
1

Path and Motion Planning

Introduction to
Mobile Robotics

Wolfram Burgard

2

Motion Planning

Latombe (1991):

“… eminently necessary since, by
definition, a robot accomplishes tasks by
moving in the real world.”

Goals:
 Collision-free trajectories.
 Robot should reach the goal location as

quickly as possible.

3

 … in Dynamic Environments
 How to react to unforeseen obstacles?
 efficiency
 reliability

 Dynamic Window Approaches
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]

 Grid-map-based planning
[Konolige, 00]

 Nearness-Diagram-Navigation
[Minguez at al., 2001, 2002]

 Vector-Field-Histogram+
 [Ulrich & Borenstein, 98]

 A*, D*, D* Lite, ARA*, …

4

Two Challenges
 Calculate the optimal path taking potential

uncertainties in the actions into account

 Quickly generate actions in the case of
unforeseen objects

5

Classic Two-layered Architecture

Planning

Collision
Avoidance

sensor data

map

robot

low frequency

high frequency

sub-goal

motion command

6

Dynamic Window Approach

 Collision avoidance: Determine collision-
free trajectories using geometric operations

 Here: Robot moves on circular arcs
 Motion commands (v,ω)
 Which (v,ω) are admissible and reachable?

7

Admissible Velocities
 Speeds are admissible if the robot would be

able to stop before reaching the obstacle

8

Reachable Velocities
 Speeds that are reachable by acceleration

9

DWA Search Space

 Vs = all possible speeds of the robot.
 Va = obstacle free area.
 Vd = speeds reachable within a certain time frame based on

 possible accelerations.

10

Dynamic Window Approach

 How to choose <v,ω>?
 Steering commands are chosen by a

heuristic navigation function.
 This function tries to minimize the travel-

time by “driving fast into the right
direction.”

11

Dynamic Window Approach
 Heuristic navigation function.
 Planning restricted to <x,y>-space.
 No planning in the velocity space.

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα
Navigation Function: [Brock & Khatib, 99]

12

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα
Navigation Function: [Brock & Khatib, 99]

Maximizes
velocity.

 Heuristic navigation function.
 Planning restricted to <x,y>-space.
 No planning in the velocity space.

Dynamic Window Approach

13

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα
Navigation Function: [Brock & Khatib, 99]

Considers cost to
reach the goal.

Maximizes
velocity.

 Heuristic navigation function.
 Planning restricted to <x,y>-space.
 No planning in the velocity space.

Dynamic Window Approach

14

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα
Navigation Function: [Brock & Khatib, 99]

Maximizes
velocity.

Considers cost to
reach the goal.

Follows grid based path
computed by A*.

 Heuristic navigation function.
 Planning restricted to <x,y>-space.
 No planning in the velocity space.

Dynamic Window Approach

15

Navigation Function: [Brock & Khatib, 99] Goal nearness

Follows grid based path
computed by A*

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα
Maximizes

velocity

 Heuristic navigation function.
 Planning restricted to <x,y>-space.
 No planning in the velocity space.

Considers cost to
reach the goal

Dynamic Window Approach

16

Dynamic Window Approach
 Reacts quickly.
 Low computational requirements.
 Guides a robot along a collision-free path.
 Successfully used in a lot of real-world

scenarios.
 Resulting trajectories sometimes sub-

optimal.
 Local minima might prevent the robot from

reaching the goal location.

17

Problems of DWAs

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα

18

Problems of DWAs

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα

Robot’s
velocity.

19

Problems of DWAs

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα

Preferred
direction of NF.

Robot’s
velocity.

20

Problems of DWAs

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα

21

Problems of DWAs

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα

22

Problems of DWAs

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα

The robot drives too fast at c0 to enter
corridor facing south.

23

Problems of DWAs

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα

24

Problems of DWAs

goalnfnfvelNF ⋅+∆⋅+⋅+⋅= δγβα

25

Problems of DWAs

Same situation as in the beginning.

