Foundations of Artificial Intelligence 14. Deep Learning Learning from Raw Data

Joschka Boedecker and Wolfram Burgard and Frank Hutter and Bernhard Nebel and Michael Tangermann

Albert-Ludwigs-Universität Freiburg

July 10, 2019

Motivation: Deep Learning in the News

- 2 Representation Learning and Deep Learning
- 3 Multilayer Perceptrons
- Overview of Some Advanced Topics
- 5 Limitations

- 2 Representation Learning and Deep Learning
- 3 Multilayer Perceptrons
- Overview of Some Advanced Topics
- 5 Limitations

• Excellent empirical results, e.g., in computer vision

Self-driving cars

- Excellent empirical results, e.g., in speech recognition
 - Speech recognition

Image credit: Yoshua Bengio (data from Microsoft speech group)

skype

Auto-Translator

• Excellent empirical results, e.g., in reasoning in games

- Superhuman performance in playing Atari games [Mnih et al, Nature 2015]

- Beating the world's best Go player [Silver et al, Nature 2016]

- We don't understand how the human brain solves certain problems
 - Face recognition
 - Speech recognition
 - Playing Atari games
 - Picking the next move in the game of Go
- We can nevertheless learn these tasks from data/experience

- We don't understand how the human brain solves certain problems
 - Face recognition
 - Speech recognition
 - Playing Atari games
 - Picking the next move in the game of Go
- We can nevertheless learn these tasks from data/experience
- If the task changes, we simply re-train

- We don't understand how the human brain solves certain problems
 - Face recognition
 - Speech recognition
 - Playing Atari games
 - Picking the next move in the game of Go
- We can nevertheless learn these tasks from data/experience
- If the task changes, we simply re-train
- We can construct computer systems that are too complex for us to understand anymore ourselves. . .
 - E.g., deep neural networks have millions of weights.
 - E.g., AlphaGo, the system that beat world champion Lee Sedol
 - + David Silver, lead author of AlphaGo cannot say why a move is good
 - + Paraphrased: "You would have to ask a Go expert."

- Learning from data / experience may be more human-like
 - Babies develop an intuitive understanding of physics in their first 2 years
 - Formal reasoning and logic comes much later in development

- Learning from data / experience may be more human-like
 - Babies develop an intuitive understanding of physics in their first 2 years
 - Formal reasoning and logic comes much later in development
- Learning enables fast reaction times
 - It might take a long time to train a neural network
 - But predicting with the network is very fast
 - Contrast this to running a planning algorithm every time you want to act

2 Representation Learning and Deep Learning

3 Multilayer Perceptrons

Overview of Some Advanced Topics

5 Limitations

Representation learning

"a set of methods that allows a machine to be fed with raw data and to automatically discover the representations needed for detection or classification"

Representation learning

"a set of methods that allows a machine to be fed with raw data and to automatically discover the representations needed for detection or classification"

Deep learning

"representation learning methods with multiple levels of representation, obtained by composing simple but nonlinear modules that each transform the representation at one level into a [...] higher, slightly more abstract (one)"

(LeCun et al., 2015)

Standard Machine Learning Pipeline

- Standard machine learning algorithms are based on high-level attributes or features of the data
- E.g., the binary attributes we used for decisions trees
- This requires (often substantial) feature engineering

Representation Learning Pipeline

- Jointly learn features and classifier, directly from raw data
- This is also referrred to as end-to-end learning

Shallow vs. Deep Learning

Shallow vs. Deep Learning

• Deep Learning: learning a hierarchy of representations that build on each other, from simple to complex

Shallow vs. Deep Learning

- Deep Learning: learning a hierarchy of representations that build on each other, from simple to complex
- Quintessential deep learning model: Multilayer Perceptrons

Foundations of AI

Biological Inspiration of Artificial Neural Networks

- Dendrites input information to the cell
- Neuron fires (has action potential) if a certain threshold for the voltage is exceeded
- Output of information by axon
- The axon is connected to dentrites of other cells via synapses
- Learning: adaptation of the synapse's efficiency, its synaptical weight

A Very Brief History of Neural Networks

• Neural networks have a long history

- 1942: artificial neurons (McCulloch/Pitts)
- 1958/1969: perceptron (Rosenblatt; Minsky/Papert)
- 1986: multilayer perceptrons and backpropagation (Rumelhart)
- 1989: convolutional neural networks (LeCun)

A Very Brief History of Neural Networks

- Neural networks have a long history
 - 1942: artificial neurons (McCulloch/Pitts)
 - 1958/1969: perceptron (Rosenblatt; Minsky/Papert)
 - 1986: multilayer perceptrons and backpropagation (Rumelhart)
 - 1989: convolutional neural networks (LeCun)
- Alternative theoretically motivated methods outperformed NNs
 - Exaggeraged expectations: "It works like the brain" (No, it does not!)

