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Example: Automated Online Assistant

Gift shop

Items such =s caps, tshirts, swestshirts and other miscellenes such as buttons and
meuse pads heve been designed. In sddition, merchandise for almest all of the

projects is availsble

|CD or DVD

There isa /—B\
ries of [ @
JCDs/DVDs with

Jselected

Wikipedia content being

produced by Wikipedians and
50 Chilgren

Downloading

[Downloading content from

Wikipedia is

jfree of charge.
Hi. I'm your automated online |Jail text cont=nt
assistant. How may | help you? |= iic=nsed
| Ask under the GNU

Free

Do License

(GFDL). Imeges and other files are available under different terms, s detailed on

Source: Wikicommons/Bemidji State University
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Lecture Overview

o Motivation, NLP Tasks
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Natural Language Processing (NLP)

I can light a fire and yoy'can ppen of beans. Now the can

is open and we can eat inThe light of The fire.

Ta g ge~e s

Credits: slide by Torbjoern Lager; (audio: own)

@ The language of humans is represented as text or audio data. The field
of NLP creates interfaces between human language and computers.

@ Goal: automatic processing of large amounts of human language data.
.
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Examples of NLP Tasks and Applications

@ word segmentation, sentence segmentation

@ text classification l

@ sentiment analysis (polarity, emotions, ..) Jﬂ% g"\ g@y(
~

@ topic recognition

@ automatic summarization

@chine translation (text-to-text)

@ speaker identification

@ speech segmentation (into sentences, words) A
@ speech recognition (i.e. speech-to-text) Qe e/™v 6
@ natural language understanding

@ text and spoken dialog systems (chatbots)
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From Rules to Probabilistic Models to Machine Learning

Part-of-Speech Tagging:

I can light a fire and you can open a can of beans. Now the can
is open and we can eat in the light of the fire.

I/PRP car@ Iigh@aaire@%and/cc you/PRP can/MD
open/VB a/DT can/NN of /IN beans7NNS ./. Now/RB the/DT

can/NN is/VBZ open/JJ and/CC we/PRP can/MD eat/VBin/IN 3%
the/DT light/NN of /IN the/DT fire/NN./. =

Sources: Slide by Torbjoern Lager; (Anthony, 2013)

Traditional rule-based approachéssand (to a lesser degree) probabilistic
NLP models faced limitations, as e

@ human don't stick to rules, commit errors.

@ language evolves: rules are neither strict nor fixed.

o labels (e.g. tagged text or audio) were requir

Machine translation was extremely challenging due to shortage of
multilingual textual corpora for model training.
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From Rules to Probabilistic Models to Machine Learning

Machine learning entering the NLP field:
@ Since late 1980's: increased data availability (WWW

@ Since 2010's: huge data, computing power — unsupervised
representation learning, deep architectures for many NLP tasks.
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Lecture Overview

© Learning Representations
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Learning a Word Embedding

(https://colah.github.io/posts/2014-07-NLP-RNNs-Representation)

A word embeddin@is a function

W : words @

which maps words of some language to a high-dimensional vector space
(e.g. 200 dimensions).

Examples:

) 03 607

W (" mat")=(0.0, 06 01,

Mapping function W should be realized by a look-up table or by a neural
network such that:
@ representations in R™ of related words have a short distance

@ representations in R™ of unrelated words have a large distance
4\

How can we learn a good representation / word embedding function W?
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Representation Training

A word embedding function W can be trained using different tasks, that
require the network to discriminate related from unrelated words.
discnminate r

Can you think of such a training task? Please discuss with your neighbors!

L 2( %
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Representation Training

A word embedding function W can be trained using different tasks, that
require the network to discriminate related from unrelated words.

Can you think of such a training task? Please discuss with your neighbors!

YV
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Representation Training

A word embedding functio can be trained using different tasks, that

require the network to discriminate related from unrelated words.

Example task: predict, if sequence of five words) is valid or not.

Training data contains valid and slightly modified, invalid 5-grams:

— R(W("cat”), W("sat"), , W("the"), W("mat"))=1
R(W("cat"), W("sat"), W("song"), W("the"), W("mat"))=0

Train the combination of embedding function W and classification module
R:

Modular Network to
determine if a 5-gram is
‘valid” (From Bottou
(2011))

cat sat song the mat

While we may

e interested in the trained module R, the learned word
embedding W is very valuable!
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Visualizing the Word Embedding

Let’s look at a projection from R™ — R? obtained by tSNE:
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Visualizing the Word Embedding

Let's look at a projection from R™ — R? obtained by tSNE:

000 1
5 &
minister
few I half leader
six president
two head
three four chief chairman
several ~ director spokesman
some
many )
other executive | analyst
thosethese
all
e
both

t-SNE visualizations of word embeddings. Left: Number Region;
Right: Jobs Region. From Turian et al. (2010)
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Sanity Check: Word Similarities in R"?

