Foundations of Artificial Intelligence
10. Action Planning
Solving Logically Specified Problems using a General Problem Solver

Joschka Boedecker and Wolfram Burgard and
Frank Hutter and Bernhard Nebel and Michael Tangermann

Albert-Ludwigs-Universität Freiburg

June 7, 2019
Lecture Overview

1. What is Action Planning?
2. Planning Formalisms
3. Basic Planning Algorithms
4. Computational Complexity
5. Current Algorithmic Approaches
7. Summary
Planning is the art and practice of thinking before acting [Haslum]
Planning is the process of generating (possibly partial) representations of future behavior prior to the use of such plans to constrain or control that behavior.
The outcome is usually a set of actions, with temporal and other constraints on them, for execution by some agent or agents.
Planning Tasks

Given a current state, a set of possible actions, a specification of the goal conditions, which plan transforms the current state into a goal state?
Another Planning Task: *Logistics*

Given a road map, and a number of trucks and airplanes, make a plan to transport objects from their start to their goal destinations.
Action Planning is not . . .

- **Problem solving by search**, where we describe a problem by a state space and then implement a program to search through this space.
 - In action planning, we specify the problem declaratively (using logic) and then solve it by a general planning algorithm.

- **Program synthesis**, where we generate programs from specifications or examples.
 - In action planning we want to solve just one instance and we have only very simple action composition (i.e., sequencing, perhaps conditional and iteration).

- **Scheduling**, where all jobs are known in advance and we only have to fix time intervals and machines.
 - Instead we have to find the right actions and to sequence them.

- Of course, there is interaction with these areas!
Lecture Overview

1. What is Action Planning?
2. Planning Formalisms
3. Basic Planning Algorithms
4. Computational Complexity
5. Current Algorithmic Approaches
7. Summary
Domain-Independent Action Planning

- Start with a **declarative specification** of the planning problem
- Use a **domain-independent planning** system to solve the planning problem
- Domain-independent planners are **generic problem solvers**
- **Issues:**
 - Good for evolving systems and those where performance is not critical
 - Running time should be comparable to specialized solvers
 - Solution quality should be acceptable
 - . . . at least for all the problems we care about
Planning as Logical Inference

Planning can be elegantly formalized with the help of the *situation calculus*.

Initial state:
\[
\text{At}(\text{truck1, loc1, } s_0) \land \text{At}(\text{package1, loc3, } s_0)
\]

Operators (successor-state axioms):
\[
\forall a, s, l, p, t \ \text{At}(t, p, Do(a, s)) \iff \{a = \text{Drive}(t, l, p) \land \text{Poss(Drive}(t, l, p), s) \\
\lor \text{At}(t, p, s) \land (a \neq \neg\text{Drive}(t, p, l, s) \lor \neg\text{Poss(Drive}(t, p, l), s))\}
\]

Goal conditions (query):
\[
\exists s \ \text{At}(\text{package1, loc2, } s)
\]

The *constructive* proof of the existential query (computed by a automatic theorem prover) delivers a plan that does what is desired. Can be quite *inefficient*!
STRIPS: STanford Research Institute Problem Solver

- S is a first-order vocabulary (predicate and function symbols) and Σ_S denotes the set of ground atoms over the signature (also called facts or fluents).

- Σ_S,\mathbf{V} is the set of atoms over S using variable symbols from the set of variables \mathbf{V}.

- A first-order STRIPS state S is a subset of Σ_S denoting a complete theory or model (using CWA).

- A planning task (or planning instance) is a 4-tuple $\Pi = \langle S, O, I, G \rangle$, where
 - O is a set of operator (or action types)
 - $I \subseteq \Sigma_S$ is the initial state
 - $G \subseteq \Sigma_S$ is the goal specification

- No domain constraints (although present in original formalism)
Operator:

\[o = \langle \text{para}, \text{pre}, \text{eff} \rangle, \]

with \(\text{para} \subseteq \text{V} \), \(\text{pre} \subseteq \Sigma_S, \text{v} \), \(\text{eff} \subseteq \Sigma_S, \text{v} \cup \neg \Sigma_S, \text{v} \) (element-wise negation) and all variables in \(\text{pre} \) and \(\text{eff} \) are listed in \(\text{para} \).

Also: \(\text{pre}(o), \text{eff}(o) \).

