
Introduction Automated Machine Learning

Aaron Klein

May 8, 2019

University of Freiburg

Machine Learning Pipeline

(Image Courtesy Joaquin Vanschoren)

1

Automated Machine Learning

(Image Courtesy Joaquin Vanschoren)

2

Automated Machine Learning

(Image Courtesy Joaquin Vanschoren)

3

Neural Architecture Search

Image from [Zoph et al., 2018]

4

Hyperparameter Optimization

Finding the right hyperparameters for a machine learning algorithm

A can be defined as an optimization problem:

x? ∈ arg min
x∈X

f (x)

• x denotes all hyperparameters that should be optimized

• X is the configuration space which specifies the domain for

each hyperparameter

• f measures the error of training A with hyperparameters x ,

e. g. validation error

• we assume f to be noisy, i. e. we only observe y(x) = f (x) + ε

where ε ∼N (0,σnoise)

5

Configspace

6

Grid Search

7

Grid Search

• easy to implement and to parallelize

• in continuous spaces unlikely to find the global optimum

8

Random Search

9

Random Search

• also easy to implement and to parallelize

• if all hyperparameters have non-zero probability, random

search is guaranteed to converge to the global optimum

• cannot exploit knowledge obtain from previous function

evaluations

10

Bayesian optimization

11

Bayesian optimization

12

Bayesian optimization

13

Gaussian Process

We can model the objective function f (x) with a Gaussian process

[Rasmussen and Williams, 2006]:

f (x)∼ GP(µ(x),k(x ,x ′))

A Gaussian process is fully defined by:

• a mean function µ(x) which is usually set to µ(x) = 0

• a kernel function k(x ,x ′) which measures the similarity

between two points x and x ′. For example the RBF kernel:

k(x ,x ′) = θ0 · exp

(
−‖x−x ′‖2

θ1

)
where θ0 and θ1 are hyperparameters.

Given new observed data D we can compute the posterior mean

µ(x |θ ,D) and variance σ2(x |θ ,D) analytically.
14

Gaussian Process

Pros:

• smooth and reliable uncertainty estimates

• priors can easily be incorporated

Cons:

• not easily applicable in discrete or conditional spaces

• scales cubically with the number of data points

• sensitive to its own hyperparameters

15

Random Forest

Consists of T regression trees where each tree splits the input

space into disjoint regions S0, . . .SL−1 where L is the number of

leafs. Tree prediciation for unseen points:

µ̃(x?) =
L

∑
l=1

cl · I(x? ∈ Si) (1)

with I as the indicator function that returns 1 if x? ∈ Si and 0

otherwise.

For unseen test points we can compute the predictive distribution

by:

µ(x?) =
1

T

T

∑
t=1

µ̃t(x?) (2)

σ
2(x?) =

1

T

T

∑
t=1

(µ̃t(x?)−µ(x?))2 (3)

16

Random Forest

Pros:

• scales much better with data

• can easily handle categorical, continuous and discrete spaces

• fairly robust against its own hyperparameters

Cons:

• the uncertainty estimates are often poor

• do not extrapolate well

• priors cannot easily be incorporated

17

Bayesian Neural Networks

Bayesian neural networks use a Bayesian treatment of neural

network weight to obtain uncertainty estimates

(see [Springenberg et al., 2016, Snoek et al., 2015])

Pros:

• scales much better with data

• can easily handle categorical, continuous and discrete spaces

• given enough network samples obtain nice and smooth

uncertainty estimates

Cons:

• need usually more data than Gaussian processes

• brittle against its own hyperparameters.

