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Terminology
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Mapping observations to actions
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States and observations



States and observations

Lossy 
mapping
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Transition function

Markov property



Where to get labels?

Problems?

- Noisy labels (expert makes mistakes)
- Have to observe a lot of data from expert
- Data distribution mismatch: 

Observations that are not in training data set

Behavior Cloning



Data Distribution Mismatch



Imitation Driving

[Bojarski et al. 2016]

http://www.youtube.com/watch?v=-96BEoXJMs0


Imitation Driving - why does it 
work?

[Bojarski et al. 2016]



Dataset Aggregation

Problem: Distribution drift of

Solution: Move              closer to

How? → Add samples of              with annotations 

from expert to dataset

DAgger algorithm (Dataset Aggregation)

Train               from expert data  

Run               to get new data

Ask expert to label         with actions

Aggregate 



Failing to fit the expert

Reasons for failing:

- Multimodal expert behavior
- Non-Markovian expert behavior



Multimodal expert behavior

[1]



Non-Markovian expert behavior

0.1

0.1

0.8

Left

Right

Straight



DAgger

Problems:

- Repeatedly query expert
- Execute an unsafe/partially trained 

policy



Non-human experts

- For training: learn classifier from expert 
brute force algorithm (i.e. exhaustive 
search)

- Query expert algorithm using DAgger
- For inference: use learned policy instead 

of slow expert



Cost function for Imitation

Reward r:

Loss:

(cross-entropy loss)
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Deep Reinforcement Learning 

Niklas Wetzel 



Outline 

 

 

 Recap reinforcement learning (RL) concepts 

 Value function approximation  

 Deep Q-Networks 

 



Components of RL: Recap 

 Markov Decision Process (MDP) 

 Value-functions, action-value functions 

 Policy estimation (prediction), policy improvement, 
policy iteration 

 Monte-Carlo estimation, temporal difference (TD) 
learning 



Recap: Markov Decision Process 

 Defined via  

 state space, action space, dynamics, rewards, discount 
factor 

 Dynamics function defined by probabilities 

 

 

 Notation: We use          , if            for all t 

 Goal: To maximize the expected return 

 



Markov Decision Process Terminology 

 Policy: 

 

 Return: 

 

 State-value function: 

 

 Action-value function:   

 

 



How to estimate the value functions 

 Monte Carlo: Average over samples (unbiased) 

 

 

 

 

 Bootstrapping via TD targets (biased) 



Large-Scale Reinforcement Learning 

Reinforcement learning can be used to solve large 
problems, e.g. 

 Backgammon: 1020 states 

 Chess: 1047 states 

 Go: 10170 states 

 Helicopter: continuous state space 

How can we scale up methods for prediction and 
control? 



Value Function Problems 

 Till now value function is treated like lookup table 

 Every state has an entry v¼(s) 

 Or every state-action pair (s,a) has an entry q¼(s,a) 

 Problem with large MDPs: 

 Too many states and/or actions to store in memory 

 Too slow to learn the value of each states 



Value Function Approximation 

Solution for large MDPs: 

 Estimate value functions with function approximation 

 Generalize from seen states to unseen states 

  

  

 

 Update parameters Á using MC or TD learning   



Function Approximator Types? 

We choose neural networks as function 
approximators, but other choices are possible, e.g. 

 Linear combination of features 

 Decision trees 

 Nearest neighbour methods 

 Fourier / wavelet bases 

 … 

We require a training method that is suitable for  

non-stationary, non-i.i.d. data 



Gradient Descent 

 Task: Find a local minimum 
of differentiable function 
J(Á) 

 Adjust Á in direction of the 

negative gradient 

 

 ¢Á = - ® 0.5grad(J), 

 

   where ® is the step-size  



Value Function Approx. by GD 

 Goal: find parameters Á minimizing the mean-

squared error between approximate value function 
VÁ(s) and true value function v¼(s) 

 

 

 Gradient descent (GD) finds a local minimum 



Value Function Approx. by SGD 

 Stochastic gradient descent (SGD) samples states 
S(1),…,S(N) and estimates the gradient 

 

 

 

 Expected update is equal to the full gradient update 



Incremental Prediction Algorithms 

 Have assumed true value function v¼(s) given by a 
supervisor 

 In RL there is no supervisor, only rewards 

 In practise, we substitute a target for v¼(s) 

 For MC, the target is the return Gt 

 

 

 For TD, the target is the TD target  

 

 

 

 



MC with Value Function Approximation 

 Return Gt is an unbiased sample of the true v¼(St) 

 Can therefore apply supervised learning to “training 
data”: 

 

 MC guaranteed to converge to a local optimum 
using non-linear value function approximation 



TD with Value Function Approximation 

 TD target                       is a biased sample of the 
true v¼(St) 

 Can still apply supervised learning to “training 
data” by substituting return samples with TD target 
samples 

 

 Not guaranteed to converge to a local optimum 
using non-linear value function approximation 



Action-Value Function Approximation 

 Approximate the action-value function 

 

 

 Minimize mean-squared error between QÁ(s,a) and 
the true action value function q¼(s,a) 

 

 



Action-Value Function Approx. by SGD 

 Stochastic gradient descent (SGD) samples states 
S(1),A(1),…, S(n),A(n)  and estimates the gradient 

 

 

 

 

 

 Expected update is equal to the full gradient update 



TD-Control: Optimal Value Functions 

 Optimal state-value function 

 

 

 Optimal action-value function 

 

 

 TD control goal: Estimate optimal value functions 

 

 



Sarsa: On-policy TD-control  
 
 Approximate q¼ with QÁ  

 TD targets given by 

 

 

 Policy improvement: Update behaviour policy ¼ to 
be (²-) greedy w.r.t. QÁ 

 

 Repeat till convergence: 

 

 

 

 

 



Control with Value Function Approximation 

 Policy evaluation 
Approximate policy 
evaluation:  

 QÁ ¼ q¼ 

 Policy improvement 
Any, e.g. ²–greedy 

improvement 

 



Policy iteration 



Q-learning: Off-policy TD-control  
 
 Directly approximate q* with QÁ 

  TD target given by 

 

 

 

 Advantage: off-policy 

 

 



Q-learning with function approximator 1 

 

 Q-iteration algorithm (online): 

 

 

 

 

 Problem: Highly correlated states 
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Deep Q-learning 

Idea: Decorrelate data with replay buffer 

 

 

 

 

 

 

 

 

 

 

 

 



Q-learning with function approximator 2 

 

 Q-iteration algorithm (offline): 

 

 

 

 

 Careful: No SGD, since yi depends on Á, but is 

„viewed‟ as constant in 3.) 

 

 

 

 

 

 

 



Q-learning with function approximator 3 

 Idea: Fix TD targets for a given time period 

 

 Q-iteration with replay buffer and target network: 

 

 

 

 

 You will implement this in your RL exercise  

 

 

 

 

 

 

 



Sources: 

 CS 294-112: Deep Reinforcement Learning  

 Sergey Levine 

 UCL Course on RL 

 David Silver 

 Reinforcement Learning: An Introduction 

 R.Sutton, A.Barto 

 

 

 

 

 

 


