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Motivation: Why is Deep Learning so Popular?

Excellent empirical results, e.g., in computer vision

(University of Freiburg) Foundations of AI July 10, 2019 5 / 49



Motivation: Why is Deep Learning so Popular?

Excellent empirical results, e.g., in speech recognition

(University of Freiburg) Foundations of AI July 10, 2019 6 / 49



Motivation: Why is Deep Learning so Popular?

Excellent empirical results, e.g., in reasoning in games

- Superhuman performance in playing
Atari games
[Mnih et al, Nature 2015]

- Beating the world’s best Go player
[Silver et al, Nature 2016]
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An Exciting Approach to AI:
Learning as an Alternative to Traditional Programming

We don’t understand how the human brain solves certain problems

- Face recognition
- Speech recognition
- Playing Atari games
- Picking the next move in the game of Go

We can nevertheless learn these tasks from data/experience

If the task changes, we simply re-train

We can construct computer systems that are too complex for us to
understand anymore ourselves. . .

- E.g., deep neural networks have millions of weights.
- E.g., AlphaGo, the system that beat world champion Lee Sedol

+ David Silver, lead author of AlphaGo cannot say why a move is good
+ Paraphrased: “You would have to ask a Go expert.”
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An Exciting Approach to AI:
Learning as an Alternative to Traditional Programming

Learning from data / experience may be more human-like

Babies develop an intuitive understanding of physics in their first 2 years
Formal reasoning and logic comes much later in development

Learning enables fast reaction times

It might take a long time to train a neural network
But predicting with the network is very fast
Contrast this to running a planning algorithm every time you want to act
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Some definitions

Representation learning

“a set of methods that allows a machine to be fed with raw data and to
automatically discover the representations needed for detection or
classification”

Deep learning

“representation learning methods with multiple levels of representation,
obtained by composing simple but nonlinear modules that each transform
the representation at one level into a [...] higher, slightly more abstract
(one)”

(LeCun et al., 2015)
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Standard Machine Learning Pipeline

Standard machine learning algorithms are based on high-level attributes
or features of the data

E.g., the binary attributes we used for decisions trees

This requires (often substantial) feature engineering
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Representation Learning Pipeline

Jointly learn features and classifier, directly from raw data
This is also referrred to as end-to-end learning
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Shallow vs. Deep Learning
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Shallow vs. Deep Learning

Image

Human Cat Dog Classes

Pixels

Edges

Contours

Object Parts

Deep Learning: learning a hierarchy of representations that build on
each other, from simple to complex

Quintessential deep learning model: Multilayer Perceptrons
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Biological Inspiration of Artificial Neural Networks

Dendrites input information to the cell

Neuron fires (has action potential) if a certain threshold for the voltage
is exceeded

Output of information by axon

The axon is connected to dentrites of other cells via synapses

Learning: adaptation of the synapse’s efficiency, its synaptical weight

AXON

dendrites

SYNAPSES

soma
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A Very Brief History of Neural Networks

Neural networks have a long history

- 1942: artificial neurons (McCulloch/Pitts)
- 1958/1969: perceptron (Rosenblatt; Minsky/Papert)
- 1986: multilayer perceptrons and backpropagation (Rumelhart)
- 1989: convolutional neural networks (LeCun)

Alternative theoretically motivated methods outperformed NNs

- Exaggeraged expectations: “It works like the brain” (No, it does not!)

Why the sudden success of neural networks in the last 5 years?

- Data: Availability of massive amounts of labelled data
- Compute power: Ability to train very large neural networks on GPUs
- Methodological advances: many since first renewed popularization
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Multilayer Perceptrons

x0

x1

xD

z0
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(1)
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w
(2)
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hidden units

inputs outputs

[figure from Bishop, Ch. 5]

Network is organized in layers
- Outputs of k-th layer serve as inputs of k + 1th layer

Each layer k only does quite simple computations:
- Linear function of previous layer’s outputs zk−1: ak =Wkzk−1 + bk
- Nonlinear transformation zk = hk(ak) through activation function hk

Parameters/weights w of the network: all Wk, bk, flattened into a single
vector
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Activation Functions - Examples

Logistic sigmoid activation function:

hlogistic(a) =
1

1 + exp(−a)
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Logistic hyperbolic tangent
activation function:

htanh(a) = tanh(a)

=
exp(a)− exp(−a)
exp(a) + exp(−a)

}
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Activation Functions - Examples (cont.)