18

DNGO [Snoek et al., 2015]

• fit simple 3-layer feed forward neural network with linear

output layer on X ,y

• after training, remove output layer

• use features of last layer as basis functions for Bayesian linear

regression to get uncertainty estimates

19

Recap Bayesian Linear Regression

Given some data points X ∈ RN×D with targets y ∈ RN we model:

yi = xiw + εi (4)

where we assume that εi ∼N (0, 1
β

)

20

Recap Bayesian Linear Regression

By assuming a Gaussian prior p(w | α) = N (w | 0,α−1I) we can

compute the posterior in closed form p(w |m,K) after observing

some data X , y , where:

m = βK−1Xy (5)

K = βXTX + αI (6)

21

Recap Bayesian Linear Regression

For unseen test points x? the predictive distribution is a Gaussian

p(y? | x?,X ,y ,α,β) = N (y? |m?,σ
2
?):

m? = mTx? (7)

σ? =
1

β
+XTKX (8)

22

Model Comparison

0.0 0.2 0.4 0.6 0.8 1.0

x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

f
(x

)

Gaussian Process

0.0 0.2 0.4 0.6 0.8 1.0

x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

f
(x

)

Random Forest

0.0 0.2 0.4 0.6 0.8 1.0

x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

DNGO

23

Exploitation vs Exploration

Given our model m and some data D = {(x0,y0), . . .(xn,yn)} how

do we decide which hyperparameter configuration xn+1 we shall

evaluate next?

Naive solution: simply optimize µ(x), however, that would only

pick points around the best observed point.

We have to trade off between:

• exploring in regions of the configuration space where our

model is uncertain

• however, since our ultimate goal is to locate the global

optimum x?, we also want to exploit in the good regions of

the configuration space

24

Exploitation vs Exploration

Given our model m and some data D = {(x0,y0), . . .(xn,yn)} how

do we decide which hyperparameter configuration xn+1 we shall

evaluate next?

Naive solution: simply optimize µ(x), however, that would only

pick points around the best observed point.

We have to trade off between:

• exploring in regions of the configuration space where our

model is uncertain

• however, since our ultimate goal is to locate the global

optimum x?, we also want to exploit in the good regions of

the configuration space

24

Exploitation vs Exploration

Given our model m and some data D = {(x0,y0), . . .(xn,yn)} how

do we decide which hyperparameter configuration xn+1 we shall

evaluate next?

Naive solution: simply optimize µ(x), however, that would only

pick points around the best observed point.

We have to trade off between:

• exploring in regions of the configuration space where our

model is uncertain

• however, since our ultimate goal is to locate the global

optimum x?, we also want to exploit in the good regions of

the configuration space

24

Acquisition Functions

We use an acquisition function a(x) that automatically trades off

exploration and exploitation.

To find the next point xn+1 we numerically optimize a(x):

xn+1 ∈ arg max
x∈X

a(x)

Since the acquisition function only depends on our model, it is

cheap to evaluate and often provides gradient information.

Common ways to optimize the acquisition function:

• Gradient Ascent

• Evolutionary Algorithms

• Local Search

• Random Search

25

Upper Confidence Bound

26

Upper Confidence Bound [Srinivas et al., 2010]

Computes the acquisition function by:

a(x) = µ(x) + βσ(x)

• β is a hyperparameter that controls exploration and

exploitation

• under some assumptions, you can proof that UCB converges

to the global optimum

27

Expected Improvement [Jones et al., 1998]

Probably the most often used acquisition function is expected

improvement, which computes:

a(x) = Ep(f |D)[max(y?− f (x),0)].

where y? ∈ arg min{y0, . . . ,yn}. Assuming p(f |D) to be a Gaussian,

we can compute EI in closed form by:

a(x) = σ(x)(γ(x)Φ(γ(x)) + φ(γ(x)))

here γ(x) = y?−µ(x)
σ(x) and Φ is the CDF and φ is the PDF of a

standard normal distribution.

28

Acquisition Functions

29

Bayesian Optimization [Jones et al., 1998]

Algorithm 1 Bayesian Optimization

1: Initialize data D0 using an initial design.