\(\text{eff}^+ = \) positive effect literals
\(\text{eff}^- = \) negative effect literals

Operator instance or action: Operator with empty parameter list (instantiated schema!)

State change induced by action:

\[\text{App}(S, o) = \begin{cases}
S \cup \text{eff}^+(o) - \neg \text{eff}^-(o) & \text{if } \text{pre}(o) \subseteq S \text{ \& } \text{eff}(o) \text{ is cons.} \\
\text{undefined} & \text{otherwise}
\end{cases} \]
Example Formalization: *Logistics*

- **Logical atoms:** $at(O, L)$, $in(O, V)$, $airconn(L_1, L_2)$, $street(L_1, L_2)$, $plane(V)$, $truck(V)$

- **Load into truck:** $load$
 - **Parameter list:** (O, V, L)
 - **Precondition:** $at(O, L)$, $at(V, L)$, $truck(V)$
 - **Effects:** $\neg at(O, L)$, $in(O, V)$

- **Drive operation:** $drive$
 - **Parameter list:** (V, L_1, L_2)
 - **Precondition:** $at(V, L_1)$, $truck(V)$, $street(L_1, L_2)$
 - **Effects:** $\neg at(V, L_1)$, $at(V, L_2)$

- ...$

- **Some constant symbols:** v_1, s, t with $truck(v_1)$ and $street(s, t)$

- **Action:** $drive(v_1, s, t)$
A plan Δ is a sequence of actions.

State resulting from executing a plan:

$\text{Res}(S, \langle \rangle) = S$

$\text{Res}(S, (o; \Delta)) = \begin{cases}
\text{Res}(\text{App}(S, o), \Delta) & \text{if } \text{App}(S, o) \text{ is defined} \\
\text{undefined} & \text{otherwise}
\end{cases}$

Plan Δ is successful or solves a planning task if $\text{Res}(I, \Delta)$ is defined and $G \subseteq \text{Res}(I, \Delta)$.
A Small Logistics Example

Initial state: \(S = \{ at(p1, c), at(p2, s), at(t1, c), at(t2, c), street(c, s), street(s, c) \} \)

Goal: \(G = \{ at(p1, s), at(p2, c) \} \)

Successful plan: \(\Delta = \langle load(p1, t1, c), drive(t1, c, s), unload(p1, t1, s), load(p2, t1, s), drive(t1, s, c), unload(p2, t1, c) \rangle \)

Other successful plans are, of course, possible.
Simplifications: DATALOG- and Propositional STRIPS

- STRIPS as described above allows for unrestricted first-order terms, i.e., arbitrarily nested function terms
 - Infinite state space
- Simplification: No function terms (only 0-ary = constants)
 - DATALOG-STRIPS
- Simplification: No variables in operators (= actions)
 - Propositional STRIPS
- Propositional STRIPS used in planning algorithms nowadays (but specification is done using DATALOG-STRIPS)
Beyond STRIPS

Even when keeping all the restrictions of classical planning, one can think of a number of extensions of the planning language.

- **General logical formulas as preconditions**: Allow all Boolean connectors and quantification.
- **Conditional effects**: Effects that happen only if some additional conditions are true. For example, when pressing the accelerator pedal, the effects depend on which gear has been selected (no, reverse, forward).
- **Multi-valued state variables**: Instead of 2-valued Boolean variables, multi-valued variables could be used.
- **Numerical resources**: Resources (such as fuel or time) can be effected and be used in preconditions.
- **Durative actions**: Actions can have duration and can be executed concurrently.
- **Axioms/Constraints**: The domain is not only described by operators, but also by additional laws.
Since 1998, there exists a bi-annual scientific competition for action planning systems.

In order to have a common language for this competition, PDDL has been created (originally by Drew McDermott).

Meanwhile, version 3.1 (IPC-2011) with most of the features mentioned – and many sub-dialects and extensions.

Sort of “standard” by now.
(define (domain logistics)
 (:types truck airplane - vehicle
 package vehicle - physobj
 airport location - place
 city place physobj - object)

 (:predicates (in-city ?loc - place ?city - city)
 (at ?obj - physobj ?loc - place)
 (in ?pkg - package ?veh - vehicle))

 (:action LOAD-TRUCK
 :parameters (?pkg - package ?truck - truck ?loc - place)
 :precondition (and (at ?truck ?loc) (at ?pkg ?loc))
 :effect (and (not (at ?pkg ?loc)) (in ?pkg ?truck)))
 ...)

