
Imitation Learning

Jannik Zürn

Terminology

0.6

0.0

0.0

0.4

Cat

Dog

Car

Liquid

0.1

0.1

0.8

Left

Right

Straight

Mapping observations to actions

0.1

0.1

0.8

Left

Right

Straight

States and observations

States and observations

Lossy
mapping

[1]

Transition function

Markov property

Where to get labels?

Problems?

- Noisy labels (expert makes mistakes)
- Have to observe a lot of data from expert
- Data distribution mismatch:

Observations that are not in training data set

Behavior Cloning

Data Distribution Mismatch

Imitation Driving

[Bojarski et al. 2016]

http://www.youtube.com/watch?v=-96BEoXJMs0

Imitation Driving - why does it
work?

[Bojarski et al. 2016]

Dataset Aggregation

Problem: Distribution drift of

Solution: Move closer to

How? → Add samples of with annotations

from expert to dataset

DAgger algorithm (Dataset Aggregation)

Train from expert data

Run to get new data

Ask expert to label with actions

Aggregate

Failing to fit the expert

Reasons for failing:

- Multimodal expert behavior
- Non-Markovian expert behavior

Multimodal expert behavior

[1]

Non-Markovian expert behavior

0.1

0.1

0.8

Left

Right

Straight

DAgger

Problems:

- Repeatedly query expert
- Execute an unsafe/partially trained

policy

Non-human experts

- For training: learn classifier from expert
brute force algorithm (i.e. exhaustive
search)

- Query expert algorithm using DAgger
- For inference: use learned policy instead

of slow expert

Cost function for Imitation

Reward r:

Loss:

(cross-entropy loss)

References

- [1] UC Berkeley Deep RL course by Sergey Levine, lecture 1

- [2] A. Giusti et al.: A Machine Learning Approach to Visual

Perception of Forest Trails for Mobile Robots (2016)

- [3] M. Bojarski et al.: End to End Learning for Self-Driving Cars

(2016)

Deep Reinforcement Learning

Niklas Wetzel

Outline

 Recap reinforcement learning (RL) concepts

 Value function approximation

 Deep Q-Networks

Components of RL: Recap

 Markov Decision Process (MDP)

 Value-functions, action-value functions

 Policy estimation (prediction), policy improvement,
policy iteration

 Monte-Carlo estimation, temporal difference (TD)
learning

Recap: Markov Decision Process

 Defined via

 state space, action space, dynamics, rewards, discount
factor

 Dynamics function defined by probabilities

 Notation: We use , if for all t

 Goal: To maximize the expected return

Markov Decision Process Terminology

 Policy:

 Return:

 State-value function:

 Action-value function:

How to estimate the value functions

 Monte Carlo: Average over samples (unbiased)

 Bootstrapping via TD targets (biased)

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large
problems, e.g.

 Backgammon: 1020 states

 Chess: 1047 states

 Go: 10170 states

 Helicopter: continuous state space

How can we scale up methods for prediction and
control?

Value Function Problems

 Till now value function is treated like lookup table

 Every state has an entry v¼(s)

 Or every state-action pair (s,a) has an entry q¼(s,a)

 Problem with large MDPs:

 Too many states and/or actions to store in memory

 Too slow to learn the value of each states

Value Function Approximation

Solution for large MDPs:

 Estimate value functions with function approximation

 Generalize from seen states to unseen states

 Update parameters Á using MC or TD learning

Function Approximator Types?

We choose neural networks as function
approximators, but other choices are possible, e.g.

 Linear combination of features

 Decision trees

 Nearest neighbour methods

 Fourier / wavelet bases

 …

We require a training method that is suitable for

non-stationary, non-i.i.d. data

Gradient Descent

 Task: Find a local minimum
of differentiable function
J(Á)

 Adjust Á in direction of the

negative gradient

 ¢Á = - ® 0.5grad(J),

 where ® is the step-size

Value Function Approx. by GD

 Goal: find parameters Á minimizing the mean-

squared error between approximate value function
VÁ(s) and true value function v¼(s)

 Gradient descent (GD) finds a local minimum

Value Function Approx. by SGD

 Stochastic gradient descent (SGD) samples states
S(1),…,S(N) and estimates the gradient

 Expected update is equal to the full gradient update

Incremental Prediction Algorithms

 Have assumed true value function v¼(s) given by a
supervisor

 In RL there is no supervisor, only rewards

 In practise, we substitute a target for v¼(s)

 For MC, the target is the return Gt

 For TD, the target is the TD target

MC with Value Function Approximation

 Return Gt is an unbiased sample of the true v¼(St)

 Can therefore apply supervised learning to “training
data”:

 MC guaranteed to converge to a local optimum
using non-linear value function approximation

TD with Value Function Approximation

 TD target is a biased sample of the
true v¼(St)

 Can still apply supervised learning to “training
data” by substituting return samples with TD target
samples

 Not guaranteed to converge to a local optimum
using non-linear value function approximation

Action-Value Function Approximation

 Approximate the action-value function

 Minimize mean-squared error between QÁ(s,a) and
the true action value function q¼(s,a)

Action-Value Function Approx. by SGD

 Stochastic gradient descent (SGD) samples states
S(1),A(1),…, S(n),A(n) and estimates the gradient

 Expected update is equal to the full gradient update

TD-Control: Optimal Value Functions

 Optimal state-value function

 Optimal action-value function

 TD control goal: Estimate optimal value functions

Sarsa: On-policy TD-control

 Approximate q¼ with QÁ

 TD targets given by

 Policy improvement: Update behaviour policy ¼ to
be (²-) greedy w.r.t. QÁ

 Repeat till convergence:

Control with Value Function Approximation

 Policy evaluation
Approximate policy
evaluation:

 QÁ ¼ q¼

 Policy improvement
Any, e.g. ²–greedy

improvement

Policy iteration

Q-learning: Off-policy TD-control

 Directly approximate q* with QÁ

 TD target given by

 Advantage: off-policy

Q-learning with function approximator 1

 Q-iteration algorithm (online):

 Problem: Highly correlated states

nklswtzl
Rectangle

Deep Q-learning

Idea: Decorrelate data with replay buffer

Q-learning with function approximator 2

 Q-iteration algorithm (offline):

 Careful: No SGD, since yi depends on Á, but is

„viewed‟ as constant in 3.)

Q-learning with function approximator 3

 Idea: Fix TD targets for a given time period

 Q-iteration with replay buffer and target network:

 You will implement this in your RL exercise

Sources:

 CS 294-112: Deep Reinforcement Learning

 Sergey Levine

 UCL Course on RL

 David Silver

 Reinforcement Learning: An Introduction

 R.Sutton, A.Barto