  DWAs have problems to reach the goal.

26

Problems of DWAs
 Typical problem in a real world situation:

 Robot does not slow down early enough to
enter the doorway.

Motion Planning Formulation
 The problem of motion planning can be

stated as follows. Given:
 A start pose of the robot
 A desired goal pose
 A geometric description of the robot
 A geometric representation of the

environment

 Find a path that moves the robot
gradually from start to goal while
never touching any obstacle

27

Configuration Space
 Although the motion planning problem is

defined in the regular world, it lives in
another space: the configuration space

 A robot configuration q is a specification of

the positions of all robot points relative to
a fixed coordinate system

 Usually a configuration is expressed as a
vector of positions and orientations

 28

Configuration Space
 Free space and obstacle region
 With being the work space,

the set of obstacles, the robot in
configuration

 We further define
 : start configuration
 : goal configuration

29

Then, motion planning amounts to

 Finding a continuous path

 with

 Given this setting,

we can do planning
with the robot being
a point in C-space!

Configuration Space

30

C-Space Discretizations
 Continuous terrain needs to be discretized

for path planning
 There are two general approaches to

discretize C-spaces:
 Combinatorial planning
 Characterizes Cfree explicitly by capturing the

connectivity of Cfree into a graph and finds
solutions using search

 Sampling-based planning
 Uses collision-detection to probe and

incrementally search the C-space for a solution

31

Search
The problem of search: finding a sequence
of actions (a path) that leads to desirable
states (a goal)

 Uninformed search: besides the problem
definition, no further information about the
domain (“blind search”)

 The only thing one can do is to expand
nodes differently

 Example algorithms: breadth-first,
uniform-cost, depth-first, bidirectional, etc.

32

Search
The problem of search: finding a sequence
of actions (a path) that leads to desirable
states (a goal)

 Informed search: further information
about the domain through heuristics

 Capability to say that a node is “more
promising” than another node

 Example algorithms: greedy best-first
search, A*, many variants of A*, D*, etc.

33

Search
The performance of a search algorithm is
measured in four different ways:

 Completeness: does the algorithm find a
solution when there is one?

 Optimality: is the solution the best one of
all possible solutions in terms of path cost?

 Time complexity: how long does it take
to find a solution?

 Space complexity: how much memory is
needed to perform the search?

34

Discretized Configuration Space

35

Uninformed Search
 Breadth-first
 Complete
 Optimal if action costs equal
 Time and space: O(bd)

 Depth-first
 Not complete in infinite spaces
 Not optimal
 Time: O(bm)
 Space: O(bm) (can forget

explored subtrees)

(b: branching factor, d: goal depth, m: max. tree depth)
36

37

Informed Search: A*

 What about using A* to plan
the path of a robot?

 Finds the shortest path

 Requires a graph structure

 Limited number of edges

 In robotics: planning on a 2d
occupancy grid map

38

A*: Minimize the Estimated
Path Costs
 g(n) = actual cost from the initial state to n.

 h(n) = estimated cost from n to the next goal.

 f(n) = g(n) + h(n), the estimated cost of the
cheapest solution through n.

 Let h*(n) be the actual cost of the optimal path
from n to the next goal.

 h is admissible if the following holds for all n :

h(n) ≤ h*(n)

 We require that for A*, h is admissible (the
straight-line distance is admissible in the
Euclidean Space).

Example: PathPlanning for
Robots in a Grid-World

39

Deterministic Value Iteration

40

 To compute the shortest path from
every state to one goal state, use
(deterministic) value iteration.

 Very similar to Dijkstra’s Algorithm.

 Such a cost distribution is the optimal
heuristic for A*.

Typical Assumption in Robotics
for A* Path Planning

41

1. The robot is assumed to be localized.
2. The robot computes its path based on

an occupancy grid.
3. The correct motion commands are

executed.

Are 1. and 3. always true?

Problems

42

 What if the robot is (slightly) delocalized?