- Neural networks have a long history
 - 1942: artificial neurons (McCulloch/Pitts)
 - 1958/1969: perceptron (Rosenblatt; Minsky/Papert)
 - 1986: multilayer perceptrons and backpropagation (Rumelhart)
 - 1989: convolutional neural networks (LeCun)
- Alternative theoretically motivated methods outperformed NNs
 - Exaggeraged expectations: "It works like the brain" (No, it does not!)
- Why the sudden success of neural networks in the last 5 years?
 - Data: Availability of massive amounts of labelled data
 - Compute power: Ability to train very large neural networks on GPUs
 - Methodological advances: many since first renewed popularization

2 Representation Learning and Deep Learning

3 Multilayer Perceptrons

Overview of Some Advanced Topics

5 Limitations

Multilayer Perceptrons

[figure from Bishop, Ch. 5]

- Network is organized in layers
 - Outputs of k-th layer serve as inputs of k + 1th layer
- Each layer k only does quite simple computations:
 - Linear function of previous layer's outputs z_{k-1} : $a_k = W_k z_{k-1} + b_k$
 - Nonlinear transformation $z_k = h_k(a_k)$ through activation function h_k

Multilayer Perceptrons

[figure from Bishop, Ch. 5]

- Network is organized in layers
 - Outputs of k-th layer serve as inputs of k + 1th layer
- Each layer k only does quite simple computations:
 - Linear function of previous layer's outputs z_{k-1} : $a_k = W_k z_{k-1} + b_k$
 - Nonlinear transformation $z_k = h_k(a_k)$ through activation function h_k

• Parameters/weights w of the network: all W_k, b_k , flattened into a single vector

Activation Functions - Examples

Logistic sigmoid activation function:

$$h_{logistic}(a) = \frac{1}{1 + \exp(-a)}$$

Logistic hyperbolic tangent activation function:

$$h_{tanh}(a) = \tanh(a)$$
$$= \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)}$$

Activation Functions - Examples (cont.)

Linear activation function:

 $h_{linear}(a) = a$

Rectified Linear (ReLU) activation function:

$$h_{relu}(a) = \max(0, a)$$

Output layer and loss functions

- For regression:
 - Single output neuron with linear activation function

$$\hat{y}(x,w) = h_{linear}(a) = a$$

• Loss function: e.g., squared error:

$$L(w) = \frac{1}{2} \sum_{n=1}^{N} \{\hat{y}(x_n, w) - y_n\}^2$$

Output layer and loss functions

- For regression:
 - Single output neuron with linear activation function

$$\hat{y}(x,w) = h_{linear}(a) = a$$

• Loss function: e.g., squared error:

$$L(w) = \frac{1}{2} \sum_{n=1}^{N} \{\hat{y}(x_n, w) - y_n\}^2$$

- For classification:
 - Single output unit with, e.g., logistic activation function:

$$\hat{y}(x,w) = h_{logistic}(a) = \frac{1}{1 + \exp(-a)}$$

• Loss function: negative log likelihood of the data under the predictive distribution this specifies; (aka cross entropy):

$$L(w) = -\sum_{n=1}^{N} \{y_n \ln \hat{y}_n + (1 - y_n) \ln(1 - \hat{y}_n)\}\$$

- Given training data $\mathcal{D} = \langle (x_i, y_i)
 angle_{i=1}^N$ and topology of an MLP
- Task: adapt weights w to minimize the loss:

 $\underset{w}{\textit{minimize } L(w; \mathcal{D})}$

- Given training data $\mathcal{D} = \langle (x_i, y_i)
 angle_{i=1}^N$ and topology of an MLP
- Task: adapt weights w to minimize the loss:

 $\underset{w}{\textit{minimize } L(w; \mathcal{D})}$

- We optimize this function by gradient-based optimization
 - We can compute gradients of $L(w; \mathcal{D})$
 - Efficiently, using a technique called backpropagation

