
Foundations of Artificial Intelligence
5. Board Games

Search Strategies for Games, Games with Chance, State of the Art

Joschka Boedecker and Wolfram Burgard and
Frank Hutter and Bernhard Nebel and Michael Tangermann

Albert-Ludwigs-Universität Freiburg

May 10, 2019

Contents

1 Board Games

2 Minimax Search

3 Alpha-Beta Search

4 Games with an Element of Chance

5 State of the Art

(University of Freiburg) Foundations of AI May 10, 2019 2 / 38

Lecture Overview

1 Board Games

2 Minimax Search

3 Alpha-Beta Search

4 Games with an Element of Chance

5 State of the Art

(University of Freiburg) Foundations of AI May 10, 2019 3 / 38

Why Board Games?

Playing board games is one of the oldest research areas in AI (Shannon
and Turing 1950).

Board games present a very abstract and pure form of competition
between two opponents and clearly require a form of “intelligence”.

The states of a game are easy to represent.

The possible actions of the players are well-defined.

→ Implementation of the game as a kind of search problem

→ The individual states are fully accessible

→ It is nonetheless a contingency problem, because the actions of the
opponent are not under the control of the player

(University of Freiburg) Foundations of AI May 10, 2019 4 / 38

Problems

Board games are not only difficult because they are contingency problems,
but also because the state space can become astronomically large.

Examples:

Chess: On average 35 possible actions from every position; often,
games have 50 moves per player, resulting in a search depth of 100:
→ 35100 ≈ 10150 nodes in the search tree (with “only” 1040 legal chess
positions).

Go: On average 200 possible actions with ca. 300 moves
→ 200300 ≈ 10700 nodes.

Good game programs have the properties that they

delete irrelevant branches of the tree,

use good evaluation functions for in-between states, and

look ahead as many moves as possible.

(University of Freiburg) Foundations of AI May 10, 2019 5 / 38

Lecture Overview

1 Board Games

2 Minimax Search

3 Alpha-Beta Search

4 Games with an Element of Chance

5 State of the Art

(University of Freiburg) Foundations of AI May 10, 2019 6 / 38

Terminology of Two-Person Board Games

Players are max and min, where max begins.

Initial position (e.g., board arrangement)

Operators (= legal moves)

Game tree is the search tree generated from the possible (alternate)
moves

Termination test, determines when the game is over and what the value
of the final state is

Strategy. In contrast to regular searches, where a path from beginning
to end is a solution, max must come up with a strategy to reach a
favorable terminal state regardless of what min does → all of min’s
moves must be considered and reactions to them must be computed

(University of Freiburg) Foundations of AI May 10, 2019 7 / 38

Tic-Tac-Toe Example

XX
XX

X
X

X

XX

X X
O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

�–1 0 +1

XX
X XO

X XOX XO
O
O

X
X XO

OO
O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

Every level of the game tree is given the player’s name whose turn it is (max- and
min-steps).

When it is possible, as it is here, to produce the full game tree, the minimax algorithm

delivers an optimal strategy for max.

(University of Freiburg) Foundations of AI May 10, 2019 8 / 38

Minimax Algorithm

1. Generate the complete game tree using depth-first search (we do not
need the full tree in memory!)

2. Apply the utility function to each terminal state.

3. Beginning with the terminal states, determine the utility of the
predecessor nodes as follows:

Predecessor node is a min-node:
Value is the minimum of its child nodes
Predecessor node is a max-node:
Value is the maximum of its child nodes
From the initial state (root of the game tree), max chooses the move that
leads to the highest value (minimax decision).

Note: Minimax assumes that min plays perfectly. Every weakness (i.e.,
every mistake min makes) can only improve the result for max.

(University of Freiburg) Foundations of AI May 10, 2019 9 / 38

Minimax Example

(University of Freiburg) Foundations of AI May 10, 2019 10 / 38

Minimax Algorithm

Recursively calculates the best move from the initial state.

5 ADVERSARIAL SEARCH

function M INIMAX -DECISION(state) returns an action
return argmax

a ∈ ACTIONS(s) M IN-VALUE(RESULT(state ,a))

function MAX -VALUE(state) returns a utility value
if TERMINAL -TEST(state) then return UTILITY (state)
v←−∞
for each a in ACTIONS(state) do
v←MAX (v , M IN-VALUE(RESULT(s, a)))

return v

function M IN-VALUE(state) returns a utility value
if TERMINAL -TEST(state) then return UTILITY (state)
v←∞
for each a in ACTIONS(state) do
v←M IN(v , MAX -VALUE(RESULT(s, a)))

return v

Figure 5.3 An algorithm for calculating minimax decisions. It returnsthe action corresponding
to the best possible move, that is, the move that leads to the outcome with the best utility, under the
assumption that the opponent plays to minimize utility. Thefunctions MAX -VALUE and MIN-VALUE

go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state.
The notationargmaxa∈S f(a) computes the elementa of setS that has the maximum value off(a).