(PDDL Logistics Example)
1. What is Action Planning?
2. Planning Formalisms
3. Basic Planning Algorithms
4. Computational Complexity
5. Current Algorithmic Approaches
7. Summary
We can view planning problems as searching for goal nodes in a large labeled graph (transition system).

- **Nodes** are defined by the value assignment to the fluents = states.
- **Labeled edges** are defined by actions that change the appropriate fluents.

Use graph search techniques to find a (shortest) path in this graph!

Note: The graph can become huge: 50 Boolean variables lead to $2^{50} = 10^{15}$ states.

→ Create the transition system on the fly and visit only the parts that are necessary.
Transition System: Searching Through the State Space

initial state X

A → B → C
D → E → F
G → H → I

goal states

(University of Freiburg) Foundations of AI June 7, 2019
Transition System: Searching Through the State Space

initial state X

A → B → C
D → E → F
G → H → I

goal states
Transition System: Searching Through the State Space

initial state

A

B

C

D

E

F

G

H

I

goal states

X

a

b

a

b

a

b

a

b

a

b

a

b

(University of Freiburg)

Foundations of AI

June 7, 2019
Transition System: Searching Through the State Space

initial state X

A → B
A → C
B → D, B → E, B → F
C → E
E → G, E → H
F → I

goal states H, I

(University of Freiburg) Foundations of AI June 7, 2019 22 / 42
Progression Planning: Forward Search

Search through transition system starting at initial state

1. Initialize partial plan $\Delta := \langle \rangle$ and start at the unique initial state I and make it the current state S

2. Test whether we have reached a goal state already: $G \subseteq S$? If so, return plan Δ.

3. Select one applicable action o_i non-deterministically and
 - compute successor state $S := App(S, o_i)$,
 - extend plan $\Delta := \langle \Delta, o_i \rangle$, and continue with step 2.

Instead of non-deterministic choice use some search strategy. Progression planning can be easily extended to more expressive planning languages.
Progression Planning: Example

\[S = \{a, b, c, d\}, \]
\[O = \{ o_1 = \langle \emptyset, \{a, b\}, \{\neg b, c\}\rangle, \]
\[o_2 = \langle \emptyset, \{a, b\}, \{\neg a, \neg b, d\}\rangle, \]
\[o_3 = \langle \emptyset, \{c\}, \{b, d\}\rangle, \}
\[I = \{a, b\} \]
\[G = \{b, d\} \]
Progression Planning: Example

\[S = \{a, b, c, d\}, \]
\[O = \{ o_1 = \langle \emptyset, \{a, b\}, \{\neg b, c\}\rangle, \]
\[o_2 = \langle \emptyset, \{a, b\}, \{\neg a, \neg b, d\}\rangle, \]
\[o_3 = \langle \emptyset, \{c\}, \{b, d\}\rangle\}, \]
\[I = \{a, b\} \]
\[G = \{b, d\} \]
\[S = \{a, b, c, d\}, \]
\[O = \{ o_1 = \langle \emptyset, \{a, b\}, \{\neg b, c\}\rangle, \]
\[o_2 = \langle \emptyset, \{a, b\}, \{\neg a, \neg b, d\}\rangle, \]
\[o_3 = \langle \emptyset, \{c\}, \{b, d\}\rangle, \] \]
\[I = \{a, b\} \]
\[G = \{b, d\} \]
\[S = \{a, b, c, d\}, \]

\[O = \{
 o_1 = \langle \emptyset, \{a, b\}, \{\neg b, c\} \rangle,
 o_2 = \langle \emptyset, \{a, b\}, \{\neg a, \neg b, d\} \rangle,
 o_3 = \langle \emptyset, \{c\}, \{b, d\} \rangle,
\} \]

\[I = \{a, b\} \]

\[G = \{b, d\} \]
Search through transition system starting at goal states. Consider sets of states, which are described by the atoms that are necessarily true in them.

1. Initialize partial plan $\Delta := \langle \rangle$ and set $S := G$.

2. Test whether we have reached the unique initial state already: $I \supseteq S$? If so, return plan Δ.

3. Select one action o_i non-deterministically which does not make (sub-)goals false ($S \cap \neg \text{eff}^{-}(o_i) = \emptyset$) and
 - compute the regression of the description S through o_i:
 \[
 S := S - \text{eff}^{+}(o_i) \cup \text{pre}(o_i)
 \]
 - extend plan $\Delta := \langle o_i, \Delta \rangle$, and continue with step 2.