 Moving on the shortest path often guides
the robot along a trajectory close to
obstacles.

 Trajectory aligned to the grid structure.

43

Convolution of the Grid Map

 Convolution blurs the map.
 Obstacles are assumed to be bigger

than in reality.
 Perform an A* search in such a

convolved map (using occupancy as
traversal cost).

 Robot increases distance to obstacles
and moves on a short path!

44

Example: Map Convolution

 one-dimensional environment, cells
c0, …, c5

 Cells before and after 2 convolution runs.

45

Convolution
 Consider an occupancy map. Than the

convolution is defined as:

 This is done for each row and each
column of the map.

 “Gaussian blur”

46

A* in Convolved Maps

 The costs are a product of path length
and occupancy probability of the cells.

 Cells with higher probability (e.g.,
caused by convolution) are avoided by
the robot.

 Thus, it keeps distance to obstacles.

 This technique is fast and quite reliable.

5D-Planning – an Alternative to
the Two-layered Architecture
 Plans in the full <x,y,θ,v,ω>-configuration

space using A*.
 Considers the robot's kinematic constraints.

 Generates a sequence of steering
commands to reach the goal location.

 Maximizes trade-off between driving time
and distance to obstacles.

47

The Search Space (1)
 What is a state in this space?

<x,y,θ,v,ω> = current position and
 speed of the robot

 How does a state transition look like?
<x1,y1,θ1,v1,ω1> <x2,y2,θ2,v2,ω2>
 with motion command (v2,ω2) and

 |v1-v2| < av, |ω1-ω2| < aω.
 The new pose of the Robot <x2,y2,θ2> is a

result of the motion equations.

48

The Search Space (2)
Idea: search in the discretized

 <x,y,θ,v,ω>-space.

Problem: the search space is too huge to be

explored within the time constraints
(5+ Hz for online motion planning).

Solution: restrict the full search space.

49

The Main Steps of the Algorithm
1. Update (static) grid map based on sensory

input.

2. Use A* to find a trajectory in the <x,y>-
space using the updated grid map.

3. Determine a restricted 5d-configuration
space based on step 2.

4. Find a trajectory by planning in the
restricted <x,y,θ,v,ω>-space.

50

Updating the Grid Map
 The environment is represented as a 2d-

occupency grid map.
 Convolution of the map increases security

distance.
 Detected obstacles are added.
 Cells discovered free are cleared.

51 update

Find a Path in the 2d-Space
 Use A* to search for the optimal path in

the 2d-grid map.

 Use heuristic based on a deterministic
value iteration within the static map.

52

53

Restricting the Search Space

Assumption: the projection of the 5d-path
onto the <x,y>-space lies close to the
optimal 2d-path.

Therefore: construct a restricted search

space (channel) based on the 2d-path.

Space Restriction
 Resulting search space =
 <x, y, θ, v, ω> with (x,y) Є channel.
 Choose a sub-goal lying on the 2d-path

within the channel.

54

Find a Path in the 5d-Space

 Use A* in the restricted 5d-space to find a

sequence of steering commands to reach
the sub-goal.

 To estimate cell costs: perform a

deterministic 2d-value iteration within the
channel.

55

Examples

56

Timeouts
 Steering a robot online requires to set new
steering commands frequently.
E.g., every 0.2 secs.

 Abort search after 0.2 secs.

How to find an admissible steering
command?

57

Alternative Steering Command
 Previous trajectory still admissible?
 OK

 If not, drive on the 2d-path or use DWA to

find new command.

58

Timeout Avoidance

 Reduce the size of the channel if the 2d-

path has high cost.

59

60

Example

Robot Albert Planning state

Comparison to the DWA (1)
 DWAs often have problems entering narrow

passages.

61

DWA planned path. 5D approach.

Comparison to the DWA (2)

The 5D approach results in significantly faster
motion when driving through narrow passages!

