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Neural Architecture Search

Image from [Zoph et al., 2018]
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Hyperparameter Optimization

Finding the right hyperparameters for a machine learning algorithm

A can be defined as an optimization problem:

x? ∈ arg min
x∈X

f (x)

• x denotes all hyperparameters that should be optimized

• X is the configuration space which specifies the domain for

each hyperparameter

• f measures the error of training A with hyperparameters x ,

e. g. validation error

• we assume f to be noisy, i. e. we only observe y(x) = f (x) + ε

where ε ∼N (0,σnoise)
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Configspace
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Grid Search
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Grid Search

• easy to implement and to parallelize

• in continuous spaces unlikely to find the global optimum
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Random Search
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Random Search

• also easy to implement and to parallelize

• if all hyperparameters have non-zero probability, random

search is guaranteed to converge to the global optimum

• cannot exploit knowledge obtain from previous function

evaluations
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Bayesian optimization
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Bayesian optimization
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Bayesian optimization
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Gaussian Process

We can model the objective function f (x) with a Gaussian process

[Rasmussen and Williams, 2006]:

f (x)∼ GP(µ(x),k(x ,x ′))

A Gaussian process is fully defined by:

• a mean function µ(x) which is usually set to µ(x) = 0

• a kernel function k(x ,x ′) which measures the similarity

between two points x and x ′. For example the RBF kernel:

k(x ,x ′) = θ0 · exp

(
−‖x−x ′‖2

θ1

)
where θ0 and θ1 are hyperparameters.

Given new observed data D we can compute the posterior mean

µ(x |θ ,D) and variance σ2(x |θ ,D) analytically.
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Gaussian Process

Pros:

• smooth and reliable uncertainty estimates

• priors can easily be incorporated

Cons:

• not easily applicable in discrete or conditional spaces

• scales cubically with the number of data points

• sensitive to its own hyperparameters
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Random Forest

Consists of T regression trees where each tree splits the input

space into disjoint regions S0, . . .SL−1 where L is the number of

leafs. Tree prediciation for unseen points:

µ̃(x?) =
L

∑
l=1

cl · I(x? ∈ Si ) (1)

with I as the indicator function that returns 1 if x? ∈ Si and 0

otherwise.

For unseen test points we can compute the predictive distribution

by:

µ(x?) =
1

T

T

∑
t=1

µ̃t(x?) (2)

σ
2(x?) =

1

T

T

∑
t=1

(µ̃t(x?)−µ(x?))2 (3)
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Random Forest

Pros:

• scales much better with data

• can easily handle categorical, continuous and discrete spaces

• fairly robust against its own hyperparameters

Cons:

• the uncertainty estimates are often poor

• do not extrapolate well

• priors cannot easily be incorporated
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Bayesian Neural Networks

Bayesian neural networks use a Bayesian treatment of neural

network weight to obtain uncertainty estimates

(see [Springenberg et al., 2016, Snoek et al., 2015])

Pros:

• scales much better with data

• can easily handle categorical, continuous and discrete spaces

• given enough network samples obtain nice and smooth

uncertainty estimates

Cons:

• need usually more data than Gaussian processes

• brittle against its own hyperparameters.
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DNGO [Snoek et al., 2015]

• fit simple 3-layer feed forward neural network with linear

output layer on X ,y

• after training, remove output layer

• use features of last layer as basis functions for Bayesian linear

regression to get uncertainty estimates
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Recap Bayesian Linear Regression

Given some data points X ∈ RN×D with targets y ∈ RN we model:

yi = xiw + εi (4)

where we assume that εi ∼N (0, 1
β

)
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Recap Bayesian Linear Regression

By assuming a Gaussian prior p(w | α) = N (w | 0,α−1I) we can

compute the posterior in closed form p(w |m,K) after observing

some data X , y , where:

m = βK−1Xy (5)

K = βXTX + αI (6)
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Recap Bayesian Linear Regression

For unseen test points x? the predictive distribution is a Gaussian

p(y? | x?,X ,y ,α,β ) = N (y? |m?,σ
2
? ):

m? = mTx? (7)

σ? =
1

β
+XTKX (8)
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Model Comparison
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Exploitation vs Exploration

Given our model m and some data D = {(x0,y0), . . .(xn,yn)} how

do we decide which hyperparameter configuration xn+1 we shall

evaluate next?

Naive solution: simply optimize µ(x), however, that would only

pick points around the best observed point.

We have to trade off between:

• exploring in regions of the configuration space where our

model is uncertain

• however, since our ultimate goal is to locate the global

optimum x?, we also want to exploit in the good regions of

the configuration space
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Acquisition Functions

We use an acquisition function a(x) that automatically trades off

exploration and exploitation.

To find the next point xn+1 we numerically optimize a(x):

xn+1 ∈ arg max
x∈X

a(x)

Since the acquisition function only depends on our model, it is

cheap to evaluate and often provides gradient information.