Linear activation function:

hlinear(a) = a
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Rectified Linear (ReLU) activation
function:

hrelu(a) = max(0, a)
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Output layer and loss functions

For regression:
Single output neuron with linear activation function

ŷ(x,w) = hlinear(a) = a

Loss function: e.g., squared error:

L(w) =
1

2

N∑
n=1

{ŷ(xn, w)− yn}2

For classification:
Single output unit with, e.g., logistic activation function:

ŷ(x,w) = hlogistic(a) =
1

1 + exp(−a)
Loss function: negative log likelihood of the data under the predictive
distribution this specifies; (aka cross entropy):

L(w) = −
N∑

n=1

{yn ln ŷn + (1− yn) ln(1− ŷn)}
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Optimizing a loss / error function

Given training data D = 〈(xi, yi)〉Ni=1 and topology of an MLP

Task: adapt weights w to minimize the loss:

minimize
w

L(w;D)

We optimize this function by gradient-based optimization

We can compute gradients of L(w;D)
Efficiently, using a technique called backpropagation

Stochastic gradient descent (SGD)

We can use small batches of the data, i.e., L(w;Dbatch)
This yields approximate gradients quickly
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Historical context and inspiration from Neuroscience

Hubel & Wiesel (Nobel prize 1981) found in several studies in the 1950s
and 1960s:

Visual cortex has feature detectors
(e.g., cells with preference for
edges with specific orientation)

- edge location did not matter

Simple cells as local feature
detectors

Complex cells pool responses of
simple cells

There is a feature hierarchy
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Learned feature hierarchy

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201619

Preview [From recent Yann 
LeCun slides]

[slide credit: Andrej Karpathy]

(University of Freiburg) Foundations of AI July 10, 2019 27 / 49



Convolutions illustrated

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201613

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

[slide credit: Andrej Karpathy]
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Convolutions illustrated (cont.)

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201614
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3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

[slide credit: Andrej Karpathy]
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Convolutions – several filters

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201615
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Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps
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28
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consider a second, green filter

[slide credit: Andrej Karpathy]
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Convolutions – several filters

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201616

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

[slide credit: Andrej Karpathy]
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Stacking several convolutional layers

Convolutional layers stacked in a ConvNet

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201618

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with 
activation functions
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[slide credit: Andrej Karpathy]
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Feedforward vs Recurrent Neural NetworksRecurrent vs Feedforward networks

1. Recurrent neural networks 
 

1.1 First impression 
 
There are two major types of neural networks, feedforward and recurrent. In 
feedforward networks, activation is "piped" through the network from input units to 
output units (from left to right in left drawing in Fig. 1.1):  
 
 
  

...
...

 
 
 
  
 
 
 
 
Figure 1.1: Typical structure of a feedforward network (left) and a recurrent network 
(right). 
 
Short characterization of feedforward networks: 
 

!" typically, activation is fed forward from input to output through "hidden layers" 
("Multi-Layer Perceptrons" MLP), though many other architectures exist 

!" mathematically, they implement static input-output mappings (functions)  
!" basic theoretical result: MLPs can approximate arbitrary (term needs some 

qualification) nonlinear maps with arbitrary precision ("universal approximation 
property") 

!" most popular supervised training algorithm: backpropagation algorithm 
!" huge literature, 95 % of neural network publications concern feedforward nets 

(my estimate)  
!" have proven useful in many practical applications as approximators of 

nonlinear functions and as pattern classificators 
!" are not the topic considered in this tutorial 

 
By contrast, a recurrent neural network (RNN) has (at least one) cyclic path of 
synaptic connections. Basic characteristics:  
 