- Given training data $\mathcal{D} = \langle (x_i, y_i)
 angle_{i=1}^N$ and topology of an MLP
- Task: adapt weights w to minimize the loss:

 $\underset{w}{\textit{minimize } L(w; \mathcal{D})}$

- We optimize this function by gradient-based optimization
 - We can compute gradients of $L(w; \mathcal{D})$
 - Efficiently, using a technique called backpropagation
 - Stochastic gradient descent (SGD)
 - We can use small batches of the data, i.e., $L(w; \mathcal{D}_{batch})$
 - This yields approximate gradients quickly

2 Representation Learning and Deep Learning

3 Multilayer Perceptrons

Overview of Some Advanced Topics

5 Limitations

2 Representation Learning and Deep Learning

3 Multilayer Perceptrons

Overview of Some Advanced Topics

5 Limitations

Hubel & Wiesel (Nobel prize 1981) found in several studies in the 1950s and 1960s:

- Visual cortex has feature detectors (e.g., cells with preference for edges with specific orientation)
 - edge location did not matter
- Simple cells as local feature detectors
- Complex cells pool responses of simple cells
- There is a feature hierarchy

Learned feature hierarchy

[From recent Yann LeCun slides]

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

[slide credit: Andrej Karpathy]

(University of Freiburg)

Foundations of AI

Convolutions illustrated

[slide credit: Andrej Karpathy]

consider a second, green filter

[slide credit: Andrej Karpathy]

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

[[]slide credit: Andrej Karpathy]

Stacking several convolutional layers

Convolutional layers stacked in a ConvNet

[slide credit: Andrej Karpathy]

Learned feature hierarchy

[From recent Yann LeCun slides]

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

[slide credit: Andrej Karpathy]

(University of Freiburg)

Foundations of AI

1) Motivation: Why is Deep Learning so Popular?

2 Representation Learning and Deep Learning

3 Multilayer Perceptrons

Overview of Some Advanced Topics

5 Limitations

Feedforward vs Recurrent Neural Networks

[Source: Jaeger, 2001]

- Neural Networks that allow for cycles in the connectivity graph
- Cycles let information persist in the network for some time (state), and provide a time-context or (fading) memory
- Very powerful for processing sequences
- Implement dynamical systems rather than function mappings, and can approximate any dynamical system with arbitrary precision
- They are Turing-complete [Siegelmann and Sontag, 1991]

With fully connected hidden layer:

Sequence to sequence mapping

one to many

many to one

image caption generation

temporal classification

(University of Freiburg)

many to many many to many

video frame labeling

automatic translation

(University of Freiburg)

Foundations of AI

1) Motivation: Why is Deep Learning so Popular?

2 Representation Learning and Deep Learning

3 Multilayer Perceptrons

Overview of Some Advanced Topics

5 Limitations

Reinforcement Learning

- Finding optimal policies for MDPs
- Reminder: states $s \in S$, actions $a \in A$, transition model T, rewards r
- Policy: complete mapping $\pi:S\to A$ that specifies for each state s which action $\pi(s)$ to take

Policy-based deep RL

- Represent policy $\pi:S\to A$ as a deep neural network with weights w
- Evaluate \boldsymbol{w} by "rolling out" the policy defined by \boldsymbol{w}
- Optimize weights to obtain higher rewards (using approx. gradients)
- Examples: AlphaGo & modern Atari agents

Policy-based deep RL

- Represent policy $\pi:S\to A$ as a deep neural network with weights w
- Evaluate \boldsymbol{w} by "rolling out" the policy defined by \boldsymbol{w}
- Optimize weights to obtain higher rewards (using approx. gradients)
- Examples: AlphaGo & modern Atari agents

• Value-based deep RL

- Basically value iteration, but using a deep neural network (= function approximator) to generalize across many states and actions
- Approximate optimal state-value function U(s) or state-action value function Q(s, a)

Policy-based deep RL

- Represent policy $\pi:S\to A$ as a deep neural network with weights w
- Evaluate \boldsymbol{w} by "rolling out" the policy defined by \boldsymbol{w}
- Optimize weights to obtain higher rewards (using approx. gradients)
- Examples: AlphaGo & modern Atari agents

• Value-based deep RL

- Basically value iteration, but using a deep neural network (= function approximator) to generalize across many states and actions
- Approximate optimal state-value function U(s) or state-action value function Q(s, a)