FRANCE JESUS XBOX REDDISD SCRATCHED MEGABITS

AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA  PSNUMBE GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED  MEGAHERTZ
EUROPE ANANDA  DREAMCAS WHITISH SECTIONED  MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S
ITZERLAND/  GRACE CAPCOM YELLOWISH RIPPED AMPERES

What words have embeddings closest to a given
word? From Collobert et al. (2011)
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Powerful Byproducts of the Learned Embedding W

Embedding allows to work not only with synonyms, but also with other
words of the same category:

@ "the cat is black” — "the cat is white”

—_—

@ "in the zoo | saw an elephant” — "in the zoo | saw a lion"”

In the embedding space, systematic shifts can be observed for analogies:

L (i ) ()

WOMAN

@ AUNT
MAN / ‘
UNCLE From Mikolov et al.
QUEEN (2013a)
KING

The embedding space may provide dimensions for gender, singular-plural
etc.!
(University of Freiburg)
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served Relationship Pai

the Learned Embedding W

Relationship Example 1 Example 2 3
w Italy: Rome Japan: Tok; ’ orida: Tallahassee

big - bigger
Miami - Florida

yteilhsciemigt
Sarko: .— lle

Berluscon

i- Silvio
Microsoft - Windows
Microsoft - Ballmer

Japan - sushi

small* Targer

Baltimore: Maryland
Messi: midfielder
Berlusconi: Italy

zinc: Zn

Sarkozy: Nicolas
Google: Android
Google: Yahoo

Germany: bratwurst

cold: colder
Dallas: Texas
Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux
IBM: McNealy
France: tapas

quick: quicker
Kona: Hawaii

Picasso: painter

uranium: plutonium

ama: Barack

Apple: iPhone
Apple: Jobs

USA: pizza

Relationship pairs in a word embedding. From
Mikolov et al. (2013b).
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Word Embeddings Available for Your Projects

Various embedding models / strategies have been proposed:

e Word2vec (Tomas Mikolov et al., 2013)

° mennington et al., 2014)

° @?ext library (released by Facebook by group around Tomas Mikolov)
o ELMo (Matthew Peters et al., 2018)

o ULMFit (by fast.ai founder Jeremy Howard and Sebastian Ruder)

\/o BERT (by Google)

° ...

(Pre-trained models are available for download)

(University of Freiburg) Foundations of Al July 17, 2019 17 /29



Word Embeddings: the Secret Sauce for NLP Projects
ks
Shared representations — re-use a pre-trained <-
embedding for other tasks! ",
0(
Using ELMo embeddings improved six
state-of-the-art NLP models for:

@ Question answering
@ Textual entailment (inference)

@ Semantic role labeling
("Who did what to whom?")

Coreference resolution
(clustering mentions of the same entity)

Sentiment analysis
y W andF learn to perform

. . /
Named entity extraction “ task A. Later, G can learn

to perform B based on W.
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Can Neurai Representation Learning Support Machine

Translation?

Can you think of a training strategy to translate from Mandarin to English
and back? Please discuss with your neighbors!

L 2( %

Courca _(—i__) T(zm __<_U_>_> -Jc/‘g//vé
aﬂ“y‘hﬁ Om%wwz/(

e['\éocé &CC Da/c
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Can Neural Representation Learning Support Machine

Translation?

Can you think of a training strategy to translate from Mandarin to English
and back? Please discuss with your neighbors!

v
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\/\
4

Idea: train two embeddings in parallel
such, that corresponding words are
projected to close-by positions in the
word space.

&
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Visualizing the Word Embedding

Let’s again look at a tSNE projection R — R?:
T3 Tdevelop il (moving

By b 3 )
( —
3 BR Rk
BR .
) [explore | TP i
- leading |

jore §
2:iiJ produce]

- - - :
RS travel stal y -

ey (oe

t-SNE visualization of the bilingual word
embedding. Green is Chinese, Yellow is English.
(Socher et al. (2013a))

Foundations of Al July 17, 2019 21/

(University of Freiburg)



Lecture Overview

© Sequence-to-Sequence Deep Learning
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Association Modules

@ So far, the network has learned to deal with a fixed number of input
words only.

B/

=

cat sat song the mat

(University of Freiburg)

Foundations of Al

July 17, 2019



Association Modules

@ So far, the network has learned to deal with a fixed number of input
words only.

@ Limitation can be overcome by adding association modules, which can
combine two word and phrase representations and merge them

(From Bottou (2011))
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Association Modules

@ So far, the network has learned to deal with a fixed number of input
words only.

