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Planning

Planning is the art and practive of thinking before acting [Haslum]
Planning is the process of generating (possibly partial)
representations of future behavior prior to the use of such plans to
constrain or control that behavior.
The outcome is usually a set of actions, with temporal and other
constraints on them, for execution by some agent or agents.
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Planning Tasks

Given a current state, a set of possible actions, a specification of the
goal conditions, which plan transforms the current state into a goal
state?
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Another Planning Task: Logistics

Given a road map, and a number of trucks and airplanes, make a plan
to transport objects from their start to their goal destinations.
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Action Planning is not . . .

Problem solving by search, where we describe a problem by a state
space and then implement a program to search through this space

in action planning, we specify the problem declaratively (using logic) and
then solve it by a general planning algorithm

Program synthesis, where we generate programs from
specifications or examples

in action planning we want to solve just one instance and we have only
very simple action composition (i.e., sequencing, perhaps conditional
and iteration)

Scheduling, where all jobs are known in advance and we only have
to fix time intervals and machines

instead we have to find the right actions and to sequence them

Of course, there is interaction with these areas!
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Domain-Independent Action Planning

Start with a declarative specification of the planning problem
Use a domain-independent planning system to solve the planning
problem
Domain-independent planners are generic problem solvers
Issues:

Good for evolving systems and those where performance is not critical
Running time should be comparable to specialized solvers
Solution quality should be acceptable
. . . at least for all the problems we care about
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Planning as Logical Inference

Planning can be elegantly formalized with the help of the situation
calculus.

Initial state:
At(truck1, loc1, s0) ∧ At(package1, loc3, s0)

Operators (successor-state axioms):
∀a, s, l, p, t At(t, p,Do(a, s))⇔ {a = Drive(t, l, p) ∧ Poss(Drive(t, l, p), s)
∨At(t, p, s) ∧ (a 6= ¬Drive(t, p, l, s) ∨ ¬Poss(Drive(t, p, l), s))}

Goal conditions (query):
∃s At(package1, loc2, s)

The constructive proof of the existential query (computed by a
automatic theorem prover) delivers a plan that does what is desired.
Can be quite inefficient!
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The Basic STRIPS Formalism

STRIPS: STanford Research Institute Problem Solver

S is a first-order vocabulary (predicate and function symbols) and
ΣS denotes the set of ground atoms over the signature (also called
facts or fluents).
ΣS,V is the set of atoms over S using variable symbols from the set
of variables V.
A first-order STRIPS state S is a subset of ΣS denoting a complete
theory or model (using CWA).
A planning task (or planning instance) is a 4-tuple
Π = 〈S,O, I,G〉, where

O is a set of operator (or action types)
I ⊆ ΣS is the initial state
G ⊆ ΣS is the goal specification

No domain constraints (although present in original formalism)
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Operators, Actions & State Change

Operator:
o = 〈para, pre, eff 〉,

with para ⊆ V, pre ⊆ ΣS,V, eff ⊆ ΣS,V ∪ ¬ΣS,V (element-wise
negation) and all variables in pre and eff are listed in para.
Also: pre(o), eff (o).
eff + = positive effect literals
eff− = negative effect literals
Operator instance or action: Operator with empty parameter list
(instantiated schema!)
State change induced by action:

App(S, o) =


S ∪ eff +(o)− ¬eff−(o) if pre(o) ⊆ S &

eff (o) is cons.
undefined otherwise
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Example Formalization: Logistics

Logical atoms: at(O,L), in(O,V), airconn(L1,L2), street(L1,L2),
plane(V), truck(V)

Load into truck: load
Parameter list: (O,V,L)
Precondition: at(O,L), at(V,L), truck(V)
Effects: ¬at(O,L), in(O,V)

Drive operation: drive
Parameter list: (V,L1,L2)
Precondition: at(V,L1), truck(V), street(L1,L2)
Effects: ¬at(V,L1), at(V,L2)

. . .
Some constant symbols: v1, s, t with truck(v1) and street(s, t)

Action: drive(v1, s, t)
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Plans & Successful Executions

A plan ∆ is a sequence of actions
State resulting from executing a plan:

Res(S, 〈〉) = S

Res(S, (o; ∆)) =


Res(App(S, o),∆) if App(S, o)

is defined
undefined otherwise

Plan ∆ is successful or solves a planning task if Res(I,∆) is
defined and G ⊆ Res(I,∆).
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A Small Logistics Example

Initial state: S =

{
at(p1, c), at(p2, s), at(t1, c),
at(t2, c), street(c, s), street(s, c)

}

Goal: G =
{

at(p1, s), at(p2, c)
}

Successful plan: ∆ = 〈load(p1, t1, c), drive(t1, c, s),
unload(p1, t1, s), load(p2, t1, s),
drive(t1, s, c), unload(p2, t1, c)〉

Other successful plans are, of course, possible
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Simplifications: DATALOG- and
Propositional STRIPS

STRIPS as described above allows for unrestricted first-order terms,
i.e., arbitrarily nested function terms

→ Infinite state space
Simplification: No function terms (only 0-ary = constants)

→ DATALOG-STRIPS
Simplification: No variables in operators (= actions)

→ Propositional STRIPS
Propositional STRIPS used in planning algortihms nowadays (but
specification is done using DATALOG-STRIPS)
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Beyond STRIPS

Even when keeping all the restrictions of classical planning, one can
think of a number of extensions of the planning language.