Model-based deep RL

- If transition model T is not known
- Approximate T with a deep neural network (learned from data)
- Plan using this approximate transition model

Policy-based deep RL

- Represent policy $\pi:S\to A$ as a deep neural network with weights w
- Evaluate \boldsymbol{w} by "rolling out" the policy defined by \boldsymbol{w}
- Optimize weights to obtain higher rewards (using approx. gradients)
- Examples: AlphaGo & modern Atari agents

• Value-based deep RL

- Basically value iteration, but using a deep neural network (= function approximator) to generalize across many states and actions
- Approximate optimal state-value function U(s) or state-action value function Q(s, a)

Model-based deep RL

- If transition model T is not known
- Approximate T with a deep neural network (learned from data)
- Plan using this approximate transition model

$\rightarrow\,$ Use deep neural networks to represent policy / value function / model

1) Motivation: Why is Deep Learning so Popular?

- 2 Representation Learning and Deep Learning
- 3 Multilayer Perceptrons
- Overview of Some Advanced Topics

Deep Learning Focuses on Perception

- Excellent results for perception tasks from raw data
 - Computer vision (from raw pixels)
 - Speech recognition (from raw audio)
 - Text recognition (from raw characters)

• . . .

Deep Learning Focuses on Perception

- Excellent results for perception tasks from raw data
 - Computer vision (from raw pixels)
 - Speech recognition (from raw audio)
 - Text recognition (from raw characters)

• . . .

- But all of this is bottom-up
 - No top-down reasoning
 - No logic, planning, etc.
 - Although there are some modern works on memory mechanisms, attention, etc.

Deep Learning Focuses on Perception

- Excellent results for perception tasks from raw data
 - Computer vision (from raw pixels)
 - Speech recognition (from raw audio)
 - Text recognition (from raw characters)

• . . .

- But all of this is bottom-up
 - No top-down reasoning
 - No logic, planning, etc.
 - Although there are some modern works on memory mechanisms, attention, etc.
- Deep networks can be combined with more traditional methods
 - E.g., AlphaGo: combination with Monte Carlo Tree Search (MCTS)
 - Some work on combining logic with deep learning

Adversarial examples: we're very far from human-level performance

- Even for very strong networks we can find adversarial examples
 - By following the gradient of the cost function w.r.t the input

1) Motivation: Why is Deep Learning so Popular?

- 2 Representation Learning and Deep Learning
- 3 Multilayer Perceptrons
- Overview of Some Advanced Topics
- 5 Limitations

- Excellent empirical results in many domains
 - very scalable to big data
 - but beware: not a silver bullet

- Excellent empirical results in many domains
 - very scalable to big data
 - but beware: not a silver bullet
- Analogy to the ways humans process information
 - mostly tangential

- Excellent empirical results in many domains
 - very scalable to big data
 - but beware: not a silver bullet
- Analogy to the ways humans process information
 - mostly tangential
- Allows end-to-end learning
 - no more need for many complicated subsystems
 - e.g., dramatically simplified Google's translation pipeline

- Excellent empirical results in many domains
 - very scalable to big data
 - but beware: not a silver bullet
- Analogy to the ways humans process information
 - mostly tangential
- Allows end-to-end learning
 - no more need for many complicated subsystems
 - e.g., dramatically simplified Google's translation pipeline
- Very versatile/flexible
 - easy to combine building blocks
 - allows supervised, unsupervised, and reinforcement learning

Lots of Work on Deep Learning in Freiburg

- Computer Vision (Thomas Brox)
 - Images, video
- Robotics (Wolfram Burgard)
 - Navigation, grasping, object recognition
- Neurorobotics (Joschka Boedecker)
 - Robotic control
- Machine Learning (Frank Hutter)
 - Foundations: optimization, neural architecture search, learning to learn
- Neuroscience (Tonio Ball, Michael Tangermann, and others)
 - EEG data and other applications from BrainLinks-BrainTools
- $\rightarrow\,$ Details when the individual groups present their research

Having heard this lecture, you can now ...

- Explain the terms representation learning and deep learning
- Explain why deep learning is so popular
- Describe the main principles behind MLPs
- Discuss some limitations of deep learning
- On a high level, describe
 - Convolutional Neural Networks
 - Recurrent Neural Networks
 - Deep Reinforcement Learning