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Outline

● Introduction to Human Pose Estimation (HPE)
● Single HPE
● Multi HPE

– Top down
– Bottom up

● Semantic Segmentation
● Exercise
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Intro: What is HPE?

● Given a single color image infer body pose:

HPE
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Intro: Why HPE?

● Human machine interaction:

– Autonomous driving: Infer People and their 
heading direction and intentions

From: Kreiss et al., PifPaf: Composite Fields for Human Pose Estimation, CVPR 2019
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Intro: Why HPE?

● Human machine interaction:

– Autonomous driving: Infer People and their 
heading direction and intentions

– Pose based gaming: Microsoft Xbox Kinect

From: xbox.com
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Intro: Why HPE?

● Human machine interaction:

– Autonomous driving: Infer People and their 
heading direction and intentions

– Pose based gaming: Microsoft Xbox Kinect
– In robotics: Learning from demonstration

From: Zimmermann et al., 3D Human Pose Estimation in RGBD Images for Robotic Task Learning, ICRA 2018
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Intro: Why HPE?

● Human machine interaction
● Quantify movement:

– Sport action analysis
● Track players during sports

– Medicine 
● Whats the stage of the ALS disease?
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Intro: What makes it hard?

● Large variation in appearance
● Ambiguities
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Intro: What makes it hard?

● Large variation in appearance
● Ambiguities
● Occlusions
● Crowding
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Single HPE: Regression

● Directly regress Cartesian image coordinates 
● Network outputs one vector of coordinates

From: Toshev et al., DeepPose: Human Pose Estimation via Deep Neural Networks, CVPR 2014

L=∑
i

(‖Pi− P̂i‖2)
2

Ground truthPrediction
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Single HPE: Scoremap

● Network estimates per pixel keypoint likelihood

● For each keypoint there is one map

● Ground truth maps are created from point annotations

From: Newell et al., Stacked Hourglass Networks for Human Pose Estimation, ECCV 2016
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Single HPE: Scoremap

● Network estimates per pixel keypoint likelihood

● For each keypoint there is one map

● Ground truth maps are created from point annotations

S∈ℝ
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From: Newell et al., Stacked Hourglass Networks for Human Pose Estimation, ECCV 2016
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Single HPE: Softargmax

● Heat maps are learned implicitly

● Softmax squashed map into a probability distribution

● Elementwise multiplication and summation reduces to 
predicted coordinate

From: Luvizon, 2d/3d pose estimation and action recognition using multitask deep learning, CVPR 2018
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Multi HPE
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Multi HPE

● Top-Down
– Detects persons first

– Estimates pose for each 
person independently

– Suffers early commitment

– Runtime scales linear in 
#people

– Struggles when people 
crowd

● Bottom-Up
– Detects keypoints first

– Subsequently groups 
keypoints into indivuals

– Makes keypoint detection 
harder because of less 
prior knowledge

– Extensive grouping is NP 
hard problem
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Top-down approach

● Example for top-down: Mask R-CNN
– First part of the network detects bounding boxes

– Then pool features from each bounding box and apply a 
sub-network (‘head’) on them

– There are heads for classification, segmentation and pose 

estimation 

From: He et al., Mask R-CNN, ICCV 2017
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Bottom-up approach

● Single network that estimates two entities:
– Keypoint locations (Part Intensity Field, also called 

Scoremap) → Gives joint estimates

– Association scores between keypoints that should form a 
limb (Part Affinity Fields) → Enables grouping

From: Kreiss et al., PifPaf: Composite Fields for Human Pose Estimation, CVPR 2019
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Bottom-up approach

● Part Intensity Fields
– Likelihood at each location if the keypoint is present

– One Scoremap per keypoint needed

From: Kreiss et al., PifPaf: Composite Fields for Human Pose Estimation, CVPR 2019
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Bottom-up approach

● Part Affinity Fields
– Vector field pointing in the direction from ‘start’ to ‘end’ of a 

limb

– Two maps per keypoint (one for each vector component)

From: Cao et al., Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields, CVPR 2017
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Bottom-up approach

● Grouping keypoint candidates to instances
– Finding the optimal parse of from the detected keypoint 

candidates is NP-Hard.