2: for t = 1,2, . . . do

3: Fit probabilistic model for f (x) on data Dt−1
4: Choose xt by maximizing the acquisition function a(x)

5: Evaluate yt ∼ f (xt) + N (0,σ2), and augment the data:

Dt = Dt−1∪{(xt ,yt)}
6: Choose incumbent x̂t ← arg min{y1, ...yt}

30

Bayesian optimization

• uses a probabilistic model to guide the search towards the

global optimum

• under some assumptions converges to the global optimum

• more tricky to implement, especially in a parallel setting

31

Bayesian Optimization

32

Multi-fidelity Optimization

• Even though Bayesian optimization is sample efficient, it still

requires tens to hundreds of function evaluations.

• We often have access to cheap-to-evaluate approximations

f̃ (·,b) of of the true objective function f (·), so called

fidelities.

• Each fidelity is parameterized by a so-called budget

b ∈ [bmin,bmax].

• if b = bmax : then f̃ (·,bmax) = f (·)
• if b < bmax : then f̃ (·,b) is only an approximation of f (·) whose

quality typically increases with b.

33

Dataset Subsets [Klein et al., 2017]

34

Learning Curves

35

Successive Halving [Jamieson and Talwalkar, 2016]

Algorithm 2 Successive Halving

Require: initial budget b0, maximum budget bmax , set of n config-

urations C = {c1,c2, . . .cn}
1: b = b0

2: while b ≤ bmax do

3: L = {f̃ (c ,b) : c ∈ C}
4: C = topk(C ,L,b|C |/η)c
5: b = η ·b

36

Successive Halving

37

Hyperband [Li et al., 2017]

Algorithm 3 Hyperband

Require: budgets bmin and bmax , η

1: smax = blogη
bmax
bmin
c

2: for s ∈ {smax ,smax −1, . . . ,0} do

3: sample n = d smax+1
s+1 ·ηse configurations

4: run SH on them with ηs ·bmax as initial budget

38

Hyperband

39

Hyperband vs. Bayesian Optimization [Falkner et al., 2018]

Hyperband:

• very efficient in terms of anytime performance

• due to the random sampling, cannot reuse previously gain

knowledge and take a long time to converge

Bayesian optimization:

• in its standard form it cannot exploit fidelites (however,

several extensions exist)

• in the most cases converges faster than random search

Can we combine both methods?

40

Tree of Parzen Estimators [Bergstra et al., 2011]

We fit two kernel density estimator for the good and bad

configurations:

l(x) = p(y < α|x ,D)

g(x) = p(y > α|x ,D)

To select a new candidate xnew to evaluate, it maximizes the ratio
l(x)
g(x) , which is equivalent of optimizing expected improvement.

41

BOHB [Falkner et al., 2018]

Algorithm 4 Pseudocode for sampling in BOHB

Require: observations D, fraction of random runs ρ, percentile q,

number of samples Ns , minimum number of points Nmin to build

a model, and bandwidth factor bw

1: if rand() ≤ ρ then

2: return random configuration

3: b = arg max
{
Db : |Db| ≥ Nmin + 2

}
4: if b = /0 then

5: return random configuration

6: fit KDEs as in TPE but for each budget b

7: draw Ns samples according to l ′(x)

8: return sample with highest ratio l(x)/g(x)

42

BOHB

43

BOHB

44

BOHB

45

Benchmarking

• Benchmarking is important to make further progress in the

field

• Large computational demands make thorough benchmarking

extremely expensive

• In practice this slows down development of new methods

46

Benchmarking Pitfalls

0 50000 100000 150000 200000 250000

estimated wall-clock time (seconds)

0.00

0.05

0.10

0.15

0.20

im
m

ed
ia

te
te

st
re

gr
et HB

RS

BOHB

TPE

SMAC

RE

RL

Bohamiann

47

Benchmarking Pitfalls

102 103

estimated wall-clock time (seconds)

10−3

10−2

10−1

im
m

ed
ia

te
te

st
re

gr
et

HB

RS

BOHB

TPE

SMAC

RE

RL

Bohamiann

48

Benchmarking Pitfalls

101 102 103 104 105

estimated wall-clock time (seconds)