@ Limitation can be overcome by adding association modules, which can
combine two word and phrase representations and merge them

A

@ Using associations, whole sentences can be represented!

the | sat |\ A
‘ A on|w A
cat ,J the |\w A
mat |\ =

(From Bottou (2011))
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From Representations to the Translation of Texts

Conceptually, we could now use this concept to find the embedding of a
word or sentence of the source language and look up the closest
embedding of the target language.

What is missing to realize a translation?

U
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From Representations to the Translation of Texts

For translations, wee also need disassociation modules!
(encoder — decoder principle)

sat

the m the? on
A+D

cat m b cat? the

mat

(From Bottou (2011))
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Sequence-to-Sequence Neural Machine Translation

Ground-breaking new approach by Bahdanau, Cho and Bengio (2014
ArXiv, 2015 ICML)

@ Shift through the input word sequence

@ Learn to encode and to decode using recurrent neural networks (RNN)
@ Learn to align input and output word sequences

o Take context-i learning the importance of neigboring
words +> attention mechanism.

Attentional

Interface

allo o focus on
parts of their input.

Credits: (Olah & Carter, 2016) have adapted this figure based on (Bahdanau et al., 2014)
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Sequence-to-Sequence Neural Machine Translation

Ground-breaking new approach by Bahdanau, Cho and Bengio (2014
ArXiv, 2015 ICML)

@ Shift through the input word sequence
@ Learn to encode and to decode using recurrent neural networks (RNN)
@ Learn to align input and output word sequences

@ Take context into account by learning the importance of neigboring
words — attention mechanism.

X I accord sur la zone économique européenne a été signé en aolt 1992 <end>
1 1 1 1 1 i | 1 1 1
Bl Bl s|BlLs({Bls|BLSs|BLS|B Bl ,|BlLs|B
T T T

\
\
\
1 1 1

XAHAHAHAHAHAHA oAl Aol Aol alo]a
T 1 1 T 1 T 1 T 1 T 1 T
the agreement on the European Economic Area was signed in August 1992 <end>

—_—

Credits: (Olah & Carter, 2016) have adapted this figure based on (Bahdanau et al., 2014)
—_—
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Sequence-to-Sequence Neural Voice Recognition

@ Similar principle, but voice/speech input

et output text

network A

input audio

Figure derived from Chan, et al. 2015

Credits: (Olah & Carter, 2016) have adapted this figure based on (Chan et al., 2015)
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Success Story of Attention-based Neural Machine

Translation

Neural machine translation requires big data sets but has advantagess:

@ Overall model can be learned end-to-end

@ No need to integrate modules for feature extraction, database, grammar
rules etc. in a complicated system

= Google Scholar  "neural machine translation” B

Artikel UH(]((J 9.120 Erdybnisse (0,05 Sek.) e

Beliebige Zeit Neural Machine Translation Systems With Rare Word Processing |
0 QVLe, MT Luong, | Sutskever, O Vinyals... - US Patent App. 16 ..., 2019 - Google Patents

Seit 2018 Methods, systems, and apparatus, including computer programs encoded on computer

storage media, for neural translation systems with rare word processing. One of the methods
is a method training a neural network translation system to track the source in source.

Zeitraum wahlen.

Yo 99 %
Nach Relevanz Tensor2tensor for neural i i |
sortieren A Vaswani, S Bengio, E Brevdo, F Chollet... - arXiv preprint arXiv ..., 2018 - arxiv.org
Nach Datum Machine translation using deep neural networks achieved great success with sequence-to- sequence
sortieren models (Sutskever et al., 2014; Bahdanau et al., 2014; Cho et al., 2014) that used recur- rent

neural networks (RNNs) with LSTM cells (Hochreiter and Schmidhuber, 1997). The basic ..
¢ 99 Zitiertvon: 75 Ahnliche Artikel Alle 7 Versionen %

Beliebige Sprache

Seiten auf Deutsch  Phrase-based & neural unsupervised machine translation |
G Lample, M Ott, A Conneau, L Denover... - arXiv preprint arXiv .., 2018 - arxiv.org

 Patente Page 1. Phrase-Based & Neural Unsupervised Machine Translation Guilaume Lamplet

cinschlieien Facebook Al Research Sorbonne Universités glample@fb.com Myle Ot Facebook
Al Research myleott@fb.com Alexis Conneau Facebook ...

Zitate
e:nssm‘egen Y& 99 Zitiertvon: 68 Ahnliche Artikel Alle 5 Versionen 9
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o Natural language processing spans a wide range of problems and
applications.

@ NLP is a rapidly growing field due to availability of huge data sets.

@ NLP techniques is part of many products already.

o Field is moving more and more t0 neural networks, which provide NLP
building blocks like end-to-end learning, representation learning,
sequence-to-sequence, ...
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