General logical formulas as preconditions: Allow all Boolean
connectors and quantification
Conditional effects: Effects that happen only if some additional
conditions are true. For example, when pressing the accelerator
pedal, the effects depends on which gear has been selected (no,
reverse, forward).
Multi-valued state variables: Instead of 2-valued Boolean variables,
multi-valued variables could be used
Numerical resources: Resources (such as fuel or time) can be
effected and be used in preconditions
Durative actions: Actions can have duration and can be executed
concurrently
Axioms/Constraints: The domain is not only described by operators,
but also by additional laws
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PDDL: The Planning Domain Description Language

Since 1998, there exists a bi-annual scientific competition for action
planning systems.
In order to have a common language for this competition, PDDL has
been created (originally by Drew McDermott)
Meanwhile, version 3.1 (IPC-2011) with most of the features
mentioned – and many sub-dialects and extensions.
Sort of “standard” by now.
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PDDL Logistics Example

(define (domain logistics)
(:types truck airplane - vehicle

package vehicle - physobj
airport location - place
city place physobj - object)

(:predicates (in-city ?loc - place ?city - city)
(at ?obj - physobj ?loc - place)
(in ?pkg - package ?veh - vehicle))

(:action LOAD-TRUCK
:parameters (?pkg - package ?truck - truck ?loc - place)
:precondition (and (at ?truck ?loc) (at ?pkg ?loc))
:effect (and (not (at ?pkg ?loc)) (in ?pkg ?truck)))

. . . )
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Planning Problems as Transition Systems

We can view planning problems as searching for goal nodes in a
large labeled graph (transition system)
Nodes are defined by the value assignment to the fluents = states
Labeled edges are defined by actions that change the appropriate
fluents
Use graph search techniques to find a (shortest) path in this graph!
Note: The graph can become huge: 50 Boolean variables lead to 250

= 1015 states
→ Create the transition system on the fly and visit only the parts that

are necessary
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Transition System: Searching Through the State
Space
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Progression Planning: Forward Search

Search through transition system starting at initial state
1 Initialize partial plan ∆ := 〈 〉 and start at the unique initial state I and

make it the current state S
2 Test whether we have reached a goal state already: G ⊆ S? If so,

return plan ∆.
3 Select one applicable action oi non-deterministically and

compute successor state S := App(S, oi),
extend plan ∆ := 〈∆, oi〉, and continue with step 2.

Instead of non-deterministic choice use some search strategy.
Progression planning can be easily extended to more expressive
planning languages
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Progression Planning: Example

S = {a, b, c, d},
O = { o1 = 〈∅, {a, b}, {¬b, c}〉,

o2 = 〈∅, {a, b}, {¬a,¬b, d}〉,
o3 = 〈∅, {c}, {b, d}〉,

I = {a, b}
G = {b, d}

o3o1

o2

{d}

{a,b} {a,c} {a,b,c,d}
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Regression Planning: Backward Search

Search through transition system starting at goal states. Consider sets
of states, which are described by the atoms that are necessarily true in
them

1 Initialize partial plan ∆ := 〈 〉 and set S := G
2 Test whether we have reached the unique initial state already:

I ⊇ S? If so, return plan ∆.
3 Select one action oi non-deterministically which does not make

(sub-)goals false (S ∩ ¬eff−(oi) = ∅) and
compute the regression of the description S through oi:

S := S− eff+(oi) ∪ pre(oi)

extend plan ∆ := 〈oi,∆〉, and continue with step 2.

Instead of non-deterministic choice use some search strategy
Regression becomes much more complicated, if e.g. conditional
effects are allowed. Then the result of a regression can be a general
Boolean formula
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Regression Planning: Example

S = {a, b, c, d, e},
O = { o1 = 〈∅, {b}, {¬b, c}〉,

o2 = 〈∅, {e}, {b}〉,
o3 = 〈∅, {c}, {b, d,¬e}〉,

I = {a, b}
G = {b, d}

o3o1

{d}

{b,d}

o2

{c}{b}

I={a,b}
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Other Types of Search

Of course, other types of search are possible.
Change perspective: Do not consider the transition system as the
space we have to explore, but consider the search through the
space of (incomplete) plans:

Progression search: Search through the space of plan prefixes
Regression search: Search through plan suffixes

Partial order planning:
Search through partially ordered plans by starting with the empty plan
and trying to satisfy (sub-)goals by introducing new actions (or using old
ones)
Make ordering choices only when necessary to resolve conflicts

(University of Freiburg) Foundations of AI June 7, 2019 27 / 42



Lecture Overview

1 What is Action Planning?

2 Planning Formalisms

3 Basic Planning Algorithms

4 Computational Complexity

5 Current Algorithmic Approaches

6 Current Trends in Planning

7 Summary

(University of Freiburg) Foundations of AI June 7, 2019 28 / 42



The Planning Problem – Formally

Definition (Plan existence problem (PLANEX))

Instance: Π = 〈S,O, I,G〉.
Question: Does there exist a plan ∆ that solves Π, i.e., Res(I,∆) ⊇ G?