11

Note: Minimax can only be applied to game trees that are not too deep.
Otherwise, the minimax value must be approximated at a certain level.

(University of Freiburg) Foundations of AI May 10, 2019 11 / 38

Lecture Overview

1 Board Games

2 Minimax Search

3 Alpha-Beta Search

4 Games with an Element of Chance

5 State of the Art

(University of Freiburg) Foundations of AI May 10, 2019 12 / 38

Evaluation Function

When the search tree is too large, it can be expanded to a certain depth
only. The art is to correctly evaluate the playing position of the leaves of
the tree at that depth.

Example of simple evaluation criteria in chess:

Material value: pawn 1, knight/bishop 3, rook 5, queen 9

Other: king safety, good pawn structure

Rule of thumb: three-point advantage = certain victory

The design of the evaluation function is important!

The value assigned to a state of play should reflect the chances of
winning, i.e., the chance of winning with a one-point advantage should be
less than with a three-point advantage.

(University of Freiburg) Foundations of AI May 10, 2019 13 / 38

Evaluation Function

When the search tree is too large, it can be expanded to a certain depth
only. The art is to correctly evaluate the playing position of the leaves of
the tree at that depth.

Example of simple evaluation criteria in chess:

Material value: pawn 1, knight/bishop 3, rook 5, queen 9

Other: king safety, good pawn structure

Rule of thumb: three-point advantage = certain victory

The design of the evaluation function is important!

The value assigned to a state of play should reflect the chances of
winning, i.e., the chance of winning with a one-point advantage should be
less than with a three-point advantage.

(University of Freiburg) Foundations of AI May 10, 2019 13 / 38

Evaluation Function—General

The preferred evaluation functions are weighted, linear functions:

w1f1 + w2f2 + · · ·+ wnfn

where the w’s are the weights, and the f ’s are the features. [e.g., w1 = 3,
f1 = number of our own knights on the board]

The above linear sum makes the strong assumption that the contributions
of all features are independent. (not true: e.g., bishops in the endgame are
more powerful, when there is more space)

The weights can be learned. The features, however, are often designed by
human intuition and understanding

(University of Freiburg) Foundations of AI May 10, 2019 14 / 38

When Should We Stop Growing the Tree?

Motivation: Return an answer within the allocated time.

Fixed-depth search.

Better: iterative deepening search (stop, when time is over).

But only stop and evaluate in “quiescent” positions that will not cause
large fluctuations in the evaluation function in the following moves. For
example, if one can capture a figure, then the position is not
“quiescent” because this action might change the evaluation
substantially. It is better to continue the search in non-quiescent
positions, preferably by only allowing certain types of moves (e.g.,
capturing) to reduce search effort, until a quiescent position is reached.

There still is the problem of limited depth search: horizon effect (see
next slide).

(University of Freiburg) Foundations of AI May 10, 2019 15 / 38

Horizon Problem

Black to move

Black has a slight material advantage

. . . but will eventually lose (pawn becomes a queen).

A fixed-depth search cannot detect this because it thinks it can avoid it
(on the other side of the horizon—because black is concentrating on the
check with the rook, to which white must react).

(University of Freiburg) Foundations of AI May 10, 2019 16 / 38

Alpha-Beta Pruning

Can we improve this?

We do not need to consider all nodes.

(University of Freiburg) Foundations of AI May 10, 2019 17 / 38

Alpha-Beta Pruning

Can we improve this? We do not need to consider all nodes.

(University of Freiburg) Foundations of AI May 10, 2019 17 / 38

Alpha-Beta Pruning: General

Player

Opponent

Player

Opponent

..

..

..

m

n

If m > n we will never reach node n in the game.

(University of Freiburg) Foundations of AI May 10, 2019 18 / 38

Alpha-Beta Pruning

Minimax algorithm with depth-first search

α = the value of the best (i.e., highest-value) choice for max which we
have found so far at any choice point along the path.
(max is guaranteed to get at least this value!)

β = the value of the best (i.e., lowest-value) choice for min that we have
found so far at any choice point along the path.

(University of Freiburg) Foundations of AI May 10, 2019 19 / 38

When Can we Prune?

