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MDP Definition 
 Given a sequential decision problem in 

a fully observable, stochastic environment 
with a known Markovian transition model 

 Then a Markov Decision Process is 
defined by the components 

 • Set of states: 
• Set of actions: 
• Initial state: 
• Transition model: 
• Reward funciton: 
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Policy 
 An MDP solution is called policy π 
 A policy is a mapping from states to actions 

 
 
 In each state, a policy tells the agent 

what to do next 

 Let π (s) be the action that π  specifies for s 

 Among the many policies that solve an 
MDP, the optimal policy π* is what we 
seek. We'll see later what optimal means 
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Policy 
 The optimal policy for our example 
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Conservative choice 
Take long way around 
as the cost per step of 

-0.04 is small compared 
with the penality to fall 

down the stairs and 
receive a -1 reward 



Policy 
 When the balance of risk and reward 

changes, other policies are optimal 
 

100 

R = -2 

R = -0.01 

R = -0.2 

R > 0 

Leave as soon as possible Take shortcut, minor risks 

No risks are taken Never leave (inf. #policies) 



Utility of a State 
 The utility of a state U(s) quantifies the 

benefit of a state for the overall task 

 We first define Uπ(s) to be the expected 
utility of all state sequences that start 
in s given π  

 
 

 U(s) evaluates (and encapsulates) all 
possible futures from s onwards 
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Utility of a State 
 With this definition, we can express Uπ(s) 

as a function of its next state s' 
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Optimal Policy 
 The utility of a state allows us to apply the 

Maximum Expected Utility principle to 
define the optimal policy π* 

 The optimal policy π* in s chooses the 
action a that maximizes the expected 
utility of s (and of s') 
 
 
 

 Expectation taken over all policies 
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Optimal Policy 
 Substituting Uπ(s)  

 
 
 
 
 
 

 
 Recall that E[X] is the weighted average of 

all possible values that X can take on 
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Utility of a State 
 The true utility of a state U(s) is then 

obtained by application of the optimal 
policy, i.e.                  . We find 
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Utility of a State 
 This result is noteworthy: 

 
 

 We have found a direct relationship 
between the utility of a state and the 
utility of its neighbors 

 The utility of a state is the immediate 
reward for that state plus the expected 
utility of the next state, provided the 
agent chooses the optimal action 
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Bellman Equation 
 
 
 

 For each state there is a Bellman equation 
to compute its utility 

 There are n states and n unknowns 
 Solve the system using Linear Algebra? 
 No! The max-operator that chooses the 

optimal action makes the system nonlinear 
 We must go for an iterative approach 
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Discounting 
We have made a simplification on the way: 
 The utility of a state sequence is often 

defined as the sum of discounted rewards 
 

 
 with 0 δ  γ δ  1 being the discount factor 
 Discounting says that future rewards are 

less significant than current rewards. 
This is a natural model for many domains 

 The other expressions change accordingly 
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Separability 
We have made an assumption on the way: 

 Not all utility functions (for state 
sequences) can be used 

 The utility function must have the 
property of separability (a.k.a. station-
arity), e.g. additive utility functions: 

 

 Loosely speaking: the preference between 
two state sequences is unchanged over 
different start states 
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Utility of a State 
 The state utilities for our example 

 
 
 
 
 
 

 
 Note that utilities are higher closer to the 

goal as fewer steps are needed to reach it 
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Idea: 

 The utility is computed iteratively:  
 
 
 

 
 Optimal utility:  

 Abort, if change in utility is below a 
threshold 

Iterative Computation 
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 Calculate utility of the center cell 
 

Value Iteration Example  

u=10  

u=-8  u=5  

u=1  

r=1 

Transition Model State space  
(u=utility, r=reward) 

desired action = Up 

p=0.8 

p=0.1 p=0.1 
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Value Iteration Example  

u=10  

u=-8  u=5  

u=1  

r=1 
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p=0.8 

p=0.1 p=0.1 



Value Iteration Example  
 In our example 

 
 
 
 
 

 

 States far from the goal first accumulate 
negative rewards until a path is found to 
the goal 
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(1,1) nr. of iterations → 



Convergence 
 The condition                           in the 

algorithm can be formulated by 
 
 
 
 

 Different ways to detect convergence: 
 RMS error: root mean square error 
 Max error: 
 Policy loss 
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Value Iteration  
 Value Iteration finds the optimal solution 

to the Markov Decision Problem! 
 Converges to the unique solution of 

the Bellman equation system 
 Initial values for U' are arbitrary 
 Proof involves the concept of contraction. 

                                       with B being 
the Bellman operator (see textbook) 

 VI propagates information through the 
state space by means of local updates 
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Optimal Policy 
 How to finally compute the optimal 

policy? Can be easily extracted along 
the way by 

 
 

 
 Note: U(s) and R(s) are quite different 

quantities. R(s) is the short-term reward 
for being in s, whereas U(s) is the long-
term reward from s onwards 
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Summary 
 Robust navigation requires combined path 

planning & collision avoidance. 
 Approaches need to consider robot's kinematic 

constraints and plans in the velocity space. 
 Combination of search and reactive techniques 

show better results than the pure DWA in a 
variety of situations. 

 Using the 5D-approach the quality of the 
trajectory scales with the performance of the 
underlying hardware. 

 The resulting paths are often close to the 
optimal ones. 
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Summary 
 Planning is a complex problem. 
 Focus on subset of the configuration space: 

 road maps, 
 grids. 

 Sampling algorithms are faster and have a 
trade-off between optimality and speed. 

 Uncertainty in motion leads to the need of 
Markov Decision Problems. 
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What’s Missing? 

 More complex vehicles (e.g., cars, legged 
robots, manipulators, …). 

 Moving obstacles, motion prediction. 

 High dimensional spaces. 

 Heuristics for improved performances. 

 Learning. 
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