62

Comparison to the Optimum

Channel: with length=5m, width=1.1m
Resulting actions are close to the optimal solution.

63

Rapidly Exploring Random Trees
 Idea: aggressively probe and explore the

C-space by expanding incrementally
from an initial configuration q0

 The explored territory is marked by a
tree rooted at q0

64

45
iterations

2,345
iterations

RRTs
The algorithm: Given C and q0

65

Sample from a
bounded region
centered around q0

E.g. an axis-aligned
relative random

translation or random
rotation

RRTs
 The algorithm

66

Finds closest vertex in G
using a distance

function

formally a metric
defined on C

RRTs
 The algorithm

67

Several stategies to find
qnear given the closest

vertex on G:

• Take closest vertex

• Check intermediate
points at regular

intervals and split edge
at qnear

RRTs
 The algorithm

68

Connect nearest point
with random point

using a local planner
that travels from qnear

to qrand

• No collision: add
edge

RRTs
 The algorithm

69

Connect nearest point
with random point

using a local planner
that travels from qnear

to qrand

• No collision: add
edge

• Collision: new vertex
is qs, as close as
possible to Cobs

RRTs
 How to perform path planning with RRTs?

1. Start RRT at qI

2. At every, say, 100th iteration, force qrand = qG
3. If qG is reached, problem is solved

 Why not picking qG every time?
 This will fail and waste much effort in

running into CObs instead of exploring the
space

70

RRTs
 However, some problems require more

effective methods: bidirectional search
 Grow two RRTs, one from qI, one from qG

 In every other
step, try to
extend each
tree towards
the newest
vertex of the
other tree

71

Filling a
well

A bug
trap

RRTs
 RRTs are popular, many extensions exist:

real-time RRTs, anytime
RRTs, for dynamic
environments etc.

 Pros:
 Balance between greedy

search and exploration
 Easy to implement

 Cons:
 Metric sensivity
 Unknown rate of convergence

72

Alpha 1.0
puzzle.

Solved with
bidirectional

RRT

Road Map Planning
 A road map is a graph in Cfree in which each

vertex is a configuration in Cfree and each
edge is a collision-free path through Cfree

 Several planning techniques
 Visibility graphs
 Voronoi diagrams
 Exact cell decomposition
 Approximate cell decomposition
 Randomized road maps

73

Road Map Planning
 A road map is a graph in Cfree in which each

vertex is a configuration in Cfree and each
edge is a collision-free path through Cfree

 Several planning techniques
 Visibility graphs
 Voronoi diagrams
 Exact cell decomposition
 Approximate cell decomposition
 Randomized road maps

74

 Defined to be the set of points q whose
cardinality of the set of boundary points of
Cobs with the same distance to q is greater
than 1

 Let us decipher
this definition...

 Informally:
the place with the
same maximal
clearance from
all nearest obstacles

Generalized Voronoi Diagram

75

qI
qG

qI' qG'

 Formally:
Let be the boundary of Cfree, and d(p,q)
the Euclidian distance between p and q. Then, for
all q in Cfree, let

be the clearance of q, and

the set of "base" points on β with the same
clearance to q. The Voronoi diagram is then the
set of q's with more than one base point p

Generalized Voronoi Diagram

76

 Geometrically:

 For a polygonal Cobs, the Voronoi diagram
consists of (n) lines and parabolic segments

 Naive algorithm: O(n4), best: O(n log n)

Generalized Voronoi Diagram

77

p

clearance(q)

one closest point
q

q
q

p
p

two closest points

p p

Voronoi Diagram
 Voronoi diagrams have been well studied

for (reactive) mobile robot path planning
 Fast methods exist to compute and

update the diagram in real-time for low-
dim. C's

 Pros: maximize clear-
ance is a good idea for
an uncertain robot

 Cons: unnatural at-
traction to open space,
suboptimal paths

 Needs extensions 78

Randomized Road Maps

 Idea: Take random samples from C,
declare them as vertices if in Cfree, try to
connect nearby vertices with local planner

