Imitation Learning

Jannik Zurn

UNI
I

FREIBURG

A* Autonomous
I S Intelligent
Systems

Terminology

0.6

0.0

0.0

0.4

0.1

0.1

0.8

Cat
Dog
Car
Liquid

Left
Right
Straight

Mapping observations to actions

0.1 | Left
0.1 | Right
0.8 | Straight

A

mg(az|o:) — policy (partially observed)
mo(az|s¢) — policy (fully observed)

a; — action

S; — state

0; — observation

States and observations

- i, -

S; — state 0; — observation

States and observations

Markov property

Lossy
mapping

Transition function

[1]

Where to get labels?

training supervised

| . W@(atlot)
ota earning

Behavior Cloning

Problems?

- Noisy labels (expert makes mistakes)
- Have to observe a lot of data from expert
- Data distribution mismatch:
Observations that are not in training data set

Data Distribution Mismatch

Expert trajectory
Learned Policy

-

s
o

No data on /
how to recover = it ("-.,l

Imitation Driving

and cruises right through

[Bojarski et al. 2016]

http://www.youtube.com/watch?v=-96BEoXJMs0

Imitation Driving - why does it

work?

Recorded
steering
wheel angle | Adjust for shift Desired steering command
and rotation
CEE—— Network
Left camera computed
steering
) — > i command
Center camera [——» Random §h|ft > CNN
and rotation
Ne——————— .__’
Right camera f

J -
7 ———)
(W
\ -~ = 194

Back propagation |
weight adjustment

R
<
V.

" [Bojarski et al. 2016]

Dataset Aggregation

Problem: Distribution drift of Prg (Ot)

Solution: Move p;,(0:) closer to piata(0t)
How? — Add samples of Pr, (Ot) with annotations

from expert to dataset

DAgger algorithm (Dataset Aggregation)

Train p,,(0;) from expert dataD = {01,a1,...,0n,an}
Run p., (o;) togetnewdata D, = {oi,...,0p}
Ask expert to label D, with actions

Aggregate D < D U D

Failing to fit the expert

Reasons for failing:

- Multimodal expert behavior
- Non-Markovian expert behavior

Multimodal expert behavior

[1]

Non-Markovian expert behavior

Left
Right
Straight

LSTM layer

DAgger

Problems:

- Repeatedly query expert
- Execute an unsafe/partially trained

policy

Non-human experts

- For training: learn classifier from expert
brute force algorithm (i.e. exhaustive
search)

- Query expert algorithm using DAgger

- For inference: use learned policy instead
of slow expert

Cost function for Imitation

Reward r:
r(s,a) =logp(a = 7"(s)|s)
Loss:
loss(s,a) = —r(s,a)

(cross-entropy loss)

References

- [1] UC Berkeley Deep RL course by Sergey Levine, lecture 1

- [2] A. Giusti et al.: A Machine Learning Approach to Visual
Perception of Forest Trails for Mobile Robots (2016)

- [3] M. Bojarski et al.: End to End Learning for Self-Driving Cars
(2016)

Deep Reinforcement Learning

Niklas Wetzel

Outline

= Recap reinforcement learning (RL) concepts
= Value function approximation
= Deep Q-Networks

Components of RL: Recap

= Markov Decision Process (MDP)
= Value-functions, action-value functions

= Policy estimation (prediction), policy improvement,
policy iteration

= Monte-Carlo estimation, temporal difference (TD)
learning

Recap: Markov Decision Process

= Defined via (S,Aalﬁ’a r, ’Y)

= state space, action space, dynamics, rewards, discount
factor

= Dynamics function defined by probabilities
p(s',r|s,a) :=P(Siy1 =5, Ry =7r|S; = s,A; = a)

= Notation: We use P, E;, if Ay ~ 7 for all t
= Goal: To maximize the expected return

Markov Decision Process Terminology
= Policy: m7(a|s) =P(At = a|St = s)

o0

« Return: Gt = Rep1+yRepot.. = Z ’YkRHk
k=0

= State-value function: vy (s) = Ex[G¢|S; =]

= Action-value function:
qr (s, a) = Ex|G¢| St = s, At = a

How to estimate the value functions

= Monte Carlo: Average over samples (unbiased)

N

1
Eﬂ[GHSt =5, At = a} ~ N Z ng)
n=1

= Bootstra

7,

pping via TD targets (biased)

Gt|St = 8] = Rey1+ yvn(Si41)

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large
problems, e.g.

= Backgammon: 1020 states

= Chess: 104/ states

= Go: 10179 states

= Helicopter: continuous state space

How can we scale up methods for prediction and
control?

Value Function Problems

= Till now value function is treated like lookup table
= Every state has an entry v_(s)
= Or every state-action pair (s,a) has an entry g _(s,a)
= Problem with large MDPs:
= Too many states and/or actions to store in memory
= Too slow to learn the value of each states

Value Function Approximation

Solution for large MDPs:
= Estimate value functions with function approximation
= Generalize from seen states to unseen states

Vo(s) = vx(s)
Qs(s,a) =~ ¢(s,a)

= Update parameters ¢ using MC or TD learning

Function Approximator Types?