Common ways to optimize the acquisition function:

• Gradient Ascent

• Evolutionary Algorithms

• Local Search

• Random Search
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Upper Confidence Bound
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Upper Confidence Bound [Srinivas et al., 2010]

Computes the acquisition function by:

a(x) = µ(x) + βσ(x)

• β is a hyperparameter that controls exploration and

exploitation

• under some assumptions, you can proof that UCB converges

to the global optimum
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Expected Improvement [Jones et al., 1998]

Probably the most often used acquisition function is expected

improvement, which computes:

a(x) = Ep(f |D)[max(y?− f (x),0)].

where y? ∈ arg min{y0, . . . ,yn}. Assuming p(f |D) to be a Gaussian,

we can compute EI in closed form by:

a(x) = σ(x)(γ(x)Φ(γ(x)) + φ(γ(x)))

here γ(x) = y?−µ(x)
σ(x) and Φ is the CDF and φ is the PDF of a

standard normal distribution.
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Acquisition Functions
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Bayesian Optimization [Jones et al., 1998]

Algorithm 1 Bayesian Optimization

1: Initialize data D0 using an initial design.

2: for t = 1,2, . . . do

3: Fit probabilistic model for f (x) on data Dt−1
4: Choose xt by maximizing the acquisition function a(x)

5: Evaluate yt ∼ f (xt) + N (0,σ2), and augment the data:

Dt = Dt−1∪{(xt ,yt)}
6: Choose incumbent x̂t ← arg min{y1, ...yt}
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Bayesian optimization

• uses a probabilistic model to guide the search towards the

global optimum

• under some assumptions converges to the global optimum

• more tricky to implement, especially in a parallel setting

31



Bayesian Optimization
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Multi-fidelity Optimization

• Even though Bayesian optimization is sample efficient, it still

requires tens to hundreds of function evaluations.

• We often have access to cheap-to-evaluate approximations

f̃ (·,b) of of the true objective function f (·), so called

fidelities.

• Each fidelity is parameterized by a so-called budget

b ∈ [bmin,bmax ].

• if b = bmax : then f̃ (·,bmax ) = f (·)
• if b < bmax : then f̃ (·,b) is only an approximation of f (·) whose

quality typically increases with b.
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Dataset Subsets [Klein et al., 2017]
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Learning Curves
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Successive Halving [Jamieson and Talwalkar, 2016]

Algorithm 2 Successive Halving

Require: initial budget b0, maximum budget bmax , set of n config-

urations C = {c1,c2, . . .cn}
1: b = b0

2: while b ≤ bmax do

3: L = {f̃ (c ,b) : c ∈ C}
4: C = topk(C ,L,b|C |/η)c
5: b = η ·b
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Successive Halving
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Hyperband [Li et al., 2017]

Algorithm 3 Hyperband

Require: budgets bmin and bmax , η

1: smax = blogη
bmax
bmin
c

2: for s ∈ {smax ,smax −1, . . . ,0} do

3: sample n = d smax+1
s+1 ·ηse configurations

4: run SH on them with ηs ·bmax as initial budget
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Hyperband
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Hyperband vs. Bayesian Optimization [Falkner et al., 2018]

Hyperband:

• very efficient in terms of anytime performance

• due to the random sampling, cannot reuse previously gain

knowledge and take a long time to converge

Bayesian optimization:

• in its standard form it cannot exploit fidelites (however,

several extensions exist)

• in the most cases converges faster than random search

Can we combine both methods?
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Tree of Parzen Estimators [Bergstra et al., 2011]

We fit two kernel density estimator for the good and bad

configurations:

l(x) = p(y < α|x ,D)

g(x) = p(y > α|x ,D)

To select a new candidate xnew to evaluate, it maximizes the ratio
l(x)
g(x) , which is equivalent of optimizing expected improvement.
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BOHB [Falkner et al., 2018]

Algorithm 4 Pseudocode for sampling in BOHB

Require: observations D, fraction of random runs ρ, percentile q,

number of samples Ns , minimum number of points Nmin to build

a model, and bandwidth factor bw

1: if rand() ≤ ρ then

2: return random configuration

3: b = arg max
{
Db : |Db| ≥ Nmin + 2

}
4: if b = /0 then

5: return random configuration

6: fit KDEs as in TPE but for each budget b

7: draw Ns samples according to l ′(x)

8: return sample with highest ratio l(x)/g(x)
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BOHB
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BOHB
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BOHB
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Benchmarking

• Benchmarking is important to make further progress in the

field

• Large computational demands make thorough benchmarking

extremely expensive

• In practice this slows down development of new methods
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Benchmarking Pitfalls
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Benchmarking Pitfalls
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Pro Tips for Benchmarking

• Almost all optimizers are randomized, i.e depend on the

seed, thus, we need a sufficent amount of independent runs to

getter a better estimate of a optimizer’s performance

• Run all optimizers sufficiently long, since in the beginning

the most methods do not work better than random

• Plot the performance over time rather than just the final

performance

• Use log-scales and learn how to read them
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Conclusions

• Bayesian optimization is an efficient strategy for

hyperparameter optimization

• By using fidelities of the objective function we can speed up

the optimization procedure

• Hyperband is an extension of random search that exploits

multi-fidelity of the objective function,

• BOHB combines Hyperband with Bayesian optimization to

combine the strengths of both methods

• Benchmarking plays an important role in developing new

methods
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