– Therefore relax complete matching to greedy bipartite 
graph matching: i.e. match one limb at a time

● Practical implementation:
– Start with the most confident keypoint locations

– Greedy growing of the person instance using the PAF based 
score
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Evaluation

● Common measure: Mean per joint position error (MPJPE)

PredictionGround truth

MPJPE=
1

|V|
∑
i∈V

K

‖pi− p̂i‖2

Set of visible 
keypoints
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Semantic Segmentation
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Image Segmentation

Input image Segmentation mask

Definition: partitioning the image into coherent regions/subsets of pixels

Source: COCO dataset, http://cocodataset.org/#explore

http://cocodataset.org/#explore
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Segmentation Tasks
● Binary 

segmentation
● Semantic 

segmentation
● Instance 

segmentation

● Assign a class to each 
pixel

● 2 classes: foreground/
background

● Assign a class to each 
pixel

● Multiple classes with 
semantic meaning: 
person, dog, sheep, 
pig, background, ...

● Predict segmentation 
mask for foreground 
objects

● Instance specific 
(usually coupled with 
detection)

Sources: Ronneberger et al., U-Net: Convolutional Networks for Biomedical Image Segmentation,  MICCAI 2015
He et al., Mask R-CNN, ICCV 2017
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Segmentation with CNNs

Encoder-Decoder architecture:

Input 
image

Encoder Decoder

Prediction:
segmentation 

mask

Bottleneck
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Encoder Network

Conv. Layers (+ReLU)

Pooling layers

Input: 
● Original resolution 
● Low level representation (RGB)

Output/bottleneck: 
● Low resolution
● High receptive field
● High level feature representation 

(high number of channels)



  30 / 40

Decoder Network

Transposed Conv. Layers (+ReLU)

Upsampling layers

● Uses feature representation to solve task

● Increases resolution via upsampling operations 
and/or transposed convolutions
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Transposed Convolutions
● Also known as upconvolutions or deconvolutions
● They map the input to a higher resolution output
● Can be seen as “learned upsampling” operations

“Transposed” because:

convolutional filter

convolutional matrix
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Transposed Convolutions
● Also known as upconvolutions or (wrongly) deconvolutions
● They map the input to a higher resolution output
● Can be seen as “learned upsampling” operations

“Transposed” because:

Convolution:

Transposed convolution:

it can be computed using the transposed matrix of some convolution.
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Skip Connections

skip

skip

● “Shortcuts” from encoder activations to corresponding decoder stages
● Preserve high-res information, useful for refinement
● Improve sharpness of output
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Skip Connections

skip

concatenation

64
 x 

64

64
 x 

64rest of the 
network...

......
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Example: U-Net

Ronneberger et al., U-Net: Convolutional Networks for Biomedical Image Segmentation,  MICCAI 2015
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Example: ECRU

Source: Robail Yasrab, “ECRU: An Encoder-Decoder Based Convolution Neural Network (CNN) for Road-Scene Understanding”, 
Journal of Imaging 2018
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Training for Segmentation

mask 
prediction

last decoder layer

conv. sigmoid 
activation

ground 
truth mask

Cross 
Entropy 

Loss
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Evaluating Segmentation
Common evaluation metric for detection and segmentation: 
Intersection over Union (IoU)

E.g. in object detection:

intersection union

prediction
ground

truth



  39 / 40

A Few References

● Ronneberger et al., “U-Net: Convolutional Networks for Biomedical Image 
Segmentation”, MICCAI 2015

● Robail Yasrab, “ECRU: An Encoder-Decoder Based Convolution Neural Network 
(CNN) for Road-Scene Understanding”, Journal of Imaging 2018

● He et al., “Mask R-CNN”, ICCV 2017

● He et al., Deep Residual Learning for Image Recognition, CVPR 2016

● Dumoulin et al., A guide to convolution arithmetic for deep learning, arXiv 1603.07285



  40 / 40

Exercise

● Set up and train a model for pose estimation 
using the direct scalar regression approach.

● Implement the Softargmax loss and use it to 
train a second model. Compare it with the 
previous approach.

● Implement different encoder-decoder 
networks for segmentation and compare their 
performance.
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