10−4

10−3

10−2

10−1

im
m

ed
ia

te
te

st
re

gr
et

HB

RS

BOHB

TPE

SMAC

RE

RL

Bohamiann

49

Benchmarking Pitfalls

102 103 104 105

estimated wall-clock time (seconds)

10−3

10−2

10−1

im
m

ed
ia

te
te

st
re

gr
et

HB

RS

BOHB

TPE

SMAC

RE

RL

Bohamiann

50

Pro Tips for Benchmarking

• Almost all optimizers are randomized, i.e depend on the

seed, thus, we need a sufficent amount of independent runs to

getter a better estimate of a optimizer’s performance

• Run all optimizers sufficiently long, since in the beginning

the most methods do not work better than random

• Plot the performance over time rather than just the final

performance

• Use log-scales and learn how to read them

51

Conclusions

• Bayesian optimization is an efficient strategy for

hyperparameter optimization

• By using fidelities of the objective function we can speed up

the optimization procedure

• Hyperband is an extension of random search that exploits

multi-fidelity of the objective function,

• BOHB combines Hyperband with Bayesian optimization to

combine the strengths of both methods

• Benchmarking plays an important role in developing new

methods

52

References I

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011).

Algorithms for hyper-parameter optimization.

In Proceedings of the 24th International Conference on

Advances in Neural Information Processing Systems (NIPS’11).

Eggensperger, K., Hutter, F., Hoos, H., and Leyton-Brown, K.

(2015).

Efficient benchmarking of hyperparameter optimizers via

surrogates.

In Proceedings of the 29th National Conference on Artificial

Intelligence (AAAI’15).

53

References II

Falkner, S., Klein, A., and Hutter, F. (2018).

BOHB: Robust and efficient hyperparameter

optimization at scale.

In Proceedings of the 35th International Conference on

Machine Learning (ICML 2018).

Hutter, F., Hoos, H., and Leyton-Brown, K. (2011).

Sequential model-based optimization for general

algorithm configuration.

In Proceedings of the Fifth International Conference on

Learning and Intelligent Optimization (LION’11).

54

References III

Jamieson, K. and Talwalkar, A. (2016).

Non-stochastic best arm identification and

hyperparameter optimization.

In Proceedings of the 17th International Conference on

Artificial Intelligence and Statistics (AISTATS’16).

Jones, D., Schonlau, M., and Welch, W. (1998).

Efficient global optimization of expensive black box

functions.

Journal of Global Optimization.

55

References IV

Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F.

(2017).

Fast Bayesian hyperparameter optimization on large

datasets.

In Electronic Journal of Statistics.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and

Talwalkar, A. (2017).

Hyperband: Bandit-based configuration evaluation for

hyperparameter optimization.

In International Conference on Learning Representations

(ICLR’17).

56

References V

Rasmussen, C. and Williams, C. (2006).

Gaussian Processes for Machine Learning.

The MIT Press.

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N.,

Sundaram, N., Patwary, M., Prabhat, and Adams, R. (2015).

Scalable Bayesian optimization using deep neural

networks.

In Proceedings of the 32nd International Conference on

Machine Learning (ICML’15).

57

References VI

Springenberg, J. T., Klein, A., Falkner, S., and Hutter, F.

(2016).

Bayesian optimization with robust bayesian neural

networks.

In Proceedings of the 29th International Conference on

Advances in Neural Information Processing Systems (NIPS’16).

Srinivas, N., Krause, A., Kakade, S., and Seeger, M. (2010).

Gaussian process optimization in the bandit setting: No

regret and experimental design.

In Proceedings of the 27th International Conference on

Machine Learning (ICML’10).

58

References VII

Ying, C., Klein, A., Real, E., Christiansen, E., Murphy, K., and

Hutter, F. (2019).

NAS-Bench-101: Towards reproducible neural

architecture search.

arXiv:1902.09635 [cs.LG].

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018).

Learning transferable architectures for scalable image

recognition.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR’18).

59