We choose neural networks as function
approximators, but other choices are possible, e.qg.
= Linear combination of features
= Decision trees
= Nearest neighbour methods
= Fourier / wavelet bases

We require a training method that is suitable for
non-stationary, non-i.i.d. data

Gradient Descent

= Task: Find a local minimum
of differentiable function

1(¢)

= Adjust ¢ in direction of the
negative gradient

TH
\‘\\
h!‘i“i:‘:‘g‘i‘}‘ig

S

= - S
A¢ = - o 0.5grad(J), ' ::'.:o,'/
/4

where « is the step-size

Source: UCL Course on RL, D. '5i|-.::r|

Value Function Approx. by GD

= Goal: find parameters ¢ minimizing the mean-
squared error between approximate value function
V,(s) and true value function v (s)

J(¢) = Ex [(Vo(S) — va(S))’]

= Gradient descent (GD) finds a local minimum
A¢ = aE; [(v2(S) — V(5)) VeV (S)]

Value Function Approx. by SGD

= Stochastic gradient descent (SGD) samples states
s),...,SMN) and estimates the gradient

1 N

A= am D [(V(S™) = va(S™)V,Vi(5™)]

n=1

= Expected update is equal to the full gradient update

Incremental Prediction Algorithms

= Have assumed true value function v_(s) given by a
supervisor

= In RL there is no supervisor, only rewards

= In practise, we substitute a target for v_(s)
= For MC, the target is the return G,

A = (G — Vy(5:)) VeV (St)
= For TD, the target is the TD target Ri+1 + 7V5(St+1)
A¢ = (Rip1 +YVy(Sit1) = Viu(S1)) Ve Vi (St)

MC with Value Function Approximation

= Return G, is an unbiased sample of the true v_(S;)
= Can therefore apply supervised learning to “training

data™: (Sla Gl)a (ng Gg)j e (STj GT)

= MC guaranteed to converge to a local optimum
using non-linear value function approximation

TD with Value Function Approximation

= TD target Rit1+7V4(Si+1) is a biased sample of the
true v_(S,)

= Can still apply supervised learning to “training

data” by substituting return samples with TD target
samples

= Not guaranteed to converge to a local optimum
using non-linear value function approximation

Action-Value Function Approximation

= Approximate the action-value function
Qp(s,a) = qx(s, a)

= Minimize mean-squared error between Q,(s,a) and
the true action value function q_(s,a)

J(¢) = Er [(gx(s, @) — Qu(s,a))’]

Action-Value Function Approx. by SGD

= Stochastic gradient descent (SGD) samples states
s AL .., S AlM and estimates the gradient

1 N

Ao = o+ SI(Qu(S™, AM)-

n=1
4- (S, A))V4Qu (5™, A™)]
= Expected update is equal to the full gradient update

TD-Control: Optimal Value Functions

= Optimal state-value function

V4(8) ;= max v, (s)
T
= Optimal action-value function
¢:(s,) = max g(s, a)

= TD control goal: Estimate optimal value functions

Sarsa: On-policy TD-control

= Approximate g, with Q,
= TD targets given by

Rit1 4+ Qup(Sit1, Arta)

Policy improvement: Update behaviour policy = to
be (e-) greedy w.r.t. Q,

Repeat till convergence: Tr — Tg+1 —7 ... —7 Ty

Control with Value Function Approximation

= Policy evaluation
Approximate policy
evaluation:
Q¢ ~ q;
= Policy improvement
Any, e.g. e—greedy
Improvement

Starting w

Policy iteration

fit a model/
estimate the return

generate samples

(i.e. run the policy)

improve the policy

[Seurce: ©F Z-112: Deep BL, 3. Levine]

Q-learning: Off-policy TD-control

= Directly approximate g« with Q;
= TD target given by

Ryp1 + max Qy(St41,a)

= Advantage: off-policy

Q-learning with function approximator 1

= Q-iteration algorithm (online):

= 1. take some action a; and observe (s;,a;,s;, ;)
2. yi = r(si,a;) + v maxa Qy(s], a;)

L d

3L ¢ — a%(si,ai)(Qqﬁ(Siaai) ~Yi)

= Problem: Highly correlated states

nklswtzl
Rectangle

Deep Q-learning

Idea: Decorrelate data with replay buffer

off-policy
Q-learning

m(als) (e.g., e-greedy)

[Soun:-e: C5 3-112: Deep BL, 5. I.aurine]

Q-learning with function approximator 2

= Q-iteration algorithm (offline):
% 1. collect dataset {(s;,a;,s},7;)} using some policy
o> 2. set y; + r(si,a;) +ymaxy Qs(s),ar)
>< T

e 3L set ¢ <— argming, % 2 1Qp(si &) — y@'HQ

= Careful: No SGD, since y;depends on ¢, but is
‘viewed’ as constant in 3.)

Q-learning with function approximator 3

= Idea: Fix TD targets for a given time period

= Q-iteration with replay buffer and target network:

&= 1. save target network parameters: Cb, — ¢

% 2. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B

Nx o= 3 sample a batch (sz, a;,s;,r;) from B
L ¢ ¢ — Y, F(si,a:)(Qolsia;) — [r(si a;) +ymaxa Qu(s),al)))

= You will implement this in your RL exercise

Sources:

= CS 294-112: Deep Reinforcement Learning
= Sergey Levine

= UCL Course on RL
= David Silver

= Reinforcement Learning: An Introduction
= R.Sutton, A.Barto