Definition (Bounded plan existence problem (PLANLEN))

Instance: Π = 〈S,O, I,G〉 and a positive integer n.
Question: Does there exist a plan ∆ of length n or less that solves Π?

From a practical point of view, also PLANGEN (generating a plan that
solves Π) and PLANLENGEN (generating a plan of length n that solves
Π) and PLANOPT (generating an optimal plan) are interesting (but at
least as hard as the decision problems).
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Basic STRIPS with First-Order Terms

The state space for STRIPS with general first-order terms is infinite
We can use function terms to describe (the index of) tape cells of a
Turing machine
We can use operators to describe the Turing machine control
The existence of a plan is then equivalent to the existence of a
successful computation on the Turing machine
PLANEX for STRIPS with first-order terms can be used to decide
the Halting problem

Theorem
PLANEX for STRIPS with first-order terms is undecidable.
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Propositional STRIPS

Theorem
PLANEX is PSPACE-complete for propositional STRIPS.

→ Membership follows because we can successively guess operators
and compute the resulting states (needs only polynomial space)

→ Hardness follows using again a generic reduction from TM
acceptance. Instantiate polynomially many tape cells with no
possibility to extend the tape (only poly. space, can all be generated
in poly. time)
PLANLEN is also PSPACE-complete (membership is easy, hardness
follows by setting k = 2|Σ|)
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Restrictions on Plans

If we restrict the length of the plans to be short, i.e., only polynomial
in the size of the planning task, PLANEX becomes NP-complete
Similarly, if we use a unary representation of the natural number k,
then PLANLEN becomes NP-complete

→ Membership obvious (guess & check)
→ Hardness by a straightforward reduction from SAT or by a generic

reduction.
One source of complexity in planning stems from the fact that plans
can become very long
We are only interested in short plans!
We can use methods for NP-complete problems if we are only
looking for “short” plans.
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Current Approaches

Planning as satisfiability: Iterative deepening.
Planning with answer set programming.
Symbolic planning with BDDs (finding many plans or non-det. plans)
Heuristic forward-search planning (HSP, FF, FD)
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Heuristic Search Planning

Use an automatically generated heuristic estimator in order to select
the next action or state
Depending on the search scheme and the heuristic, the plan might
not be the shortest one

→ It is often easier to go for sub-optimal solutions (remember Logistics)

Heuristic search planner vs. iterative deepening on Gripper
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Deriving Heuristics: Relaxations

General principle for deriving heuristics:

Define a simplification (relaxation) of the problem and take the difficulty
of a solution for the simplified problem as an heuristic estimator

Example: straight-line distance on a map to estimate the travel
distance
Example: decomposition of a problem, where the components are
solved ignoring the interactions between the components, which
may incur additional costs
In planning, one possibility is to ignore negative effects
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Ignoring Negative Effects: Example

In Logistics: The negative effects in load and drive are ignored:
Simplified load operation: load(O,V,P)
Precondition: at(O,P), at(V,P), truck(V)
Effects: ¬at(O,P), in(O,V)

After loading, the package is still at the place and also inside the
truck
Simplified drive operation: drive(V,P1,P2)
Precondition: at(V,P1), truck(V), street(P1,P2)
Effects: ¬at(V,P1), at(V,P2)

After driving, the truck is in two places!
→ We want the length of the shortest relaxed plan h+(s)

How difficult is monotonic planning?
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Current Trends in AI Planning

Developing and analyzing heuristics
Developing and anaylzing pruning techniques
Develping new search techniques
Extending the expressiveness of planning formalisms (and
extending planning algorithms) in order to deal with

temporal planning,
planning with non-deterministic actions,
planning under partial observability,
planning with probabilistic effects,
multi-agent planning,
planning with epistemic goals,

Reasoning about plans, e.g., diagnosing failures
Judging morality of plans
Applying/integrating planning technology
Learning and planning
. . .
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Our Interests

Foundation / theory
Extending planning technology in order to cope with multi-agent
scenarios and epistemic goals
Using EVMDDs in modelling state-dependent costs
Using planning techniques and extending them for robot control
Using planning methodolgy in application in general
Exploring the ethical dimension of planning systems
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Summary

Rational agents need to plan their course of action
In order to describe planning tasks in a domain-independent,
declarative way, one needs planning formalisms
Basic STRIPS is a simple planning formalism, where actions are
described by their preconditions in form of a conjunction of atoms and
the effects are described by a list of literals that become true and false
PDDL is the current “standard language” that has been developed in
connection with the international planning competition
Basic planning algorithms search through the space created by the
transition system or through the plan space.
Planning with STRIPS using first-order terms is undecidable
Planning with propositional STRIPS is PSPACE-complete
Since 1992, we have reasonably efficient planning method for
propositional, classical STRIPS planning
You can learn more about it in our planning class next term.
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