Instead of non-deterministic choice use some search strategy. Regression becomes much more complicated, if e.g. conditional effects are allowed. Then the result of a regression can be a general Boolean formula.
Regression Planning: Example

\[S = \{ a, b, c, d, e \}, \]
\[O = \{ o_1 = \langle \emptyset, \{ b \}, \{ \neg b, c \} \rangle, o_2 = \langle \emptyset, \{ e \}, \{ b \} \rangle, o_3 = \langle \emptyset, \{ c \}, \{ b, d, \neg e \} \rangle \}, \]
\[I = \{ a, b \} \]
\[G = \{ b, d \} \]

{b,d}
Regression Planning: Example

\[S = \{a, b, c, d, e\}, \]
\[O = \{
 o_1 = \langle \emptyset, \{b\}, \{-b, c\} \rangle,
 o_2 = \langle \emptyset, \{e\}, \{b\} \rangle,
 o_3 = \langle \emptyset, \{c\}, \{b, d, \neg e\} \rangle,
\} \]
\[I = \{a, b\} \]
\[G = \{b, d\} \]
Regression Planning: Example

\[S = \{a, b, c, d, e\}, \]
\[O = \{ o_1 = \langle \emptyset, \{b\}, \{\neg b, c\} \rangle, \\
 o_2 = \langle \emptyset, \{e\}, \{b\} \rangle, \\
 o_3 = \langle \emptyset, \{c\}, \{b, d, \neg e\} \rangle \}, \]
\[I = \{a, b\} \]
\[G = \{b, d\} \]
Regression Planning: Example

\[S = \{a, b, c, d, e\}, \]
\[O = \{ \]
\[o_1 = \langle \emptyset, \{b\}, \{\neg b, c\} \rangle, \]
\[o_2 = \langle \emptyset, \{e\}, \{b\} \rangle, \]
\[o_3 = \langle \emptyset, \{c\}, \{b, d, \neg e\} \rangle, \]
\[I = \{a, b\} \]
\[G = \{b, d\} \]

\(l = \{a, b\} \)

\(\{b\} \)
\[o_1 \to \{c\} \]
\[o_3 \to \{b, d\} \]
\[\{d, e\} \)
\[o_2 \]

\(\)}
Of course, other types of search are possible.

Change perspective: Do not consider the transition system as the space we have to explore, but consider the search through the space of (incomplete) plans:

- **Progression search**: Search through the space of plan prefixes
- **Regression search**: Search through plan suffixes

Partial order planning:

- Search through partially ordered plans by starting with the empty plan and trying to satisfy (sub-)goals by introducing new actions (or using old ones)
- Make ordering choices only when necessary to resolve conflicts
Lecture Overview

1. What is Action Planning?
2. Planning Formalisms
3. Basic Planning Algorithms
4. Computational Complexity
5. Current Algorithmic Approaches
7. Summary
The Planning Problem – Formally

Definition (Plan existence problem (PLANEX))

Instance: \(\Pi = \langle S, O, I, G \rangle \).
Question: Does there exist a plan \(\Delta \) that solves \(\Pi \), i.e., \(Res(I, \Delta) \supseteq G \)?

Definition (Bounded plan existence problem (PLANLEN))

Instance: \(\Pi = \langle S, O, I, G \rangle \) and a positive integer \(n \).
Question: Does there exist a plan \(\Delta \) of length \(n \) or less that solves \(\Pi \)?

From a practical point of view, also \textbf{PLANGEN} (**generating**) a plan that solves \(\Pi \) and \textbf{PLANLENGEN} (**generating**) a plan of length \(n \) that solves \(\Pi \) and \textbf{PLANOPT} (generating an optimal plan) are interesting (but at least as hard as the decision problems).
The state space for STRIPS with general first-order terms is **infinite**.

We can use function terms to describe (the index of) **tape cells of a Turing machine**.

We can use operators to describe the **Turing machine control**.

The existence of a plan is then equivalent to the existence of a **successful computation** on the Turing machine.

PLANEX for STRIPS with first-order terms can be used to decide the Halting problem.

Theorem

PLANEX for STRIPS with first-order terms is undecidable.
Propositional STRIPS

Theorem

PLANEX is PSPACE-complete for propositional STRIPS.

