
Sheet 1 solutions

May 3, 2019

Exercise 1: Linear Algebra

(a) Consider the matrices

A =

(
0.25 0.1
0.2 0.5

)
, B =

(
0.25 −0.3
−0.3 0.5

)
.

Are they symmetric positive definite?

A symmetric matrix is a square matrix that is equal to its transpose: M = MT . Its
entries are symmetric with respect to the main diagonal, for example:

M =

(
a b
b c

)
A symmetric n × n matrix M is positive definite if the scalar zTMz is positive
for every non-zero column vector z of n real numbers. It is negative definite if
zTMz is negative, positive-semidefinite if zTMz ≥ 0 and negative-semidefinite if
zTMz ≤ 0 for every non-zero vector z with appropriate dimension. A symmetric
positive definite matrix has only positive eigenvalues. This is often easier to check
than zTMz.

• Matrix A is not symmetric!

• Matrix B is symmetric. The eigenvalues are calculated as:

|B− λI| = 0∣∣∣∣(0.25 −0.3
−0.3 0.5

)
−
(
λ 0
0 λ

)∣∣∣∣ = 0

(0.25− λ)(0.5− λ)− 0.09 = 0

λ2 − 0.75λ+ 0.035 = 0

λ1,2 =
0.75

2
±

√(
0.75

2

)2

− 0.035 (pq-formula)

λ1 = 0.7, λ2 = 0.05

Both eigenvalues are positive, the matrix is symmetric and positive definite.

1

(b) For

C =

(
−3 0
0 1

)
,

find the largest value for µ ∈ R for which C+µI is not symmetric positive definite.

We can check the eigenvalues for the largest value of µ for which C + µI is not
symmetric positive definite. The matrix

C + µI =

(
−3 + µ 0

0 1 + µ

)
is in diagonal form, the eigenvalues are the entries of the diagonal. If at least one
of the eigenvalues is smaller or equal to zero, the matrix is not symmetric positive
definite:

(−3 + µ) ≤ 0 or (1 + µ) ≤ 0

µ ≤ 3 or µ ≤ −1

The largest value for µ for which C + µI is not symmetric positive definite is 3.

(c) Write a program in Python that determines whether a matrix is orthogonal.

A square matrix is orthogonal, if its columns and rows are orthogonal unit vectors,
which is equivalent to:

MTM = I. (1)

As an example, rotation matrices are always orthogonal. Please find the code listing
below.

(d) Use this program to investigate whether

D =
1

3

 2 2 −1
2 −1 2
−1 2 2


is orthogonal.

Please find the code listing below. Matrix D is orthogonal.

import numpy as np

c) program to verify matrix orthogonality

def check_orthogonal(M):
make sure the input is a matrix
if len(np.shape(M)) != 2:

print("error: input is not a matrix")
return

make sure the input is a square matrix

2

dim = np.shape(M)[0]
if dim != np.shape(M)[1]:

print("error: input is not a square matrix")
return

A = np.dot(M, M.T)
if np.array_equal(A, np.identity(dim)):

print("matrix is orthogonal")
else:

print("matrix is not orthogonal")

d) apply to given matrix

D = 1./3. * np.array(
[[2, 2, -1],
[2, -1, 2],
[-1, 2, 2]])

check_orthogonal(D)

Exercise 2: 2D Transformations as Affine Matrices

The 2D pose of a robot w.r.t. a global coordinate frame is commonly written as x =
(x, y, θ)T , where (x, y) denotes its position in the xy-plane and θ its orientation. The
homogeneous transformation matrix that represents a pose x = (x, y, θ)T w.r.t. to the
origin (0, 0, 0)T of the global coordinate system is given by

X =

(
R(θ) t
0 1

)
,R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, t =

(
x
y

)
(a) While being at pose x1 = (x1, y1, θ1)

T , the robot senses a landmark l at position
(lx, ly) w.r.t. to its local frame. Use the matrix X1 to calculate the coordinates of l
w.r.t. the global frame.

Let gTx1 =

 cos θ1 − sin θ1 x1
sin θ1 cos θ1 y1
0 0 1

 and x1l =

 lx
ly
1

 then

gTx1 is the matrix expression in homogeneous form of pose x1 w.r.t. the global
reference frame, while x1l is the vector expression in homogeneous form of the
landmark w.r.t. the robot reference frame x1.

The question asks to compute the landmark coordinate w.r.t. the global frame, i.e.
gl:

gl = gTx1 · x1l (2)

3

(b) Now imagine that you are given the landmark’s coordinates w.r.t. to the global
frame. How can you calculate the coordinates that the robot will sense in his local
frame?