!" all biological neural networks are recurrent 
!" mathematically, RNNs implement dynamical systems 
!" basic theoretical result: RNNs can approximate arbitrary (term needs some 

qualification) dynamical systems with arbitrary precision ("universal 
approximation property") 

!" several types of training algorithms are known, no clear winner 
!" theoretical and practical difficulties by and large have prevented practical 

applications so far 
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Source:
Jaeger, 2001

[Source: Jaeger, 2001]
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Recurrent Neural Networks (RNNs)

Neural Networks that allow for cycles in the connectivity graph

Cycles let information persist in the network for some time (state), and
provide a time-context or (fading) memory

Very powerful for processing sequences

Implement dynamical systems rather than function mappings, and can
approximate any dynamical system with arbitrary precision

They are Turing-complete [Siegelmann and Sontag, 1991]
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Abstract schematic

With fully connected hidden layer:
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Sequence to sequence mappingSequence-to-sequence Mapping

one to many many to one

image caption
generation

temporal
classification
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Sequence to sequence mapping (cont.)Sequence-to-sequence Mapping

many to many many to many

video
frame labeling

automatic
translation
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Reinforcement Learning

Finding optimal policies for MDPs

Reminder: states s ∈ S, actions a ∈ A, transition model T , rewards r

Policy: complete mapping π : S → A that specifies for each state s
which action π(s) to take
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Deep Reinforcement Learning

Policy-based deep RL
- Represent policy π : S → A as a deep neural network with weights w
- Evaluate w by “rolling out” the policy defined by w
- Optimize weights to obtain higher rewards (using approx. gradients)
- Examples: AlphaGo & modern Atari agents

Value-based deep RL
- Basically value iteration, but using a deep neural network (= function

approximator) to generalize across many states and actions
- Approximate optimal state-value function U(s)

or state-action value function Q(s, a)

Model-based deep RL
- If transition model T is not known
- Approximate T with a deep neural network (learned from data)
- Plan using this approximate transition model

→ Use deep neural networks to represent policy / value function / model
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Deep Learning Focuses on Perception

Excellent results for perception tasks from raw data

Computer vision (from raw pixels)
Speech recognition (from raw audio)
Text recognition (from raw characters)
. . .

But all of this is bottom-up

No top-down reasoning
No logic, planning, etc.
Although there are some modern works on memory mechanisms, attention,
etc.

Deep networks can be combined with more traditional methods

E.g., AlphaGo: combination with Monte Carlo Tree Search (MCTS)
Some work on combining logic with deep learning
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Adversarial examples: we’re very far from human-level
performance

Even for very strong networks we can find adversarial examples

By following the gradient of the cost function w.r.t the input
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Lecture Overview

1 Motivation: Why is Deep Learning so Popular?

2 Representation Learning and Deep Learning

3 Multilayer Perceptrons

4 Overview of Some Advanced Topics

5 Limitations

6 Wrapup
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Summary: Why is Deep Learning so Popular?

Excellent empirical results in many domains

- very scalable to big data
- but beware: not a silver bullet

Analogy to the ways humans process information

- mostly tangential

Allows end-to-end learning

- no more need for many complicated subsystems
- e.g., dramatically simplified Google’s translation pipeline

Very versatile/flexible

- easy to combine building blocks
- allows supervised, unsupervised, and reinforcement learning
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Lots of Work on Deep Learning in Freiburg

Computer Vision (Thomas Brox)

- Images, video

Robotics (Wolfram Burgard)

- Navigation, grasping, object recognition

Neurorobotics (Joschka Boedecker)

- Robotic control

Machine Learning (Frank Hutter)

- Foundations: optimization, neural architecture search, learning to learn

Neuroscience (Tonio Ball, Michael Tangermann, and others )

- EEG data and other applications from BrainLinks-BrainTools

→ Details when the individual groups present their research
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Summary by learning goals

Having heard this lecture, you can now . . .

Explain the terms representation learning and deep learning

Explain why deep learning is so popular

Describe the main principles behind MLPs

Discuss some limitations of deep learning

On a high level, describe

- Convolutional Neural Networks
- Recurrent Neural Networks
- Deep Reinforcement Learning
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