→ Membership follows because we can successively guess operators and compute the resulting states (needs only polynomial space)

→ Hardness follows using again a generic reduction from TM acceptance. Instantiate polynomially many tape cells with no possibility to extend the tape (only poly. space, can all be generated in poly. time)

PLANLEN is also PSPACE-complete (membership is easy, hardness follows by setting $k = 2^{|\Sigma|}$)
Restrictions on Plans

- If we restrict the length of the plans to be short, i.e., only polynomial in the size of the planning task, PLANEX becomes NP-complete.

- Similarly, if we use a unary representation of the natural number k, then PLANLEN becomes NP-complete.

- Membership obvious (guess & check).

- Hardness by a straightforward reduction from SAT or by a generic reduction.

- One source of complexity in planning stems from the fact that plans can become very long.

- We are only interested in short plans!

- We can use methods for NP-complete problems if we are only looking for “short” plans.
Current Approaches

- Planning as satisfiability: Iterative deepening.
- Planning with answer set programming.
- Symbolic planning with BDDs (finding many plans or non-det. plans)
- Heuristic forward-search planning (HSP, FF, FD)
Heuristic Search Planning

- Use an automatically generated heuristic estimator in order to select the next action or state.
- Depending on the search scheme and the heuristic, the plan might not be the shortest one.

→ It is often easier to go for sub-optimal solutions (remember Logistics).

Heuristic search planner vs. iterative deepening on Gripper.
Deriving Heuristics: Relaxations

- General principle for deriving heuristics:
 - Define a simplification (relaxation) of the problem and take the difficulty of a solution for the simplified problem as an heuristic estimator.

- Example: straight-line distance on a map to estimate the travel distance.

- Example: decomposition of a problem, where the components are solved ignoring the interactions between the components, which may incur additional costs.

- In planning, one possibility is to ignore negative effects.
Ignoring Negative Effects: Example

- In **Logistics**: The negative effects in *load* and *drive* are ignored:

- **Simplified load operation**: $load(O, V, P)$

 - Precondition: $at(O, P), at(V, P), truck(V)$

 - Effects: $\neg at(O, P), in(O, V)$

- After loading, the package is still at the place and also inside the truck

- **Simplified drive operation**: $drive(V, P1, P2)$

 - Precondition: $at(V, P1), truck(V), street(P1, P2)$

 - Effects: $\neg at(V, P1), at(V, P2)$

- After driving, the truck is in two places!

 \rightarrow We want the length of the shortest relaxed plan $\rightsquigarrow h^+(s)$

- How difficult is **monotonic planning**?
Current Trends in AI Planning

- Developing and analyzing heuristics
- Developing and analyzing pruning techniques
- Developing new search techniques
- Extending the expressiveness of planning formalisms (and extending planning algorithms) in order to deal with
 - temporal planning,
 - planning with non-deterministic actions,
 - planning under partial observability,
 - planning with probabilistic effects,
 - multi-agent planning,
 - planning with epistemic goals,
- Reasoning about plans, e.g., diagnosing failures
- Judging morality of plans
- Applying/integrating planning technology
- Learning and planning
- ...
Our Interests

- Foundation / theory
- Extending planning technology in order to cope with multi-agent scenarios and epistemic goals
- Using EVMDDs in modelling state-dependent costs
- Using planning techniques and extending them for robot control
- Using planning methodology in application in general
- Exploring the ethical dimension of planning systems

(University of Freiburg)

Foundations of AI

June 7, 2019
Lecture Overview

1. What is Action Planning?
2. Planning Formalisms
3. Basic Planning Algorithms
4. Computational Complexity
5. Current Algorithmic Approaches
7. Summary
Rational agents need to **plan** their course of action. In order to describe planning tasks in a domain-independent, declarative way, one needs **planning formalisms**. Basic **STricks** is a simple planning formalism, where actions are described by their preconditions in form of a conjunction of atoms and the effects are described by a list of literals that become true and false. **PDDL** is the current “standard language” that has been developed in connection with the **international planning competition**. Basic planning algorithms search through the space created by the **transition system** or through the **plan space**. Planning with **STricks** using first-order terms is **undecidable**. Planning with propositional **STricks** is **PSPACE-complete**. Since 1992, we have reasonably efficient planning method for propositional, classical **STricks** planning. You can learn more about it in our **planning class** next term.