We are given gl and gTx1 and we want to compute x1l. We can solve this either by
taking (2) and solving with respect to x1l by multiplying to the left and right hand
side (gTx1)

−1). Or we follow the same logic as the previous exercise, i.e.

x1l = x1Tg · gl = (gTx1)
−1 · gl

(c) The robot moves to a new pose x2 = (x2, y2, θ2)
T w.r.t. the global frame. Find the

transformation matrix T12 that represents the new pose w.r.t. to x1. Hint: Write T12
as a product of homogeneous transformation matrices.

Let gTx2 =

 cos θ2 − sin θ2 x2
sin θ2 cos θ2 y2
0 0 1


gTx2 is the matrix expression in homogeneous form of pose x2 w.r.t. the global
reference frame. This time we need to compute the homogeneous matrix form of
the pose x2 expressed w.r.t. the reference frame of x1, i.e. x1Tx2 . Again, we follow
the rules of transformation concatenation and we find:

x1Tx2 =
x1Tg · gTx2 = (gTx1)

−1 · gTx2 = T12

(d) The robot is at position x2. Where is the landmark l = (lx, ly) w.r.t. the robot’s
local frame now?

Compute the landmark l w.r.t. the reference frame of x2, i.e. x2l!

Since we computed x1Tx2 in the previous exercise we can just reuse it as follows:

x2l = x2Tx1 · x1l = (x1Tx2)
−1 · x1l

In case we want to express it only in terms of the gTx1 and gTx2 , we can apply the
matrix inversion property (AB)−1 = B−1A−1 and find:

(x1Tx2)
−1 =

(
(gTx1)

−1 · gTx2

)−1
= (gTx2)

−1 · gTx1

=⇒ x2l = (gTx2)
−1 · gTx1 · x1l

We could have found the same result by directly applying the rules of transforma-
tion concatenation.

Exercise 3: Sensing

A robot is located at x = 1.0m, y = 0.5m, θ = π
4
. Its laser range finder is mounted on

the robot at x = 0.2m, y = 0.0m, θ = π (with respect to the robot’s frame of reference).

4

The distance measurements of one laser scan can be found in the file laserscan.dat,
which is provided on the website of this lecture. The first distance measurement is taken
in the angle α = −π

2
(in the frame of reference of the laser range finder), the last distance

measurement has α = π
2

(i.e., the field of view of the sensor is π), and all neighboring
measurements are in equal angular distance (all angles in radians).

(a) Use Python to plot all laser end-points in the frame of reference of the laser range
finder.

Please find the code listing below.

0 2 4 6 8 10

2

0

2

4

6

8

(b) The provided scan exhibits an unexpected property. Identify it an suggest an expla-
nation.

It appears as the laser can, at times, see through the walls, which shouldn’t be pos-
sible. This can indeed happen if the "wall" is actually a semi transparent obstacle,
such as a grid, a fence, or a glass.

(c) Use homogeneous transformation matrices in Python to compute and plot the center
of the robot, the center of the laser range finder, and all laser end-points in world
coordinates.

Please find the code listing below.

5

8 6 4 2 0 2 4 6

10

8

6

4

2

0

2

import numpy as np
import matplotlib.pyplot as plt
import math
pi = math.pi

a) Load laserscan and plot in scanner frame

scan = np.loadtxt(’laserscan.dat’)
angle = np.linspace(-pi/2, pi/2, np.shape(scan)[0], endpoint=’true’)

x = scan * np.cos(angle);
y = scan * np.sin(angle);

plt.plot(x, y, ’.k’, markersize=3)

Set the same scale on both axes
plt.gca().set_aspect(’equal’)
plt.savefig(’scan1.pdf’)

c) Transform to global frame

Define the transformation matrices
T_global_robot = np.array(

[[np.cos(pi/4), -np.sin(pi/4), 1],
[np.sin(pi/4), np.cos(pi/4), 0.5],
[0, 0, 1]])

6

T_robot_laser = np.array(
[[np.cos(pi), -np.sin(pi), 0.2],
[np.sin(pi), np.cos(pi), 0.0],
[0, 0, 1]])

Compute the laser frame w.r.t. the global frame
T_global_laser = np.dot(T_global_robot, T_robot_laser)

Apply the transformation to the scan points
w = np.ones(len(x))
scan_laser = np.array([x, y, w])
scan_global = np.dot(T_global_laser, scan_laser)

Plot the laser points
plt.figure()
plt.plot(scan_global[0,:], scan_global[1,:], ’.k’, markersize=3)

Plot robot pose in blue
plt.plot(T_global_robot[0,2], T_global_robot[1,2], ’+b’);

Plot laser pose in red
plt.plot(T_global_laser[0,2], T_global_laser[1,2], ’+r’);

Set the same scale on both axes
plt.gca().set_aspect(’equal’)
plt.show()
#plt.savefig(’scan2.pdf’)

7