The following applies:

α values of max nodes can never decrease

β values of min nodes can never increase

(1) Prune below the min node whose β-bound is less than or equal to the
α-bound of its max-predecessor node.

(2) Prune below the max node whose α-bound is greater than or equal to
the β-bound of its min-predecessor node.

→ Provides the same results as the complete minimax search to the same
depth (because only irrelevant nodes are eliminated).

(University of Freiburg) Foundations of AI May 10, 2019 20 / 38

Alpha-Beta Search Algorithm

12 Chapter 5. Adversarial Search

function ALPHA-BETA-SEARCH(state) returns an action
v←MAX -VALUE(state ,−∞,+∞)
return theaction in ACTIONS(state) with valuev

function MAX -VALUE(state ,α,β) returns a utility value
if TERMINAL -TEST(state) then return UTILITY (state)
v←−∞
for each a in ACTIONS(state) do
v←MAX (v , M IN-VALUE(RESULT(s,a),α,β))
if v ≥ β then return v
α←MAX (α, v)

return v

function M IN-VALUE(state ,α,β) returns a utility value
if TERMINAL -TEST(state) then return UTILITY (state)
v←+∞
for each a in ACTIONS(state) do
v←M IN(v , MAX -VALUE(RESULT(s,a) ,α,β))
if v ≤ α then return v
β←M IN(β, v)

return v

Figure 5.7 The alpha–beta search algorithm. Notice that these routines are the same as the
M INIMAX functions in Figure??, except for the two lines in each of MIN-VALUE and MAX -VALUE

that maintainα andβ (and the bookkeeping to pass these parameters along).

Initial call with Max-Value(initial-state, −∞, +∞)

(University of Freiburg) Foundations of AI May 10, 2019 21 / 38

Alpha-Beta Pruning Example

MAX

3 12 8

MIN 3

3

(University of Freiburg) Foundations of AI May 10, 2019 22 / 38

Alpha-Beta Pruning Example

MAX

3 12 8

MIN 3

2

2

X X

3

(University of Freiburg) Foundations of AI May 10, 2019 23 / 38

Alpha-Beta Pruning Example

MAX

3 12 8

MIN 3

2

2

X X
14

14

3

(University of Freiburg) Foundations of AI May 10, 2019 24 / 38

Alpha-Beta Pruning Example

MAX

3 12 8

MIN 3

2

2

X X
14

14

5

5

3

(University of Freiburg) Foundations of AI May 10, 2019 25 / 38

Alpha-Beta Pruning Example

MAX

3 12 8

MIN

3

3

2

2

X X
14

14

5

5

2

2

3

(University of Freiburg) Foundations of AI May 10, 2019 26 / 38

Efficiency Gain

The alpha-beta search cuts the largest amount off the tree when we
examine the best move first.

In the best case (always the best move first), the search expenditure is
reduced to O(bd/2) ⇒ we can search twice as deep in the same amount
of time.

In the average case (randomly distributed moves), for moderate b
(b < 100), we roughly have O(b3d/4).

However, the best move typically is not known. Practical case: A simple
ordering heuristic brings the performance close to the best case ⇒ In
chess, we can thus reach a depth of 6–7 moves.

Good ordering for chess to explore child nodes?

Try captures first,
then threats, then forward moves, then backward moves.

(University of Freiburg) Foundations of AI May 10, 2019 27 / 38

Efficiency Gain

The alpha-beta search cuts the largest amount off the tree when we
examine the best move first.

In the best case (always the best move first), the search expenditure is
reduced to O(bd/2) ⇒ we can search twice as deep in the same amount
of time.

In the average case (randomly distributed moves), for moderate b
(b < 100), we roughly have O(b3d/4).

However, the best move typically is not known. Practical case: A simple
ordering heuristic brings the performance close to the best case ⇒ In
chess, we can thus reach a depth of 6–7 moves.

Good ordering for chess to explore child nodes? Try captures first,
then threats, then forward moves, then backward moves.

(University of Freiburg) Foundations of AI May 10, 2019 27 / 38

Lecture Overview

1 Board Games

2 Minimax Search

3 Alpha-Beta Search

4 Games with an Element of Chance

5 State of the Art

(University of Freiburg) Foundations of AI May 10, 2019 28 / 38

Games that Include an Element of Chance

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

White has just rolled a 6 and a 5 and has 4 legal moves.

(University of Freiburg) Foundations of AI May 10, 2019 29 / 38

Game Tree for Backgammon

In addition to min- and max nodes, we need chance nodes (for the dice).

CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

1

. . .

1,1
1/36

1,2
1/18

TERMINAL

1,2
1/18

......

.........

......

1,1
1/36

...

......

...
C

. . .

1/18
6,5 6,6

1/36

1/18
6,5 6,6

1/36

2 –11–1

(University of Freiburg) Foundations of AI May 10, 2019 30 / 38

Calculation of the Expected Value

Utility function for chance nodes C over max:

di: possible dice roll

P (di): probability of obtaining that roll

S(C, di): attainable positions from C with roll di

Utility(s): Evaluation of s

Expectimax(C) =
∑
i

P (di) max
s∈S(C,di)

(Utility(s))

Expectimin likewise

(University of Freiburg) Foundations of AI May 10, 2019 31 / 38

Problems

Using expected values: An order-preserving transformation on the
evaluation values may change the best move. Example:

CHANCE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

a1 a2 a1 a2

Chose the evaluation function with care!

Search costs increase: Instead of O(bd), we get O((b× n)d), where n is
the number of possible dice outcomes.

→ In Backgammon (n = 21, b = 20, can be 4000) the maximum for d is 2.

(University of Freiburg) Foundations of AI May 10, 2019 32 / 38

Card Games

Partially observable environment

Recently card games such as bridge and poker have been addressed as
well

One approach: simulate play with open cards and then average over all
possible plays (or make a Monte Carlo simulation) using minimax
(perhaps modified)

Pick the move with the best expected result (usually all moves will lead
to a loss, but some give better results than others)

Averaging over clairvoyance

Although “incorrect”, appears to give reasonable results for e.g. bridge
and skat.

(University of Freiburg) Foundations of AI May 10, 2019 33 / 38

Lecture Overview

1 Board Games

2 Minimax Search

3 Alpha-Beta Search

4 Games with an Element of Chance

5 State of the Art

(University of Freiburg) Foundations of AI May 10, 2019 34 / 38

State of the Art (1)

Backgammon: The BKG program defeated the official world champion in
1980. A newer program TD-Gammon is among the top 3 players.

Checkers, draughts (by international rules): A program called Chinook is
the official world champion in man-computer competition (acknowledges
by ACF and EDA) and is the highest-rated player:

Chinook: 2712 Ron King: 2632
Asa Long: 2631 Don Lafferty: 2625

In 1995, Chinook won a 32 game match against Don Lafferty.

Othello/Reversi: Very good, even on normal computers. In 1997, the
Logistello program defeated the human world champion.

Chess: In 1997, world chess master G. Kasparow was beaten by a
computer in a match of 6 games by Deep Blue (IBM Thomas J. Watson
Research Center).
Special hardware (32 processors with 8 chips, 2 Mi. calculations per
second) and special chess knowledge.

(University of Freiburg) Foundations of AI May 10, 2019 35 / 38

State of the Art (2)

Go: The program AlphaGo was able to beat in March 2016 one of the
best human players Lee Sedol (according to ELO ranking the 4th best
player worldwide) 4:1.
AlphaGo used Monte Carlo search techniques (UCT) and deep learning
techniques for evaluations.

Poker: In January 2017, Libratus played against four top-class human
poker players for 20 days heads-up no-limit Texas hold ’em. In the end,
Libratus was more than 1.7 M$ ahead.
Libratus used a number of different techniques all based on game theory.

(University of Freiburg) Foundations of AI May 10, 2019 36 / 38

The Reasons for Success. . .

Alpha-Beta-Search

. . . with dynamic decision-making for uncertain positions

Good (but usually simple) evaluation functions

Large databases of opening moves

Very large game termination databases (for checkers, all ten-piece
situations)

For Go, Monte-Carlo and machine learning techniques proved to be
successful.

. . . and very fast and parallel processors, huge memory, and plenty of
plays.

For Poker, game theoretic analysis together with extensive self-play (15
million core CPU hours) were important.

(University of Freiburg) Foundations of AI May 10, 2019 37 / 38

Summary

A game can be defined by the initial state, the operators (legal moves),
a terminal test and a utility function (outcome of the game).

In two-player board games, the minimax algorithm can determine the
best move by enumerating the entire game tree.

The alpha-beta algorithm produces the same result but is more efficient
because it prunes away irrelevant branches.

Usually, it is not feasible to construct the complete game tree, so the
utility of some states must be determined by an evaluation function.

Games of chance can be handled by an extension of the alpha-beta
algorithm.

The success for different games is based on quite different methodolgies.

(University of Freiburg) Foundations of AI May 10, 2019 38 / 38