 The local planner checks if line-of-sight is
collision-free (powerful or simple methods)

 Options for nearby: k-nearest neighbors
or all neighbors within specified radius

 Configurations and connections are added
to graph until roadmap is dense enough

79

Also called Probabilistic Road Maps

Randomized Road Maps
 Example

80

specified
radius

Example local
planner

What does “nearby” mean
on a manifold? Defining a
good metric on C is crucial

Randomized Road Maps
 Pros:
 Probabilistically complete
 Do not construct C-space
 Apply easily to high

dimensional C-spaces
 Randomized road maps have

solved previously unsolved
problems

 Cons:
 Do not work well for some

problems, narrow passages
 Not optimal, not complete

81

Cobs

Cobs

Cobs

Cobs Cobs

Cobs Cobs

qI

qG

qI

qG

Randomized Road Maps
 How to uniformly sample C ? This is not at all

trivial given its topology

 For example over spaces of rotations: Sampling
Euler angles gives more samples near poles, not
uniform over SO(3). Use quaternions!

 However, Randomized Road Maps are powerful,
popular and many extensions exist: advanced
sampling strategies (e.g. near obstacles), PRMs
for deformable objects, closed-chain systems,
etc.

82

From Road Maps to Paths
 All methods discussed so far construct a

road map (without considering the query
pair qI and qG)

 Once the investment is made, the same
road map can be reused for all queries
(provided world and robot do not change)

1. Find the cell/vertex that contain/is close to qI
and qG (not needed for visibility graphs)

2. Connect qI and qG to the road map

3. Search the road map for a path from qI to qG
83

 Consider an agent acting in this
environment

 Its mission is to reach the goal marked
by +1 avoiding the cell labelled -1

Markov Decision Process

84

 Consider an agent acting in this
environment

 Its mission is to reach the goal marked
by +1 avoiding the cell labelled -1

Markov Decision Process

85

Markov Decision Process
 Easy! Use a search algorithm such as A*

 Best solution (shortest path) is the action

sequence [Right, Up, Up, Right]
86

What is the problem?
 Consider a non-perfect system

in which actions are performed with a
probability less than 1

 What are the best actions for an agent
under this constraint?

 Example: a mobile robot does not
exactly perform a desired motion

 Example: human navigation

Uncertainty about performing actions!

87

MDP Example
 Consider the non-deterministic

transition model (N / E / S / W):

 Intended action is executed with p=0.8
 With p=0.1, the agent moves left or right
 Bumping into a wall “reflects” the robot

desired action

p=0.8

p=0.1 p=0.1

88

MDP Example
 Executing the A* plan in this environment

89

MDP Example
 Executing the A* plan in this environment

 But: transitions are non-deterministic! 90

MDP Example
 Executing the A* plan in this environment

 This will happen sooner or later... 91

MDP Example
 Use a longer path with lower probability

to end up in cell labelled -1

 This path has the highest overall utility
 Probability 0.86 = 0.2621

92

Transition Model
 The probability to reach the next state s'

from state s by choosing action a

 is called transition model

93

Markov Property:
The transition probabilities from s to s'
depend only on the current state s
and not on the history of earlier states

Reward
 In each state s, the agent receives a

reward R(s)

 The reward may be positive or negative
but must be bounded

 This can be generalized to be a function
R(s,a,s').
Here: considering only R(s), does not
change the problem

94

Reward
 In our example, the reward is -0.04 in all

states (e.g. the cost of motion) except the
terminal states (that have rewards +1/-1)

 A negative reward
gives agents an in-
centive to reach
the goal quickly

 Or: “living in this
environment is
not enjoyable”

95

MDP Definition
 Given a sequential decision problem in

a fully observable, stochastic environment
with a known Markovian transition model

 Then a Markov Decision Process is
defined by the components

 • Set of states:
• Set of actions:
• Initial state:
• Transition model:
• Reward funciton:

96

Policy
 An MDP solution is called policy π
 A policy is a mapping from states to actions

 In each state, a policy tells the agent

what to do next

 Let π (s) be the action that π specifies for s

 Among the many policies that solve an
MDP, the optimal policy π* is what we
seek. We'll see later what optimal means
 97

Policy
 The optimal policy for our example

98

Conservative choice
Take long way around
as the cost per step of

-0.04 is small compared
with the penality to fall

down the stairs and
receive a -1 reward

Policy
 When the balance of risk and reward

changes, other policies are optimal

100

R = -2

R = -0.01

R = -0.2

R > 0

Leave as soon as possible Take shortcut, minor risks

No risks are taken Never leave (inf. #policies)

Utility of a State
 The utility of a state U(s) quantifies the

benefit of a state for the overall task

 We first define Uπ(s) to be the expected
utility of all state sequences that start
in s given π

 U(s) evaluates (and encapsulates) all
possible futures from s onwards

101

Utility of a State
 With this definition, we can express Uπ(s)

as a function of its next state s'

102

Optimal Policy
 The utility of a state allows us to apply the

Maximum Expected Utility principle to
define the optimal policy π*

 The optimal policy π* in s chooses the
action a that maximizes the expected
utility of s (and of s')

 Expectation taken over all policies

103

Optimal Policy
 Substituting Uπ(s)

 Recall that E[X] is the weighted average of

all possible values that X can take on
104

Utility of a State
 The true utility of a state U(s) is then

obtained by application of the optimal
policy, i.e. . We find

105

Utility of a State
 This result is noteworthy:

 We have found a direct relationship
between the utility of a state and the
utility of its neighbors

 The utility of a state is the immediate
reward for that state plus the expected
utility of the next state, provided the
agent chooses the optimal action

106

Bellman Equation

 For each state there is a Bellman equation
to compute its utility

 There are n states and n unknowns
 Solve the system using Linear Algebra?
 No! The max-operator that chooses the

optimal action makes the system nonlinear
 We must go for an iterative approach

107

Discounting
We have made a simplification on the way:
 The utility of a state sequence is often

defined as the sum of discounted rewards

 with 0 δ γ δ 1 being the discount factor
 Discounting says that future rewards are

less significant than current rewards.
This is a natural model for many domains

 The other expressions change accordingly

108

Separability
We have made an assumption on the way:

 Not all utility functions (for state
sequences) can be used

 The utility function must have the
property of separability (a.k.a. station-
arity), e.g. additive utility functions:

 Loosely speaking: the preference between
two state sequences is unchanged over
different start states

109

Utility of a State
 The state utilities for our example

 Note that utilities are higher closer to the

goal as fewer steps are needed to reach it

110

Idea:

 The utility is computed iteratively:

 Optimal utility:

 Abort, if change in utility is below a
threshold

Iterative Computation

111

 Calculate utility of the center cell

Value Iteration Example

u=10

u=-8 u=5

u=1

r=1

Transition Model State space
(u=utility, r=reward)

desired action = Up

p=0.8

p=0.1 p=0.1

114

Value Iteration Example

u=10

u=-8 u=5

u=1

r=1

115

p=0.8

p=0.1 p=0.1

Value Iteration Example
 In our example

 States far from the goal first accumulate
negative rewards until a path is found to
the goal

116

(1,1) nr. of iterations →

Convergence
 The condition in the

algorithm can be formulated by

 Different ways to detect convergence:
 RMS error: root mean square error
 Max error:
 Policy loss
 117

Value Iteration
 Value Iteration finds the optimal solution

to the Markov Decision Problem!
 Converges to the unique solution of

the Bellman equation system
 Initial values for U' are arbitrary
 Proof involves the concept of contraction.

 with B being
the Bellman operator (see textbook)

 VI propagates information through the
state space by means of local updates

119

Optimal Policy
 How to finally compute the optimal

policy? Can be easily extracted along
the way by

 Note: U(s) and R(s) are quite different

quantities. R(s) is the short-term reward
for being in s, whereas U(s) is the long-
term reward from s onwards

120

121

Summary
 Robust navigation requires combined path

planning & collision avoidance.
 Approaches need to consider robot's kinematic

constraints and plans in the velocity space.
 Combination of search and reactive techniques

show better results than the pure DWA in a
variety of situations.

 Using the 5D-approach the quality of the
trajectory scales with the performance of the
underlying hardware.

 The resulting paths are often close to the
optimal ones.

122

Summary
 Planning is a complex problem.
 Focus on subset of the configuration space:

 road maps,
 grids.

 Sampling algorithms are faster and have a
trade-off between optimality and speed.

 Uncertainty in motion leads to the need of
Markov Decision Problems.

123

What’s Missing?

 More complex vehicles (e.g., cars, legged
robots, manipulators, …).

 Moving obstacles, motion prediction.

 High dimensional spaces.

 Heuristics for improved performances.

 Learning.

	Path and Motion Planning�
	Motion Planning
	 … in Dynamic Environments
	Two Challenges
	Classic Two-layered Architecture
	Dynamic Window Approach
	Admissible Velocities
	Reachable Velocities
	DWA Search Space
	Dynamic Window Approach
	Dynamic Window Approach
	Dynamic Window Approach
	Dynamic Window Approach
	Dynamic Window Approach
	Dynamic Window Approach
	Dynamic Window Approach
	Problems of DWAs
	Problems of DWAs
	Problems of DWAs
	Problems of DWAs
	Problems of DWAs
	Problems of DWAs
	Problems of DWAs
	Problems of DWAs
	Problems of DWAs
	Problems of DWAs
	Motion Planning Formulation
	Configuration Space
	Configuration Space
	Configuration Space
	C-Space Discretizations
	Search
	Search
	Search
	Discretized Configuration Space
	Uninformed Search
	Informed Search: A*
	A*: Minimize the Estimated Path Costs
	Example: PathPlanning for Robots in a Grid-World
	Deterministic Value Iteration
	Typical Assumption in Robotics for A* Path Planning
	Problems
	Convolution of the Grid Map
	Example: Map Convolution
	Convolution
	A* in Convolved Maps
	5D-Planning – an Alternative to the Two-layered Architecture
	The Search Space (1)
	The Search Space (2)
	The Main Steps of the Algorithm
	Updating the Grid Map
	Find a Path in the 2d-Space
	Restricting the Search Space
	Space Restriction
	Find a Path in the 5d-Space
	Examples
	Timeouts
	Alternative Steering Command
	Timeout Avoidance
	Example
	Comparison to the DWA (1)
	Comparison to the DWA (2)
	Comparison to the Optimum
	Rapidly Exploring Random Trees
	RRTs
	RRTs
	RRTs
	RRTs
	RRTs
	RRTs
	RRTs
	RRTs
	Road Map Planning
	Road Map Planning
	Generalized Voronoi Diagram
	Generalized Voronoi Diagram
	Generalized Voronoi Diagram
	Voronoi Diagram
	Randomized Road Maps
	Randomized Road Maps
	Randomized Road Maps
	Randomized Road Maps
	From Road Maps to Paths
	Markov Decision Process
	Markov Decision Process
	Markov Decision Process
	What is the problem?
	MDP Example
	MDP Example
	MDP Example
	MDP Example
	MDP Example
	Transition Model
	Reward
	Reward
	MDP Definition
	Policy
	Policy
	Policy
	Utility of a State
	Utility of a State
	Optimal Policy
	Optimal Policy
	Utility of a State
	Utility of a State
	Bellman Equation
	Discounting
	Separability
	Utility of a State
	Iterative Computation
	Value Iteration Example
	Value Iteration Example
	Value Iteration Example
	Convergence
	Value Iteration
	Optimal Policy
	Summary
	Summary
	What’s Missing?

